FLORENTIN SMARANDACHE Solving Problems by Using a Function in The Number Theory

SOLVING PROBLEMS BY USING A FUNCTION IN THE NUMBER THEORY

Let $n \geq 1, h \geq 1$, and $a \geq 2$ be integers. For which values of a and n is $(n+h)!$ a multiple of a^{*} ? (A generalization of the problem $n^{0}=1270$, Mathematics Magazine, Vol. 60, No. 3, June 1987, p. 179, proposed by Roger B. Eggleton, The University of Newcastle, Australia.)

Solution (For $h=1$ the problem $n^{0}=1270$ is obtained.)

§1. Introduction

We have constructed a function η (see [1]) having the fallowing properties:
(a) For each non-null integer $n, \eta(n)$! is multiple of n;
(b) $\eta(n)$ is the smallest natural number with the property (a).

It is easy to prove:
Lemma 1. $(\forall) k, p \in N^{*}, p \neq 1, k$ is uniquely written in the form:

$$
k=t_{1} a_{n_{3}}^{(p)}+\ldots+t_{1} a_{x_{l}}^{(p)}
$$

where $a_{n_{i}}^{(p)}=\left(p^{n_{i}}-1\right) /(p-1), i=1,2, \ldots, l, n_{1}>n_{2}>\ldots>n_{l}>0$ and $1 \leq t_{j} \leq(p-1)$, $j=1,2, \ldots, l-1,1 \leq t_{l} \leq p, n_{j}, t_{j} \in N, i=1,2, \ldots, l, l \in N^{*}$.

We have constructed the function η_{p}, p^{\prime} prime $>0, \eta_{p}: N^{*} \rightarrow N^{*}$, thus:
$(\forall) n \in N^{*}, \eta_{p}\left(a_{n}^{(p)}\right)=p^{n}$, and $\eta_{p}\left(t_{1} a_{n_{1}}^{(p)}+\ldots+t_{1} a_{n_{l}}^{(p)}\right)=t_{1} \eta_{p}\left(a_{n_{1}}^{(p)}\right)+\ldots+t_{l} \eta_{p}\left(a_{n_{2}}^{(p)}\right)$.
Of course:
Lemma 2. (a) ($\forall) k \in N^{*}, \eta_{p}(k)!=M p^{k}$.
(b) $\eta_{p}(k)$ is the smallest number with the property (a). Now; we construct another function:
$\eta: Z \backslash 0 \rightarrow N$ defined is follows:
$\left\{\begin{array}{l}\eta(\pm 1)=0, \\ (\forall) n=\epsilon p_{1}^{\alpha_{2}} \ldots p_{s}^{\alpha_{*}} \text { with } \epsilon= \pm 1, p_{i} \text { prime and } p_{i} \neq p_{j} \text { for } i \neq j, \text { all } \\ \alpha_{i} \in N^{*}, \eta(n)=\max _{1 \leq i \leq s}\left\{\eta_{p}\left(\alpha_{i}\right)\right\}\end{array}\right.$
It is not difficult to prove η has the demanded properties of $\S 1$.
§2. Now, let $a=p_{1}^{\alpha_{4}} \ldots p_{s}^{\alpha_{s}}$, with all $\alpha_{i} \in N^{*}$ and all p_{i} distinct primes. By the previous theory we have:
$\eta(a)=\max _{1 \leq i \leq s}\left\{n_{p_{i}}\left(\alpha_{i}\right)\right\}=\eta_{p}(\alpha)$ (by notation).
Hance $\eta(a)=\eta\left(p^{\alpha}\right), \eta\left(p^{\alpha}\right)!=M p^{\alpha}$.

We know:
We know:
$\left(t_{1} p^{n_{1}}+\ldots+t_{l} p^{n_{i}}\right)!=M p$
We put:
$t_{1} p^{n_{1}}+\ldots+t_{l} p^{n_{1}}=n+h$ and $t_{1} \frac{p^{n_{1}-1}}{p-1}+\ldots+t_{1} \frac{p^{n_{1}-1}}{p-1}=\alpha n$.
Whence
$\frac{1}{\alpha}\left\{\frac{p^{n_{1}}-1}{p-1}+\ldots+t_{i} \frac{p^{n_{i}}-1}{p-1}\right] \geq t_{1} p^{n_{1}}+\ldots+t_{i} p^{n_{1}}-h$ or
(1) $\alpha(p-1) h \geq(\alpha p-\alpha-1)\left[t_{1} p^{n_{1}}+\ldots+t_{l} p^{n_{1}}\right]+\left(t_{1}+\ldots+t_{l}\right)$.

