# BENCZE MIHÁLY <br> FLORIN POPOVICI FLORENTIN SMARANDACHE The Solution of OQ.I02 

In Florentin Smarandache: "Collected Papers", vol. III. Oradea (Romania): Abaddaba, 2000.

## COLLECTED PAPERS, vol. III

## The Solution Of OQ. $102^{1}$

In the "Octogon" Vol.5, No.2, Zoltán Blázik, in the open problem OQ.102, asked if there exists a polynomial $P(x, y)$ of at most second degree such that on the set $\{1,2,3\} \times\{1,2,3\}$ it takes the values $1,2,3,4,5,6$, $7,8,10$, each of them exactly once. We show that doesn't exist such a polynom. Let $\mathrm{P}(\mathrm{x}, \mathrm{y})=\mathrm{Ax}^{2}+\mathrm{Bxy}+\mathrm{Cy}+\mathrm{Dx}+\mathrm{Ey}+\mathrm{F}$ be a such polynom. It results that $\mathrm{P}(1,1)-2 \mathrm{P}(1,2)+\mathrm{P}(1,3)-2 \mathrm{P}(2,1)+4 \mathrm{P}(2,2)-2 \mathrm{P}(2,3)+\mathrm{P}(3,1)-$ $-2 \mathrm{P}(3,2)+\mathrm{P}(3,3)=0$. In this sum there are only integer numbers, and each coefficient divided by 3 give one remainder. From this one gets that
$0=\mathrm{P}(1,1)-2 \mathrm{P}(1,2)+\mathrm{P}(1,3)-2 \mathrm{P}(2,1)+4 \mathrm{P}(2,2)-2 \mathrm{P}(2,3)+\mathrm{P}(3,1)-$
$2 \mathrm{P}(3,2)+\mathrm{P}(3,3) \equiv \mathrm{P}(1,1)+\mathrm{P}(1,2)+\mathrm{P}(1,3)+\mathrm{P}(2,1)+\mathrm{P}(2,2)+\mathrm{P}(2,3)+\mathrm{P}(3$, $1)+\mathrm{P}(3,2)+\mathrm{P}(3,3)=1+2+3+4+5+6+7+8+10 \equiv 46(\bmod 3)$ and this is a contradiction.
Next we propose the following open question:
Is there a polynomial $P\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of at most degree $n$ such that on the set $\{1,2, \ldots, \mathrm{n}, \mathrm{n}+1\} \times\{1,2, \ldots, \mathrm{n}, \mathrm{n}+1\} \mathrm{x} \ldots \mathrm{x}\{1,2, \ldots, \mathrm{n}, \mathrm{n}+1\}$ (the braces are repeated n times) it takes the values $1,2,3, \ldots, \mathrm{n}, \ldots,(\mathrm{n}+1)^{2}-2,(\mathrm{n}+1)^{2}-1,(\mathrm{n}+1)^{2}+1$ exactly once?

