Ion Patrascu, Florentin Smarandache

The Radical Circle of Ex-Inscribed Circles of a Triangle

In Ion Patrascu, Florentin Smarandache: "Complements to Classic Topics of Circles Geometry". Brussels (Belgium): Pons Editions, 2016 In this article, we prove several theorems about the radical center and the radical circle of ex-inscribed circles of a triangle and calculate the radius of the circle from vectorial considerations.

1st Theorem.

The radical center of the ex-inscribed circles of the triangle *ABC* is the Spiecker's point of the triangle (the center of the circle inscribed in the median triangle of the triangle *ABC*).

Proof.

We refer in the following to the notation in *Figure 1*. Let I_a , I_b , I_c be the centers of the ex-inscribed circles of a triangle (the intersections of two external bisectors with the internal bisector of the other angle). Using tangents property taken from a point to a circle to be congruent, we calculate and find that:

$$AF_a = AE_a = BD_b = BF_b = CD_c = CE_c = p,$$

$$BD_c = BF_c = CD_b = CE_b = p - a,$$

$$CE_a = CD_a = AF_c = AE_c = p - b,$$

 $AF_b = AE_b = BF_c = BD_c = p - c.$

If A_1 is the middle of segment $D_c D_b$, it follows that A_1 has equal powers to the ex-inscribed circles (I_b) and (I_c) . Of the previously set, we obtain that A_1 is the middle of the side *BC*.

Figure 1.

Also, the middles of the segments E_bE_c and F_bF_c , which we denote *U* and *V*, have equal powers to the circles (I_b) and (I_c).

The radical axis of the circles (I_b) , (I_c) will include the points A_1, U, V .

Because $AE_b = AF_b$ and $AE_c = AF_c$, it follows that AU = AY and we find that $\measuredangle AUV = \frac{1}{2} \measuredangle A$, therefore the

radical axis of the ex-inscribed circles (F_b) and (I_c) is the parallel taken through the middle A_1 of the side *BC* to the bisector of the angle *BAC*.

Denoting B_1 and C_1 the middles of the sides AC, AB, respectively, we find that the radical center of the ex-inscribed circles is the center of the circle inscribed in the median triangle $A_1B_1C_1$ of the triangle ABC.

This point, denoted *S*, is the Spiecker's point of the triangle ABC.

2nd Theorem.

The radical center of the inscribed circle (*I*) and of the *B* –ex-inscribed and *C* –ex-inscribed circles of the triangle *ABC* is the center of the A_1 – ex-inscribed circle of the median triangle $A_1B_1C_1$, corresponding to the triangle *ABC*).

Proof.

If *E* is the contact of the inscribed circle with *AC* and *E*_b is the contact of the *B* –ex-inscribed circle with *AC*, it is known that these points are isotomic, therefore the middle of the segment EE_b is the middle of the side *AC*, which is *B*₁.

This point has equal powers to the inscribed circle (*I*) and to the *B* –ex-inscribed circle (I_b), so it belongs to their radical axis.

Analogously, C_1 is on the radical axis of the circles (*I*) and (I_c).

The radical axis of the circles (1), (I_b) is the perpendicular taken from B_1 to the bisector II_b .

This bisector is parallel with the internal bisector of the angle $A_1B_1C_1$, therefore the perpendicular in B_1 on II_b is the external bisector of the angle $A_1B_1C_1$ from the median triangle.

Analogously, it follows that the radical axis of the circles (*I*), (I_c) is the external bisector of the angle $A_1C_1B_1$ from the median triangle.

Because the bisectors intersect in the center of the circle A_1 -ex-inscribed to the median triangle $A_1B_1C_1$, this point S_a is the center of the radical center of the circles (I), (I_b) , (I_c) .

Remark.

The theorem for the circles (I), (I_a) , (I_b) and (I), (I_a) , (I_c) can be proved analogously, obtaining the points S_c and S_b .

3rd Theorem.

The radical circle's radius of the circles exinscribed to the triangle *ABC* is given by the formula: $\frac{1}{2}\sqrt{r^2 + p^2}$, where *r* is the radius of the inscribed circle.

Proof.

The position vector of the circle I of the inscribed circle in the triangle ABC is:

 $\overrightarrow{PI} = \frac{1}{2p} (a\overrightarrow{PA} + b\overrightarrow{PB} + c\overrightarrow{PC}).$

Spiecker's point *S* is the center of radical circle of ex-inscribed circle and is the center of the inscribed circle in the median triangle $A_1B_1C_1$, therefore:

Figure 2.

