The Radical Circle of Ex-

Inscribed Circles of a Triangle

In Ion Patrascu, Florentin Smarandache: "Complements
to Classic Topics of Circles Geometry". Brussels
(Belgium): Pons Editions, 2016

In this article, we prove several theorems about the radical center and the radical circle of ex-inscribed circles of a triangle and calculate the radius of the circle from vectorial considerations.

$1^{\text {st }}$ Theorem.

The radical center of the ex-inscribed circles of the triangle $A B C$ is the Spiecker's point of the triangle (the center of the circle inscribed in the median triangle of the triangle $A B C$).

Proof.

We refer in the following to the notation in Figure 1. Let I_{a}, I_{b}, I_{c} be the centers of the ex-inscribed circles of a triangle (the intersections of two external bisectors with the internal bisector of the other angle). Using tangents property taken from a point to a circle to be congruent, we calculate and find that:

$$
\begin{aligned}
& A F_{a}=A E_{a}=B D_{b}=B F_{b}=C D_{c}=C E_{c}=p \\
& B D_{c}=B F_{c}=C D_{b}=C E_{b}=p-a
\end{aligned}
$$

$$
\begin{aligned}
& C E_{a}=C D_{a}=A F_{c}=A E_{c}=p-b, \\
& A F_{b}=A E_{b}=B F_{c}=B D_{c}=p-c .
\end{aligned}
$$

If A_{1} is the middle of segment $D_{c} D_{b}$, it follows that A_{1} has equal powers to the ex-inscribed circles $\left(I_{b}\right)$ and $\left(I_{c}\right)$. Of the previously set, we obtain that A_{1} is the middle of the side $B C$.

Figure 1.
Also, the middles of the segments $E_{b} E_{c}$ and $F_{b} F_{c}$, which we denote U and V, have equal powers to the circles $\left(I_{b}\right)$ and (I_{c}).

The radical axis of the circles $\left(I_{b}\right),\left(I_{c}\right)$ will include the points A_{1}, U, V.

Because $A E_{b}=A F_{b}$ and $A E_{c}=A F_{c}$, it follows that $A U=A Y$ and we find that $\Varangle A U V=\frac{1}{2} \Varangle A$, therefore the
radical axis of the ex-inscribed circles $\left(F_{b}\right)$ and $\left(I_{c}\right)$ is the parallel taken through the middle A_{1} of the side $B C$ to the bisector of the angle $B A C$.

Denoting B_{1} and C_{1} the middles of the sides $A C$, $A B$, respectively, we find that the radical center of the ex-inscribed circles is the center of the circle inscribed in the median triangle $A_{1} B_{1} C_{1}$ of the triangle $A B C$.

This point, denoted S, is the Spiecker's point of the triangle ABC.

$2^{\text {nd }}$ Theorem.

The radical center of the inscribed circle (I) and of the B-ex-inscribed and C-ex-inscribed circles of the triangle $A B C$ is the center of the A_{1} - ex-inscribed circle of the median triangle $A_{1} B_{1} C_{1}$, corresponding to the triangle $A B C$).

Proof.

If E is the contact of the inscribed circle with $A C$ and E_{b} is the contact of the B-ex-inscribed circle with $A C$, it is known that these points are isotomic, therefore the middle of the segment $E E_{b}$ is the middle of the side $A C$, which is B_{1}.

This point has equal powers to the inscribed circle (I) and to the B-ex-inscribed circle (I_{b}), so it belongs to their radical axis.

Analogously, C_{1} is on the radical axis of the circles (I) and (I_{c}).

The radical axis of the circles $(I),\left(I_{b}\right)$ is the perpendicular taken from B_{1} to the bisector $I I_{b}$.

This bisector is parallel with the internal bisector of the angle $A_{1} B_{1} C_{1}$, therefore the perpendicular in B_{1} on $I I_{b}$ is the external bisector of the angle $A_{1} B_{1} C_{1}$ from the median triangle.

Analogously, it follows that the radical axis of the circles (I), (I_{c}) is the external bisector of the angle $A_{1} C_{1} B_{1}$ from the median triangle.

Because the bisectors intersect in the center of the circle A_{1}-ex-inscribed to the median triangle $A_{1} B_{1} C_{1}$, this point S_{a} is the center of the radical center of the circles $(I),\left(I_{b}\right),\left(I_{c}\right)$.

Remark.

The theorem for the circles $(I),\left(I_{a}\right),\left(I_{b}\right)$ and (I), $\left(I_{a}\right),\left(I_{c}\right)$ can be proved analogously, obtaining the points S_{c} and S_{b}.

$3^{\text {rd }}$ Theorem.

The radical circle's radius of the circles exinscribed to the triangle $A B C$ is given by the formula: $\frac{1}{2} \sqrt{r^{2}+p^{2}}$, where r is the radius of the inscribed circle.

Proof.

The position vector of the circle I of the inscribed circle in the triangle $A B C$ is:

$$
\overrightarrow{P I}=\frac{1}{2 p}(a \overrightarrow{P A}+b \overrightarrow{P B}+c \overrightarrow{P C})
$$

Spiecker's point S is the center of radical circle of ex-inscribed circle and is the center of the inscribed circle in the median triangle $A_{1} B_{1} C_{1}$, therefore:

$$
\overrightarrow{P S}=\frac{1}{p}\left(\frac{1}{2} a \overrightarrow{P A_{1}}+\frac{1}{2} b \overrightarrow{P B_{1}}+\frac{1}{2} c \overrightarrow{P C_{1}}\right) .
$$

Figure 2.
We denote by T the contact point with the A-exinscribed circle of the tangent taken from S to this circle (see Figure 2).

