Two Triangles with the Same Orthocenter and a Vectorial Proof of Stevanovic's Theorem

Prof. Ion Pătraşcu - The National College "Fraţii Buzeşti", Craiova, Romania Prof. Florentin Smarandache - University of New Mexico, U.S.A.

Abstract. In this article we'll emphasize on two triangles and provide a vectorial proof of the fact that these triangles have the same orthocenter. This proof will, further allow us to develop a vectorial proof of the Stevanovic's theorem relative to the orthocenter of the Fuhrmann's triangle.

Lemma 1

Let $A B C$ an acute angle triangle, H its orthocenter, and $A^{\prime}, B^{\prime}, C^{\prime}$ the symmetrical points of H in rapport to the sides $B C, C A, A B$.

We denote by X, Y, Z the symmetrical points of A, B, C in rapport to $B^{\prime} C^{\prime}, C^{\prime} A^{\prime}, A^{\prime} B^{\prime}$ The orthocenter of the triangle $X Y Z$ is H.

Fig. 1

Proof

We will prove that $X H \perp Y Z$, by showing that $\overrightarrow{X H} \cdot \overrightarrow{Y Z}=0$.
We have (see Fig.1)

$$
\begin{aligned}
\overrightarrow{V H} & =\overrightarrow{A H}-\overrightarrow{A X} \\
\overrightarrow{B C} & =\overrightarrow{B Y}+\overrightarrow{Y Z}+\overrightarrow{Z C}
\end{aligned}
$$

from here

$$
\overrightarrow{Y Z}=\overrightarrow{B C}-\overrightarrow{B Y}-\overrightarrow{Z C}
$$

Because Y is the symmetric of B in rapport to $A^{\prime} C^{\prime}$ and Z is the symmetric of C in rapport to $A^{\prime} B^{\prime}$, the parallelogram's rule gives us that:

$$
\begin{aligned}
& \overrightarrow{B Y}=\overrightarrow{B C^{\prime}}+\overrightarrow{B A^{\prime}} \\
& \overrightarrow{C Z}=\overrightarrow{C B^{\prime}}+\overrightarrow{C A^{\prime}} .
\end{aligned}
$$

Therefore

$$
\overrightarrow{Y Z}=\overrightarrow{B C}-\left(\overrightarrow{B C^{\prime}}+\overrightarrow{B A^{\prime}}\right)+\overrightarrow{B^{\prime} C}+\overrightarrow{A^{\prime} C}
$$

But

$$
\begin{aligned}
& \overrightarrow{B C^{\prime}}=\overrightarrow{B H}+\overrightarrow{H C^{\prime}} \\
& \overrightarrow{B A^{\prime}}=\overrightarrow{B H}+\overrightarrow{H A^{\prime}} \\
& \overrightarrow{C B^{\prime}}=\overrightarrow{C H}+\overrightarrow{H B^{\prime}} \\
& \overrightarrow{C A^{\prime}}=\overrightarrow{C H}+\overrightarrow{H A^{\prime}}
\end{aligned}
$$

By substituting these relations in the $\overrightarrow{Y Z}$, we find:

$$
\overrightarrow{Y Z}=\overrightarrow{B C}+\overrightarrow{C^{\prime} B^{\prime}}
$$

We compute
$\overrightarrow{X H} \cdot \overrightarrow{Y Z}=(\overrightarrow{A H}-\overrightarrow{A X}) \cdot\left(\overrightarrow{B C}+\overrightarrow{C^{\prime} B^{\prime}}\right)=\overrightarrow{A X} \cdot \overrightarrow{B C}+\overrightarrow{A H} \cdot \overrightarrow{C^{\prime} B^{\prime}}-\overrightarrow{A X} \cdot \overrightarrow{B C}-\overrightarrow{A X} \cdot \overrightarrow{C^{\prime} B^{\prime}}$
Because

$$
A H \perp B C
$$

we have

$$
\overrightarrow{A H} \cdot \overrightarrow{B C}=0,
$$

also

$$
A X \perp B^{\prime} C^{\prime}
$$

and therefore

$$
\overrightarrow{A X} \cdot \overrightarrow{B^{\prime} C^{\prime}}=0
$$

We need to prove also that

$$
\overrightarrow{X H} \cdot \overrightarrow{Y Z}=\overrightarrow{A H} \cdot \overrightarrow{C^{\prime} B^{\prime}}-\overrightarrow{A X} \cdot \overrightarrow{B C}
$$

We note:

$$
\begin{aligned}
& \{U\}=A X \cap B C \text { and }\{V\}=A H \cap B^{\prime} C^{\prime} \\
& \overrightarrow{A X} \cdot \overrightarrow{B C}=A X \cdot B C \cdot \operatorname{cox} \varangle(A X, B C)=A X \cdot B C \cdot \operatorname{cox}(\varangle A U C) \\
& \overrightarrow{A H} \cdot \overrightarrow{C^{\prime} B^{\prime}}=A H \cdot C^{\prime} B^{\prime} \cdot \operatorname{cox} \varangle\left(A H, C^{\prime} B^{\prime}\right)=A H \cdot C^{\prime} A^{\prime} \cdot \operatorname{cox}\left(\varangle A V C^{\prime}\right)
\end{aligned}
$$

