FLORENTIN SMARANDACHE Solving Problems by Using a Function in The Number Theory

In Florentin Smarandache: "Collected Papers", vol. II. Chisinau (Moldova): Universitatea de Stat din Moldova, 1997.

SOME LINEAR EQUATIONS INVOLVING A FUNCTION IN THE NUMBER THEORY

We have constructed a function η which associates to each non-null integer m the smallest positive n such that n! is a multiple of m.

(a) Solve the equation $\eta(x) = n$, where $n \in N$.

*(b) Solve the equation $\eta(mx) = x$, where $m \in \mathbb{Z}$.

Discussion.

(c) Let $\eta^{(i)}$ denote $\eta \circ \eta \circ \ldots \circ \eta$ of *i* times. Prove that there is a *k* for which

$$\eta^{(k)}(m) = \eta^{(k+1)}(m) = n_m$$
, for all $m \in \mathbb{Z}^* \setminus \{1\}$

**Find n_m and the smallest k with this property.

Solution

(a) The cases n = 0, 1 are trivial.

We note the increasing sequence of primes less or equal than n by P_1, P_2, \ldots, P_k , and

$$\beta_t = \sum_{h \ge 1} [n/p_t^h], t = 1, 2, \dots, k;$$

where [y] is greatest integer less or equal than y.

Let $n = p_{i_1}^{\alpha_{i_1}} \dots p_{i_s}^{\alpha_{i_s}}$, where all p_{i_j} are distinct primes and all α_{i_j} are from N.

Of course we have $n \leq x \leq n!$

Thus $x = p_1^{\sigma_1} \dots p_k^{\sigma_k}$ where $0 \le \sigma_t \le \beta_t$ for all $t = 1, 2, \dots, k$ and there exists at least a $i \in \{1, 2, \dots, s\}$ for which

$$\sigma_{i,} \in \beta_{ij}, \ \{\beta_{i,}^{-1}, \ldots, \beta_{i,j} - \alpha_{i,j} + 1\}.$$

Clearly n! is a multiple of x, and is the smallest one.

(b) See [1] too. We consider $m \in N^*$.

Lemma 1. $\eta(m) \leq m$, and $\eta(m) = m$ if and only if m = 4 or m is a prime.

Of course m! is a multiple of m.

If $m \neq 4$ and m is not a prime, the Lemma is equivalent to there are m_1, m_2 such that $m = m_1 \cdot m_2$ with $1 < m_1 \le m_2$ and $(2m_2 < m \text{ or } 2m_1 < m)$. Whence $\eta(m) \le 2m_2 < m$, respectively $\eta(m) \le \max\{m_2, 2m\} < m$.

Lemma 2. Let p be a prime ≤ 5 . Then $= \eta(px) = x$ if and only if x is a prime > p, or x = 2p.

Proof: $\eta(p) = p$. Hence x > p.

Analogously: x is not a prime and $x \neq 2p \Leftrightarrow x = x_1x_2, 1 < x_1 \leq x_2$ and $(2x_2 < x_1, x_2 \neq p_1, and 2x_1 < x) \Leftrightarrow \eta(px) \leq \max\{p, 2x_2\} < x$ respectively $\eta(px) \leq \max\{p, 2x_1, x_2\} < x$.

Observations

 $\eta(2x) = x \Leftarrow x = 4 \text{ or } x \text{ is an odd prime.}$ $\eta(3x) = x \Leftrightarrow x = 4, 6, 9 \text{ or } x \text{ is a prime} > 3.$

Lemma 3. If (m, x) = 1 then x is a prime $> \eta(m)$.

Of course, $\eta(mx) = \max\{\eta(m), \eta(x)\} = \eta(x) = x$. And $x \neq \eta(m)$, because if $x = \eta(m)$ then $m \cdot \eta(m)$ divides $\eta(m)$! that is m divides $(\eta(m) - 1)$! whence $\eta(m) \leq \eta(m) - 1$.

Lemma 4. If x is not a prime then $\eta(m) < x \leq 2\eta(m)$ and $x = 2\eta(m)$ if and only if $\eta(m)$ is a prime.

Proof: If $x > 2\eta(m)$ there are x_1, x_2 with $1 < x_1 \le x_2, x = x_1x_2$. For $x_1 < \eta(m)$ we have (x-1)! is a multiple of mx. Same proof for other cases.

Let $x = 2\eta(m)$; if $\eta(m)$ is nopt a prime, then $x = 2ab, 1 < a \le b$, but the product $(\eta(m) + 1)(\eta(m) + 2) \dots (2\eta(m) - 1)$ is divided by x.

If $\eta(m)$ is a prime, $\eta(m)$ divides m, whence $m \cdot 2\eta(m)$ is divided by $\eta(m)^2$, it results in $\eta(m \cdot 2\eta(m)) \ge 2 \cdot \eta(m)$, but $(\eta(m) + 1)(\eta(m) + 2) \dots (2\eta(m))$ is a multiple of $2\eta(m)$, that is $\eta(m \cdot 2\eta(m)) = 2\eta(m)$.

Conclusion.

All x, prime number > $\eta(m)$, are solutions.

If $\eta(m)$ is prime, then $x = 2\eta(m)$ is a solution.

"If x is not a prime, $\eta(m) < x < 2\eta(m)$, and x does not divide (x - 1)!/m then x is a solution (semi-open question). If m = 3 it adds x = 9 too. (No other solution exists yet.) (c)

Lemma 5. $\eta(ab) \leq \eta(a) + \eta(b)$.

Of course, $\eta(a) = a'$ and $\eta(b) = b'$ involves (a' + b')! = b'!(b' + 1...(b' + a')). Let $a' \leq b'$. Then $\eta(ab) \leq a' + b'$, because the product of a' consecutive positive integers is a multiple of a'!Clearly, if m is a prime then k = 1 and $n_m = m$.

If m is not a prime then $\eta(m) < m$, whence there is a k for which $\eta^{(k)}(m) = \eta^{(k+1)}(m)$. If $m \neq 1$ then $2 \le n_m \le m$. Lemma 6. $n_m = 4$ or n_m is a prime.

If $n_m = n_1 n_2, 1 < n_1 \le n_2$, then $\eta(n_m) < n_m$. Absurd. $n_m \ne 4$. (**) This question remains open.

References

 F.Smarandache, A Function in the Number Theory, An. Univ. Timisoara, seria st. mat., Vol. XVIII, fasc. 1, pp.79-88, 1980; Mathematical Reviews: 83c:10008.

[Published on "Gamma" Journal, "Stegarul Rosu" College, Brasov, 1987.]

ŝ