The radical circle's radius is given by:

$$
\begin{aligned}
& S T=\sqrt{S I_{a}^{2}-I_{a}^{2}} \\
& \overline{I_{a} S}=\frac{1}{2 p}\left(a \overrightarrow{I_{a} A_{1}}+b \overrightarrow{I_{a} B_{1}}+c \overrightarrow{I_{a} C_{1}}\right)
\end{aligned}
$$

We evaluate the product of the scales $\overrightarrow{I_{a} S} \cdot \overrightarrow{I_{a} S}$; we have:

$$
\begin{aligned}
& I_{a} S^{2}=\frac{1}{4 p^{2}}\left(a^{2} I_{a} A_{1}^{2}+b^{2} I_{a} B_{1}^{2}+c^{2} I_{a} C_{1}^{2}+2 a b \overrightarrow{I_{a} A_{1}} .\right. \\
& \left.\overrightarrow{I_{a} B_{1}}+2 b c \overrightarrow{I_{a} B_{1}} \cdot \overrightarrow{I_{a} C_{1}}+2 a c \overrightarrow{I_{a} A_{1}} \cdot \overrightarrow{I_{a} C_{1}}\right) .
\end{aligned}
$$

From the law of cosines applied in the triangle $I_{a} A_{1} B_{1}$, we find that:

$$
\begin{aligned}
& 2 \overrightarrow{I_{a} A_{1}} \cdot \overrightarrow{I_{a} B_{1}}=I_{a} A_{1}^{2}+I_{a} B_{1}^{2}-\frac{1}{4} c^{2}, \text { therefore: } \\
& 2 a b \overrightarrow{I_{a} A_{1}} \cdot \overrightarrow{I_{a} B_{1}}=a b\left(I_{a} A_{1}^{2}+I_{a} B_{1}^{2}-\frac{1}{4} a b c^{2} .\right.
\end{aligned}
$$

Analogously, we obtain:

$$
\begin{aligned}
& 2 b c \overrightarrow{I_{a} B_{1}} \cdot \overrightarrow{I_{a} C_{1}}=b c\left(I_{a} B_{1}^{2}+I_{a} C_{1}^{2}-\frac{1}{4} a^{2} b c,\right. \\
& 2 a c \overrightarrow{I_{a} A_{1}} \cdot \overrightarrow{I_{a} C_{1}}=a c\left(I_{a} A_{1}^{2}+I_{a} C_{1}^{2}-\frac{1}{4} a b^{2} c .\right. \\
& I_{a} S^{2}=\frac{1}{4 p^{2}}\left[\left(a^{2}+a b+a c\right) I_{a} A_{1}^{2}+\left(b^{2}+a b+\right.\right. \\
& \left.b c) I_{a} B_{1}^{2}+\left(c^{2}+b c+a c\right) I_{a} C_{1}^{2}-\frac{a b c}{4}(a+b+c)\right], \\
& I_{a} S^{2}=\frac{1}{4 p^{2}}\left[2 p\left(a I_{a} A_{1}^{2}+b I_{a} B_{1}^{2}+c I_{a} C_{1}^{2}\right)-2 R S_{p}\right], \\
& I_{a} S^{2}=\frac{1}{2 p}\left(a I_{a} A_{1}^{2}+b I_{a} B_{1}^{2}+c I_{a} C_{1}^{2}\right)-\frac{1}{2} R r .
\end{aligned}
$$

From the right triangle $I_{a} D_{a} A_{1}$, we have that:

$$
\begin{aligned}
I_{a} A_{1}^{2}=r_{a}^{2}+A_{1} D_{a}^{2} & =r_{a}^{2}+\left[\frac{a}{2}-(p-c)\right]^{2}= \\
& =r_{a}^{2}+\frac{(c-b)^{2}}{4}
\end{aligned}
$$

From the right triangles $I_{a} E_{a} B_{1}$ și $I_{a} F_{a} C_{1}$, we find:

$$
\begin{aligned}
& I_{a} B_{1}^{2}=r_{a}^{2}+B_{1} E_{a}^{2}=r_{a}^{2}+\left[\frac{b}{2}-(p-b)\right]^{2}= \\
& \quad=r_{a}^{2}+\frac{1}{4}(a+c)^{2} \\
& I_{a} C_{1}^{2}=r_{a}^{2}+\frac{1}{4}(a+b)^{2}
\end{aligned}
$$

$$
\text { Evaluating } a I_{a} A_{1}^{2}+b I_{a} B_{1}^{2}+c I_{a} C_{1}^{2}, \text { we obtain: }
$$

$$
a I_{a} A_{1}^{2}+b I_{a} B_{1}^{2}+c I_{a} C_{1}^{2}=
$$

$$
=2 p r_{a}^{2}+\frac{1}{2} p(a b+a c+b c)-\frac{1}{4} a b c
$$

But:

$$
a b+a c+b c=r^{2}+p^{2}+4 R r
$$

It follows that:

$$
\frac{1}{2 p}\left[a I_{a} A_{1}^{2}+b I_{a} B_{1}^{2}+c I_{a} C_{1}^{2}\right]=r_{a}^{2}+\frac{1}{4}\left(r^{2}+p^{2}\right)+\frac{1}{2} R r
$$

and

$$
I_{a} S^{2}=r_{a}^{2}+\frac{1}{4}\left(r^{2}+p^{2}\right)
$$

Then, we obtain:
$S T=\frac{1}{2} \sqrt{r^{2}+p^{2}}$.

References.

[1] C. Barbu: Teoreme fundamentale din geometria triunghiului [Fundamental Theorems of Triangle Geometry]. Bacau, Romania: Editura Unique, 2008.
[2] I. Patrascu, F. Smarandache: Variance on topics of plane geometry. Columbus: The Educational Publisher, Ohio, USA, 2013.