We denote by *T* the contact point with the *A*-exinscribed circle of the tangent taken from *S* to this circle (see *Figure 2*). The radical circle's radius is given by:

$$ST = \sqrt{SI_a^2 - I_a^2}$$

$$\overline{I_aS} = \frac{1}{2p} \left(a\overline{I_aA_1} + b\overline{I_aB_1} + c\overline{I_aC_1} \right).$$

We evaluate the product of the scales $\overrightarrow{I_aS} \cdot \overrightarrow{I_aS}$; we have:

$$\begin{split} I_a S^2 &= \frac{1}{4p^2} \Big(a^2 I_a A_1^2 + b^2 I_a B_1^2 + c^2 I_a C_1^2 + 2ab \overrightarrow{I_a A_1} \cdot \overrightarrow{I_a B_1} + 2bc \overrightarrow{I_a B_1} \cdot \overrightarrow{I_a C_1} + 2ac \overrightarrow{I_a A_1} \cdot \overrightarrow{I_a C_1} \Big). \end{split}$$

From the law of cosines applied in the triangle $I_a A_1 B_1$, we find that:

$$\begin{aligned} 2\overline{I_aA_1} \cdot \overline{I_aB_1} &= I_aA_1^2 + I_aB_1^2 - \frac{1}{4}c^2, \text{ therefore:} \\ 2ab\overline{I_aA_1} \cdot \overline{I_aB_1} &= ab(I_aA_1^2 + I_aB_1^2 - \frac{1}{4}abc^2. \\ \text{Analogously, we obtain:} \\ 2bc\overline{I_aB_1} \cdot \overline{I_aC_1} &= bc(I_aB_1^2 + I_aC_1^2 - \frac{1}{4}a^2bc, \\ 2ac\overline{I_aA_1} \cdot \overline{I_aC_1} &= ac(I_aA_1^2 + I_aC_1^2 - \frac{1}{4}ab^2c. \\ I_aS^2 &= \frac{1}{4p^2} \Big[(a^2 + ab + ac)I_aA_1^2 + (b^2 + ab + bc)I_aB_1^2 + (c^2 + bc + ac)I_aC_1^2 - \frac{abc}{4}(a + b + c) \Big], \\ I_aS^2 &= \frac{1}{4p^2} \Big[2p(aI_aA_1^2 + bI_aB_1^2 + cI_aC_1^2) - 2RS_p \Big], \\ I_aS^2 &= \frac{1}{2p}(aI_aA_1^2 + bI_aB_1^2 + cI_aC_1^2) - \frac{1}{2}Rr. \\ \text{From the right triangle } I_aD_aA_1, \text{ we have that:} \\ I_aA_1^2 &= r_a^2 + A_1D_a^2 = r_a^2 + \Big[\frac{a}{2} - (p - c) \Big]^2 = \\ &= r_a^2 + \frac{(c-b)^2}{4}. \end{aligned}$$

From the right triangles $I_a E_a B_1$ și $I_a F_a C_1$, we find:

$$\begin{split} I_{a}B_{1}^{2} &= r_{a}^{2} + B_{1}E_{a}^{2} = r_{a}^{2} + \left[\frac{b}{2} - (p-b)\right]^{2} = \\ &= r_{a}^{2} + \frac{1}{4}(a+c)^{2}, \\ I_{a}C_{1}^{2} &= r_{a}^{2} + \frac{1}{4}(a+b)^{2}. \\ \text{Evaluating } aI_{a}A_{1}^{2} + bI_{a}B_{1}^{2} + cI_{a}C_{1}^{2}, \text{ we obtain:} \\ aI_{a}A_{1}^{2} + bI_{a}B_{1}^{2} + cI_{a}C_{1}^{2} = \\ &= 2pr_{a}^{2} + \frac{1}{2}p(ab + ac + bc) - \frac{1}{4}abc. \end{split}$$

But:

$$ab + ac + bc = r^{2} + p^{2} + 4Rr.$$

It follows that:
$$\frac{1}{2p}[aI_{a}A_{1}^{2} + bI_{a}B_{1}^{2} + cI_{a}C_{1}^{2}] = r_{a}^{2} + \frac{1}{4}(r^{2} + p^{2}) + \frac{1}{2}Rr$$

and

$$I_a S^2 = r_a^2 + \frac{1}{4}(r^2 + p^2).$$

Then, we obtain:
 $ST = \frac{1}{2}\sqrt{r^2 + p^2}.$

References.

- [1] C. Barbu: *Teoreme fundamentale din geometria triunghiului* [Fundamental Theorems of Triangle Geometry]. Bacau, Romania: Editura Unique, 2008.
- [2] I. Patrascu, F. Smarandache: Variance on topics of plane geometry. Columbus: The Educational Publisher, Ohio, USA, 2013.