We observe that
$\varangle A U C \equiv \varangle A V C^{\prime}$ (angles with the sides respectively perpendicular).
The point B^{\prime} is the symmetric of H in rapport to $A C$, consequently $\varangle H A C \equiv \varangle C A B^{\prime}$,
also the point C^{\prime} is the symmetric of the point H in rapport to $A B$, and therefore

$$
\varangle H A B \equiv \varangle B A C^{\prime} .
$$

From these last two relations we find that

$$
\varangle B^{\prime} A C^{\prime}=2 \varangle A .
$$

The sinus theorem applied in the triangles $A B^{\prime} C^{\prime}$ and $A B C$ gives:

$$
\begin{aligned}
& B^{\prime} C^{\prime}=2 R \cdot \sin 2 A \\
& B C=2 R \sin A
\end{aligned}
$$

We'll show that

$$
A X \cdot B C=A H \cdot C^{\prime} B^{\prime},
$$

and from here

$$
A X \cdot 2 R \sin A=A H \cdot 2 R \cdot \sin 2 A
$$

which is equivalent to

$$
A X=2 A H \cos A
$$

We noticed that

$$
\varangle B^{\prime} A C^{\prime}=2 A,
$$

Because

$$
A X \perp B^{\prime} C^{\prime},
$$

it results that

$$
\varangle T A B \equiv \varangle A
$$

we noted $\{T\}=A X \cap B^{\prime} C^{\prime}$.
On the other side

$$
A C^{\prime}=A H, \quad A T=\frac{1}{2} A Y
$$

and

$$
A T=A C^{\prime} \cos A=A H \cos A,
$$

therefore

$$
\overrightarrow{X H} \cdot \overrightarrow{Y Z}=0 .
$$

Similarly, we prove that

$$
Y H \perp X Z,
$$

and therefore H is the orthocenter of triangle $X Y Z$.

Lemma 2

Let $A B C$ a triangle inscribed in a circle, I the intersection of its bisector lines, and $A^{\prime}, B^{\prime}, C^{\prime}$ the intersections of the circumscribed circle with the bisectors $A I, B I, C I$ respectively. The orthocenter of the triangle $A^{\prime} B^{\prime} C^{\prime}$ is I.

Fig. 2

Proof

We'll prove that $A^{\prime} I \perp B^{\prime} C^{\prime}$.
Let

$$
\begin{aligned}
& \alpha=m\left(\overparen{A^{\prime} C}\right)=m\left(\overparen{A^{\prime} B}\right), \\
& \beta=m\left(\overparen{B^{\prime} C}\right)=m\left(\overparen{B^{\prime} A}\right) \\
& \gamma=m\left(\overparen{C^{\prime} A}\right)=m\left(\overparen{C^{\prime} B}\right)
\end{aligned}
$$

Then

$$
m \varangle\left(A^{\prime} I C^{\prime}\right)=\frac{1}{2}(\alpha+\beta+\gamma)
$$

Because

$$
2(\alpha+\beta+\gamma)=360^{\circ}
$$

it results

$$
m \varangle\left(A^{\prime} I C^{\prime}\right)=90^{\circ},
$$

therefore

$$
A^{\prime} I \perp B^{\prime} C^{\prime} .
$$

Similarly, we prove that
$B^{\prime} I \perp A^{\prime} C^{\prime}$,
and consequently the orthocenter of the triangle $A^{\prime} B^{\prime} C^{\prime}$ is I, the center of the circumscribed circle of the triangle $A B C$.

Definition

Let $A B C$ a triangle inscribed in a circle with the center in O and $A^{\prime}, B^{\prime}, C^{\prime}$ the middle of the arcs $\overparen{B C}, \overparen{C A}, \overparen{A B}$ respectively. The triangle $X Y Z$ formed by the symmetric of the points $A^{\prime}, B^{\prime}, C^{\prime}$ respectively in rapport to $B C, C A, A B$ is called the Fuhrmann triangle of the triangle $A B C$.

Note

In 2002 the mathematician Milorad Stevanovic proved the following theorem:

Theorem (M. Stevanovic)

In an acute angle triangle the orthocenter of the Fuhrmann's triangle coincides with the center of the circle inscribed in the given triangle.

Proof
We note $A^{\prime} B^{\prime} C^{\prime}$ the given triangle and let A, B, C respectively the middle of the arcs $\overparen{B^{\prime} C^{\prime}}, \overparen{C^{\prime} A^{\prime}}, \overparen{A^{\prime} B^{\prime}}$ (see Fig. 1). The lines $A A^{\prime}, B B^{\prime}, C C^{\prime}$ being bisectors in the triangle $A^{\prime} B^{\prime} C^{\prime}$ are concurrent in the center of the circle inscribed in this triangle, which will note H, and which, in conformity with Lemma 2 is the orthocenter of the triangle $A B C$. Let $X Y Z$ the Fuhrmann triangle of the triangle $A^{\prime} B^{\prime} C^{\prime}$, in conformity with Lemma 1, the orthocenter of $X Y Z$ coincides with H the orthocenter of $A B C$, therefore with the center of the inscribed circle in the given triangle $A^{\prime} B^{\prime} C^{\prime}$.