On this condition we take $n_{0}=t_{1} p^{n_{1}}+\ldots+t_{l} p^{n_{1}}-h$ (see Lemma 1), heance $n=\left\{\begin{array}{l}n_{0}, n_{0}>0 ; \\ 1, n_{0} \leq 0\end{array}\right.$
Consider giving $a \neq 2$, we have a finite number of n. There is an infinite number of n if and only if $\alpha p-\alpha-1=0$ i.e., $\alpha=1$ and $p=2$, i.e., $a=2$

§3 Particular Case

If $h=1$ and $a \neq 2$, bacause $t_{1} p^{n_{1}}+\ldots+t_{l} p^{n_{2}} \geq p^{n_{i}}>1$
and $t_{1}+\ldots+t_{1} \geq 1$, it follows from (1) that:
(1^{\prime}) $(\alpha p-\alpha)>(\alpha p-\alpha-1) \cdot 1+1=\alpha p-\alpha$,
which is impossible. If $h=1$ and $a=2$ then $\alpha=1, p=2$, or
(1") $1 \leq t_{1}+\ldots+t_{l}$,
hance $l=1, t_{1}=1$ whence $n=t_{1} p^{n_{1}}+\ldots+t_{l} p^{n_{1}}-h=2^{n_{1}}-1, n_{1} \in N^{*}$ (the solution to problem 1270).

Example 1. Let $h=16$ and $a=3^{4} \cdot 5^{2}$. Find all n such that

$$
(n+16)!=M 2025^{n}
$$

Solution

$$
\eta(2025)=\max \left\{\eta_{3}(4), \eta_{5}(2)\right\}=\max \{9,10\}=10=\eta_{5}(2)=\eta\left(5^{2}\right) . \text { Whence } \alpha=2, p=5
$$

From (1) we have:

$$
128 \geq 7\left[t_{1} 5^{n_{1}}+\ldots t_{l} 5^{n_{1}}\right]+t_{1}+\ldots+t_{l}
$$

Because $5^{4}>128$ and $7\left[t_{1} 5^{n_{1}}+\ldots t_{5} 5^{n_{1}}\right]<128$ we find $l=1$,

$$
128 \geq 7 t_{1} 5^{n_{1}}+t_{1}
$$

whence $n_{1} \leq 1$, i.e. $n_{1}=1$, and $t_{1}=1,2,3$. Then $n_{0}=t_{1} 5-16<0$, hence we take $n=1$.

Example 2. $(n+7)!=M 3^{n}$ when $n=1,2,3,4,5$.

$$
(n+7)!=M 5^{n} \text { when } n=1
$$

$$
(n+7)!=M 7^{n} \text { when } n=1
$$

But $(n+7)!\neq M p^{n}$ for p prime $>7,(\forall) n \in N^{*}$.
$(n+7)!\neq M 2^{n}$ when

$$
\begin{gathered}
n_{\mathrm{C}}=t_{1} 2^{n_{1}}+\ldots+t_{l^{2}}^{n_{i}}-7, \\
t_{1}, \ldots, t_{l-1}=1 \\
1 \leq t_{l} \leq 2, t_{1}+\ldots+t_{i} \leq 7
\end{gathered}
$$

and $n=\left\{\begin{array}{c}n_{0}, n_{0}>0 ; \\ 1, n_{0} \leq 0 .\end{array}\right.$ etc.

Exercise for Readers

If $n \in N^{*}, a \in N^{*} \backslash\{1\}$, find all values of a and n such that:
$(n+7)$! is a multiple of a^{n}.
Some Unsolved Problems (see [2])
Solve the diophantine equations:
(1) $\eta(x) \cdot \eta(y)=\eta(x+y)$.
(2) $\eta(x)=y$! (A solution: $x=9, y=3)$.
(3) Conjecture: the equation $\eta(x)=\eta(x+1)$ has no solution.

References

[1] Florentine Smaramndache, "A Function in the Number Theory", Analeie Univ. Timisoara, Fasc. 1, Vol. XVIII, pp. 79-88, 1980, MR: 83c: 10008.
[2] Idem, Un Infinity of Einsolved Problems Concerning a Function in Number Theory, International Congress of Mathematicians, Univ. of Berkeley, CA, August 3-11, 1986.
[A comment about this generalization was publisked in "Mathematics Magazine"], Vol. 61, No. 3, June 1988, p. 202: "Smarandache considered the general problem of finding positive integers n, a and k, so that $(n+k)!$ should be a multiple of a^{n}. Also, for positive integers p and k, with p prime, he found a formula for determining the smallest integer $f(k)$ with the property that $(f(k))!$ is a multiple of $\left.p^{k} \cdot \eta\right]$

