An Application of Sondat's Theorem

Regarding the Orthohomological Triangles

Ion Pătraşcu, "Fraţii Buzeşti" National College, Craiova, Romania; Florentin Smarandache, ENSIETA, Brest, France.

In this article we prove the Sodat's theorem regarding the orthohomological triangle and then we use this theorem and Smarandache-Patrascu's theorem in order to obtain another theorem regarding the orthohomological triangles.

Theorem (P. Sondat)
Consider the orthohomological triangles $A B C, A_{1} B_{1} C_{1}$. We note Q, Q_{1} their orthological centers, P the homology center and d their homological axes. The points P, Q, Q_{1} belong to a line that is perpendicular on d

Proof.

Let Q the orthologic center of the $A B C$ the $A_{1} B_{1} C_{1}$ (the intersection of the perpendiculars constructed from A_{1}, B_{1}, C_{1} respectively on $B C, C A, A B$), and Q_{1} the other orthologic center of the given triangle.

We note $\left\{B^{\prime}\right\}=C A \cap C_{1} A_{1},\left\{A^{\prime}\right\}=B C \cap B_{1} C_{1},\left\{C^{\prime}\right\}=A B \cap A_{1} B_{1}$.
We will prove that $P Q \perp d$ which is equivalent to

$$
\begin{equation*}
B^{\prime} P^{2}-B^{\prime} Q^{2}=C^{\prime} P^{2}-C^{\prime} Q^{2} \tag{1}
\end{equation*}
$$

We have that

$$
\overrightarrow{P A_{1}}=\alpha \overrightarrow{A_{1} A}, \overrightarrow{P B_{1}}=\beta \overrightarrow{B_{1} B}, \overrightarrow{P C_{1}}=\gamma \overrightarrow{C_{1} C}
$$

From Menelaus' theorem applied in the triangle PAC relative to the transversals B^{\prime}, C_{1}, A_{1} we obtain that

$$
\begin{equation*}
\frac{B^{\prime} C}{B^{\prime} A}=\frac{\alpha}{\gamma} \tag{2}
\end{equation*}
$$

The Stewart's theorem applied in the triangle $P A B^{\prime}$ implies that

$$
\begin{equation*}
P A^{2} \cdot C B^{\prime}+P B^{\prime 2} \cdot A C-P C^{2} \cdot A B^{\prime}=A C \cdot C B^{\prime} \cdot A B^{\prime} \tag{3}
\end{equation*}
$$

Taking into account (2), we obtain:

$$
\begin{equation*}
\gamma P C^{2}-\alpha P A^{2}=(\gamma-\alpha) P B^{\prime 2}-\alpha B^{\prime} A^{2}+\gamma B^{\prime} C^{2} \tag{4}
\end{equation*}
$$

Similarly, we obtain:

$$
\begin{equation*}
\gamma Q C^{2}-\alpha Q A^{2}=(\gamma-\alpha) Q B^{\prime 2}+\gamma B^{\prime} C^{2}-\alpha B^{\prime} A^{2} \tag{5}
\end{equation*}
$$

Subtracting the relations (4) and (5) and using the notations:

$$
P A^{2}-Q A^{2}=u, P B^{2}-Q B^{2}=v, P C^{2}-Q C^{2}=t
$$

we obtain:

$$
\begin{equation*}
P B^{\prime 2}-Q B^{\prime 2}=\frac{\gamma t-\alpha u}{\gamma-\alpha} \tag{6}
\end{equation*}
$$

The Menelaus' theorem applied in the triangle $P A B$ for the transversal C^{\prime}, B, A_{1} gives

$$
\begin{equation*}
\frac{C^{\prime} B}{C^{\prime} A}=\frac{\alpha}{\beta} \tag{7}
\end{equation*}
$$

From the Stewart's theorem applied in the triangle $P C^{\prime} A$ and the relation (7) we obtain:

$$
\begin{equation*}
\alpha P A^{2}-\beta P B^{2}=(\alpha-\beta) C^{\prime} P^{2}+\alpha C^{\prime} A^{2}-\beta C^{\prime} B^{2} \tag{8}
\end{equation*}
$$

Similarly, we obtain:

$$
\begin{equation*}
\alpha Q A^{2}-\beta Q B^{2}=(\alpha-\beta) C^{\prime} Q^{2}+\alpha C^{\prime} A^{2}-\beta C^{\prime} B^{2} \tag{9}
\end{equation*}
$$

From (8) and (9) it results

$$
\begin{equation*}
C^{\prime} P^{2}-C^{\prime} Q^{2}=\frac{\alpha u-\beta v}{\alpha-\beta} \tag{10}
\end{equation*}
$$

