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Abstract: In this chapter, we propose in the DSmT framework, a
new probabilistic transformation, called DSmP, in order to build a
subjective probability measure from any basic belief assignment de-
fined on any model of the frame of discernment. Several examples
are given to show how the DSmP transformation works and we com-
pare it to main existing transformations proposed in the literature
so far. We show the advantages of DSmP over classical transforma-
tions in term of Probabilistic Information Content (PIC). The direct
extension of this transformation for dealing with qualitative belief as-
signments is also presented. This theoretical work must increase the
performances of DSmT-based hard-decision based systems as well as
in soft-decision based systems in many fields where it could be used,
i.e. in biometrics, medicine, robotics, surveillance and threat as-
sessment, multisensor-multitarget tracking for military and civilian
applications, etc.
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3.1 Introduction

In the theories of belief functions, Dempster-Shafer Theory (DST) [10], Trans-
ferable Belief Model (TBM) [15] or DSmT [12, 13], the mapping from the
belief to the probability domain is a controversial issue. The original purpose
of such mappings was to make a (hard) decision, but contrariwise to erroneous
widespread idea/claim, this is not the only interest for using such mappings
nowadays. Actually the probabilistic transformations of belief mass assign-
ments are very useful in modern multitarget multisensor tracking systems (or
in any other systems) where one deals with soft decisions (i.e. where all possible
solutions are kept for state estimation with their likelihoods). For example, in
a Multiple Hypotheses Tracker using both kinematical and attribute data, one
needs to compute all probabilities values for deriving the likelihoods of data
association hypotheses and then mixing them altogether to estimate states
of targets. Therefore, it is very relevant to use a mapping which provides a
high probabilistic information content (PIC) for expecting better performances.
This perfectly justifies the theoretical work proposed in this chapter. A classical
transformation is the so-called pignistic probability [16], denoted BetP , which
offers a good compromise between the maximum of credibility Bel and the
maximum of plausibility Pl for decision support. Unfortunately, BetP doesn’t
provide the highest PIC in general as pointed out by Sudano [17–19]. We
propose hereafter a new generalized pignistic transformation, denoted DSmP ,
which is justified by the maximization of the PIC criterion. An extension of
this transformation in the qualitative domain is also presented. This chapter is
an extended version of a paper presented at Fusion 2008 conference in Cologne,
Germany [7]. An application of DSmP for the Target Type Tracking problem
will be presented in Chapter 16.

3.2 Classical and generalized pignistic probabilities

3.2.1 Classical pignistic probability

The basic idea of the classical pignistic probability proposed and coined by
Philippe Smets in [14, 16] consists in transfering the positive mass of belief of
each non specific element onto the singletons involved in that element split by
the cardinality of the proposition when working with normalized basic belief
assignments (bba’s). The (classical) pignistic probability in TBM framework
is given by1 BetP (∅) = 0 and ∀X ∈ 2Θ \ {∅} by:

1We assume that m(.) is of course a non degenerate bba, i.e. m(∅) �= 1.
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BetP (X) =
∑

Y ∈2Θ,Y �=∅

|X ∩ Y |
|Y |

m(Y )

1−m(∅) , (3.1)

where 2Θ is the power set of the finite and discrete frame Θ assuming Shafer’s
model, i.e. all elements of Θ are assumed truly exclusive.

In Shafer’s approach, m(∅) = 0 and the formula (3.1) can be rewritten for
any singleton θi ∈ Θ as

BetP (θi) =
∑

Y ∈2Θ

θi⊆Y

1

|Y |m(Y ) = m(θi) +
∑

Y ∈2Θ

θi⊂Y

1

|Y |m(Y ) (3.2)

3.2.2 Generalized pignistic probability

The classical pignistic probability has been generalized in DSmT framework for
any regular bbam(.) : GΘ �→ [0, 1] (i.e. such thatm(∅) = 0 and

∑
X∈GΘ m(X) =

1) and for any model of the frame (free DSm model, hybrid DSm model and
Shafer’s model as well). A detailed presentation of this transformation with
several examples can be found in Chapter 7 of [12]. It is given by BetP (∅) = 0
and ∀X ∈ GΘ \ {∅} by

BetP (X) =
∑

Y ∈GΘ

CM(X ∩ Y )

CM(Y )
m(Y ) (3.3)

where GΘ corresponds to the hyper-power set including all the integrity con-
straints of the model (if any)2; CM(Y ) denotes the DSm cardinal3 of the set
Y . The formula (3.3) reduces to (3.2) when GΘ reduces to classical power set
2Θ when one adopts Shafer’s model.

3.3 Sudano’s probabilities

indexSudano’s probabilities
John Sudano has proposed several transformations for approximating any

quantitative belief mass m(.) by a subjective probability measure [21]. These

2GΘ = 2Θ if one adopts Shafer’s model for Θ and GΘ = DΘ (Dedekind’s lattice) if one
adopts the free DSm model for Θ [12].

3CM(Y ) is the number of parts of Y in the Venn diagram of the model M of the frame
Θ under consideration [12] (Chap. 7).



