FLORENTIN SMARANDACHE

Some Properties of Nedianes

In Florentin Smarandache: "Collected Papers", vol. I (second edition). Ann Arbor (USA): InfoLearnQuest, 2007.

SOME PROPERTIES OF NEDIANES

This article generalizes certain results on the nedianes (see [1] pp. 97-99). One calls nedianes the segments of a line that passes through a vertex of a triangle and partitions the opposite side in n equal parts. A nediane is called to be of order i if it partitions the opposite side in the rapport i / n.

For $1 \leq i \leq n-1$ the nedianes of order i (that is $A A_{i}, B B_{i}$ and $C C_{i}$) have the following properties:

1) With these 3 segments one can construct a triangle.

2) $\left|A A_{i}\right|^{2}+\left|B B_{i}\right|^{2}+\left|C C_{i}\right|^{2}=\frac{i^{2}-i \cdot n+n^{2}}{n^{2}}\left(a^{2}+b^{2}+c^{2}\right)$.

Proofs:

$$
\begin{align*}
& {\overrightarrow{A A_{i}}}_{i}=\overrightarrow{A B}+\overrightarrow{B A_{i}}=\overrightarrow{A B}+\frac{i}{n} \overrightarrow{B C} \tag{1}\\
& {\overrightarrow{B B_{i}}}_{i}=\overrightarrow{B C}+\overrightarrow{C B_{i}}=\overrightarrow{B C}+\frac{i}{n} \overrightarrow{C A} \tag{2}\\
& \overrightarrow{C C}_{i}=\overrightarrow{C A}+\overrightarrow{A C_{i}}=\overrightarrow{C A}+\frac{i}{n} \overrightarrow{A B} \tag{3}
\end{align*}
$$

By adding these 3 relations, we obtain:

$$
\overrightarrow{A A}_{i}+\overrightarrow{B B}_{i}+\overrightarrow{C C}_{i}=\frac{i+n}{n}(\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C A})=0
$$

therefore the 3 nedianes can be the sides of a triangle.
(2) By raising to the square the relations and then adding them we obtain:

$$
\begin{align*}
& \left|A A_{i}\right|^{2}+\left|B B_{i}\right|^{2}+\left|C C_{i}\right|^{2}=a^{2}+b^{2}+c^{2}+\frac{i^{2}}{n^{2}}\left(a^{2}+b^{2}+c^{2}\right)+ \\
& +\frac{i}{n}(2 \overrightarrow{A B} \cdot \overrightarrow{B C}+2 \overrightarrow{B C} \cdot \overrightarrow{C A}+2 \overrightarrow{C A} \cdot \overrightarrow{A B}) \tag{4}
\end{align*}
$$

Because $2 \overrightarrow{A B} \cdot \overrightarrow{B C}=-2 c a \cdot \cos B=b^{2}-c^{2}-a^{2}$ (the theorem of cosines), by substituting this in the relation (4), we obtain the requested relation.

REFERENCE:

[1] Vodă, Dr. Viorel Gh. - "Surprize în matematica elementară", Editura Albatros, Bucharest, 1981.

