FLORENTIN SMARANDACHE Solving Problems by Using a Function in The Number Theory

In Florentin Smarandache: "Collected Papers", vol. II. Chisinau (Moldova): Universitatea de Stat din Moldova, 1997.

SOME LINEAR EQUATIONS INVOLVING A FUNCTION IN THE NUMBER THEORY

We have constructed a function η which associates to each non-null integer m the smallest positive n such that n ! is a multiple of m.
(a) Solve the equation $\eta(x)=n$, where $n \in N$.
*(b) Solve the equation $\eta(m x)=x$, where $m \in Z$.
Discussion.
(c) Let $\eta^{(i)}$ denote $\eta \circ \eta \circ \ldots \circ \eta$ of i times. Prove that there is a k for which

$$
\eta^{(k)}(m)=\eta^{(k+1)}(m)=n_{m}, \text { for all } m \in Z^{*} \backslash\{1\}
$$

$*$ Find n_{m} and the smallest k with this property.

Solution

(a) The cases $n=0,1$ are trivial.

We note the increasing sequence of primes less or equal than n by $P_{i}, P_{2}, \ldots, P_{k}$, and

$$
\beta_{t}=\sum_{h \geq 1}\left[n / p_{t}^{h}\right], t=1,2, \ldots, k
$$

where $[y]$ is greatest integer less or equal than y.
Let $n=p_{i_{1}}^{\alpha_{i_{1}}} \ldots p_{i_{s}}^{\alpha_{i_{0}}}$, where all $p_{i_{j}}$ are distinct primes and all $\alpha_{i_{j}}$ are from N.
Of course we have $n \leq x \leq n$!
Thus $x=p_{1}^{\sigma_{1}} \ldots p_{k}^{\sigma_{k}}$ where $0 \leq \sigma_{t} \leq \beta_{t}$ for all $t=1,2, \ldots, k$ and there exists at least a $j \in\{1,2, \ldots, s\}$ for which

$$
\sigma_{i j} \in \beta_{i j},\left\{\beta_{i j}^{-1}, \ldots, \beta_{i j}-\alpha_{i j}+1\right\} .
$$

Clearly n ! is a multiple of x, and is the smallest one.
(b) See [1] too. We consider $m \in N^{*}$.

Lemma 1. $\eta(m) \leq m$, and $\eta(m)=m$ if and only if $m=4$ or m is a prime.
Of course m ! is a multiple of m.
If $m \neq 4$ and m is not a prime, the Lemma is equivalent to there are m_{1}, m_{2} such that $m=m_{1} \cdot m_{2}$ with $1<m_{1} \leq m_{2}$ and $\left(2 m_{2}<m\right.$ or $\left.2 m_{1}<m\right)$. Whence $\eta(m) \leq 2 m_{2}<m$, respectively $\eta(m) \leq \max \left\{m_{2}, 2 m\right\}<m$.

Lemma 2. Let p be a prime ≤ 5. Then $=\eta(p x)=x$ if and only if x is a prime $>p$, or $x=2 p$.

Proof: $\eta(p)=p$. Hence $x>p$.
Analogously: x is not a prime and $x \neq 2 p \Leftrightarrow x=x_{1} x_{2}, 1<x_{1} \leq x_{2}$ and $\left(2 x_{2}<x_{1}, x_{2} \neq p_{1}\right.$, and $\left.2 x_{1}<x\right) \Leftrightarrow \eta(p x) \leq \max \left\{p, 2 x_{2}\right\}<x$ respectively $\eta(p x) \leq \max \left\{p, 2 x_{1}, x_{2}\right\}<x$.

Observations

$$
\begin{aligned}
& \eta(2 x)=x \Leftarrow x=4 \text { or } x \text { is an odd prime. } \\
& \eta(3 x)=x \Leftrightarrow x=4,6,9 \text { or } x \text { is a prime }>3 .
\end{aligned}
$$

Lemma 3. If $(m, x)=1$ then x is a prime $>\eta(m)$.
Of course, $\eta(m x)=\max \{\eta(m), \eta(x)\}=\eta(x)=x$. And $x \neq \eta(m)$, because if $x=\eta(m)$ then $m \cdot \eta(m)$ divides $\eta(m)!$ that is m divides $(\eta(m)-1)$! whence $\eta(m) \leq \eta(m)-1$.

Lemma 4. If x is not a prime then $\eta(m)<x \leq 2 \eta(m)$ and $x=2 \eta(m)$ if and only if $\eta(m)$ is a prime.

Proof: If $x>2 \eta(m)$ there are x_{1}, x_{2} with $1<x_{1} \leq x_{2}, x=x_{1} x_{2}$. For $x_{1}<\eta(m)$ we have $(x-1)!$ is a multiple of $m x$. Same proof for other cases.

Let $x=2 \eta(m)$; if $\eta(m)$ is nopt a prime, then $x=2 a b, 1<a \leq b$, but the product $(\eta(m)+1)(\eta(m)+2) \ldots(2 \eta(m)-1)$ is divided by x.

If $\eta(m)$ is a prime, $\eta(m)$ divides m, whence $m \cdot 2 \eta(m)$ is divided by $\eta(m)^{2}$, it results in $\eta(m \cdot 2 \eta(m)) \geq 2 \cdot \eta(m)$, but $(\eta(m)+1)(\eta(m)+2) \ldots(2 \eta(m))$ is a multiple of $2 \eta(m)$, that is $\eta(m \cdot 2 \eta(m))=2 \eta(m)$.

Conclusion.

All x, prime number $>\eta(m)$, are solutions.
If $\eta(m)$ is prime, then $x=2 \eta(m)$ is a solution.
"If x is not a prime, $\eta(m)<x<2 \eta(m)$, and x does not divide $(x-1)!/ m$ then x is a solution (semi-open question). If $m=3$ it adds $x=9$ too. (No other solution exists yet.)
(c)

Lemma 3. $\eta(a b) \leq \eta(a)+\eta(b)$.
Of course, $\eta(a)=a^{\prime}$ and $\eta(b)=b^{\prime}$ involves $\left(a^{\prime}+b^{\prime}\right)!=b^{\prime}!\left(b^{\prime}+1 \ldots\left(b^{\prime}+a^{\prime}\right)\right.$. Let $a^{\prime} \leq b^{\prime}$. Then $\eta(a b) \leq a^{\prime}+b^{\prime}$, because the product of a^{\prime} consecutive positive integers is a multiple of a^{\prime} !

Clearly, if m is a prime then $k=1$ and $n_{m}=m$.
If m is not a prime then $\eta(m)<m$, whence there is a k for which $\eta^{(k)}(m)=\eta^{(k+1)}(m)$.
If $m \neq 1$ then $2 \leq n_{m} \leq m$.

Lemma 6. $n_{m}=4$ or n_{m} is a prime.

If $n_{m}=n_{1} n_{2}, I<n_{1} \leq n_{2}$, then $\eta\left(n_{m}\right)<n_{m}$. Absurd. $n_{m} \neq 4$.
${ }^{* *}$) This question remains open.

References

[1] F.Smarandacke, A Function in the Number Theory, An. Univ. Timisoara, seria st. mat., Vol. XVIII, fasc. 1, pp.79-88, 1980; Mathematical Reviews: 83c:10008.
[Published on "Gamma" Journal, "Stegarul Rosu" College, Brasov, 1987.]