The relation (1) is equivalent to:

$$
\begin{equation*}
\alpha \beta(u-v)+\beta \gamma(v-t)+\gamma \alpha(t-u)=0 \tag{11}
\end{equation*}
$$

To prove relation (11) we will apply first the Stewart theorem in the triangle CAP, and we obtain:

$$
\begin{equation*}
C A^{2} \cdot P A_{1}+P C^{2} \cdot A_{1} A-C A_{1}^{2} \cdot P A=P A_{1} \cdot A_{1} A \cdot P A \tag{12}
\end{equation*}
$$

Taking into account the previous notations, we obtain:

$$
\begin{equation*}
\alpha C A^{2}+P C^{2}-C A_{1}^{2}(1+\alpha)=P A_{1}^{2}+\alpha A_{1} A^{2} \tag{13}
\end{equation*}
$$

Similarly, we find:

$$
\begin{equation*}
\alpha B A^{2}+P B^{2}-B A_{1}^{2}(1+\alpha)=P A_{1}^{2}+\alpha A_{1} A^{2} \tag{14}
\end{equation*}
$$

From the relations (13) and (14) we obtain:

$$
\begin{equation*}
\alpha B A^{2}-\alpha C A^{2}+P B^{2}-P C^{2}-(1+\alpha)\left(B A_{1}^{2}-C A_{1}^{2}\right)=0 \tag{15}
\end{equation*}
$$

Because $A_{1} Q \perp B C$, we have that $B A_{1}^{2}-C A_{1}^{2}=Q B^{2}-Q C^{2}$, which substituted in relation (15) gives:

$$
\begin{equation*}
B A^{2}-C A^{2}+Q C^{2}-Q B^{2}=\frac{t-v}{\alpha} \tag{16}
\end{equation*}
$$

Similarly, we obtain the relations:

$$
\begin{align*}
& C B^{2}-A B^{2}+Q A^{2}-Q C^{2}=\frac{u-t}{\beta} \tag{17}\\
& A C^{2}-B C^{2}+Q B^{2}-Q A^{2}=\frac{v-u}{\gamma} \tag{18}
\end{align*}
$$

By adding the relations (16), (17) and (18) side by side, we obtain

$$
\begin{equation*}
\frac{t-v}{\alpha}+\frac{u-t}{\beta}+\frac{v-u}{\gamma}=0 \tag{19}
\end{equation*}
$$

The relations (19) and (11) are equivalent, and therefore, $P Q \perp d$, which proves the Sondat's theorem.

In [2] it was proved the Smarandache-Patrascu Theorem:
If the triangles ABC and $\mathrm{A}_{1} \mathrm{~B}_{1} \mathrm{C}_{1}$ inscribed into the triangle ABC are orthohomological, where Q is the center of orthology (i.e. the point of intersection of the perpendiculars in A_{1} on BC , in B_{1} on $A C$, and in C_{1} on $A B$), and Q_{1} is the second center of orthology of the triangles $A B C$ and $A_{1} B_{1} C_{1}$, and $A_{2} B_{2} C_{2}$ is the pedal triangle of Q_{1}, then the triangles $A B C$ and $A_{2} B_{2} C_{2}$ are orthohomological.

Now we prove another theorem:

Theorem (Pătraşcu-Smarandache)

Consider the triangle $A B C$ and the inscribed orthohomological triangle $A_{1} B_{1} C_{1}$, with Q, Q_{1} their centers of orthology, P the homology center and d their homology axes. If $A_{2} B_{2} C_{2}$ is the pedal triangle of Q_{1}, P_{1} is the homology center of triangles $A B C$ and $A_{2} B_{2} C_{2}$, and d_{1} their homology axes, then the points P, Q, Q_{1}, P_{1} are collinear and the lines d and d_{1} are parallel.

Proof.

Applying the Sondat's theorem to the ortho-homological triangle $A B C$ and $A_{1} B_{1} C_{1}$, it results that the points P, Q, Q_{1} are collinear and their line is perpendicular on d. The same theorem applied to triangles $A B C$ and $A_{2} B_{2} C_{2}$ shows the collinearity of the points P_{1}, Q, Q_{1}, and the conclusion that their line is perpendicular on d_{1}.

From these conclusions we obtain that the points P, Q, Q_{1}, P_{1} are collinear and the parallelism of the lines d and d_{1}.

References

[1] Cătălin Barbu, Teoreme Fundamentale din Geometria Triunghiului, Editura Unique, Bacău, Romania, 2008.
[2] Florentin Smarandache, Multispace \& Multistructure Neutro-sophic Transdisciplinarity (100 Collected Papers of Sciences), Vol. IV. North-European Scientific Publishers, Hanko, Finland, 2010.