88 Chapter 3: Transformations of belief masses . . .

transformations were denoted PrP l, PrNPl, PraP l, PrBel and PrHyb, and
were all defined in DST framework. They use different kinds of mappings either
proportional to the plausibility, to the normalized plausibility, to all plausibil-
ities, to the belief, or a hybrid mapping.

PrP l(.) and PrBel(.) transformations are mathematically defined4 as follows
for all X 
= ∅ ∈ Θ:

PrP l(X) = Pl(X) ·
∑

Y ∈2Θ

X⊆Y

1

CS[Pl(Y )]
m(Y ) (3.4)

PrBel(X) = Bel(X) ·
∑

Y ∈2Θ

X⊆Y

1

CS[Bel(Y )]
m(Y ) (3.5)

where the denominators involved in the formulas are given by the compound-
to-sum of singletons CS[.] operator defined by [17]:

CS[Pl(Y )] �
∑

Yi∈2Θ

|Yi|=1
∪iYi=Y

Pl(Yi) and CS[Bel(Y )] �
∑

Yi∈2Θ

|Yi|=1
∪iYi=Y

Bel(Yi)

PrNPl(.), PraP l(.) and PrHyb(.) also proposed by John Sudano [17, 21] are
defined as follows:

• The mapping proportional to the normalized plausibility

PrNPl(X) =
1

Δ

∑
Y ∈2Θ

Y ∩X �=∅

m(Y ) =
1

Δ
· Pl(X) (3.6)

where Δ is a normalization factor such that
∑

X∈Θ PrNPl(X) = 1.

• The mapping proportional to all plausibilities

PraP l(X) = Bel(X) + ε · Pl(X) (3.7)

with

ε �
1−∑Y ∈2Θ Bel(Y )∑

Y ∈2Θ Pl(Y )

4For notational convenience and simplicity, we use a different but equivalent notation
than the one originally proposed by John Sudano in his publications.
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• The hybrid pignistic probability

PrHyb(X) = PraP l(X) ·
∑

Y ∈2Θ

X⊆Y

1

CS[PraP l(Y )]
m(Y ) (3.8)

with
CS[PraP l(Y )] �

∑
Yi∈2Θ

|Yi|=1
∪iYi=Y

PraP l(Yi)

• The pedigree pignistic probability [18]: It is denoted PrPed(.) and was
introduced by John Sudano in [18]. PrPed(.) uses the combined bba’s
with the probability proportionally functions to compute a better pignis-
tic probability estimate when used in conjunction with the Generalized
belief fusion algorithm [sic [19]]. This kind of transformation is out of the
scope of this chapter, since it cannot be applied directly for approximat-
ing a bba m(.) without reference to some prior bba’s and a fusion rule.
Here we search for an efficient approximation of m(.) by a subjective pro-
bability measure without any other considerations on how m(.) has been
obtained. We just want to use the minimal information available about
m(.), i.e. the values of m(A) for all A ∈ GΘ.

3.4 Cuzzolin’s intersection probability

In 2007, a new transformation has been proposed in [4] by Fabio Cuzzolin in
the framework of DST. From a geometric interpretation of Dempster’s rule,
an Intersection Probability measure was proposed from the proportional repar-
tition of the Total Non Specific Mass5 (TNSM) by each contribution of the
non-specific masses involved in it. For notational convenience, we will denote
it CuzzP in the sequel.

3.4.1 Definition

CuzzP (.) is defined on any finite and discrete frame Θ = {θ1, . . . , θn}, n ≥ 2,
satisfying Shafer’s model, by

CuzzP (θi) = m(θi) +
Δ(θi)∑n

j=1 Δ(θj)
× TNSM (3.9)

5i.e. the mass committed to partial and total ignorances, i.e. to disjunctions of elements
of the frame.
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with Δ(θi) � Pl(θi)−m(θi) and

TNSM = 1−
n∑

j=1

m(θj) =
∑

A∈2Θ,|A|>1

m(A) (3.10)

3.4.2 Remarks

While appealing at the first glance because of its interesting geometric justi-
fication, Cuzzolin’s transformation seems to be not totally satisfactory in our
point of view for approximating any belief massm(.) into subjective probability
for the following reasons:

1. Although (3.9) does not include explicitly Dempster’s rule, its geometrical
justification [2–4, 6] is strongly conditioned by the acceptance of Demp-
ster’s rule as the fusion operator for belief functions. This is a dogmatic
point of view we disagree with since it has been recognized for many years
by different experts of AI community, that other fusion rules can offer
better performances, especially for cases where highly conflicting sources
are involved.

2. Some parts of the masses of partial ignorance, say A, involved in the
TNSM, are also transferred to singletons, say θi ∈ Θ which are not in-
cluded in A (i.e. such that {θi} ∩ A = ∅). Such transfer is not justified
and does not make sense in our point of view. To be more clear, let’s take
Θ = {A,B,C} and m(.) defined on its power set with all masses strictly
positive. In that case, m(A ∪ B) > 0 does count in TNSM and thus it

is a bit redistributed back to C with the ratio Δ(C)
Δ(A)+Δ(B)+Δ(C) through

TNSM > 0. There is no solid reason for committing partially m(A∪B)
to C since, only A and B are involved in that partial ignorance. Similar
remarks hold for the partial redistribution of m(A ∪ C) > 0.

3. It is easy to verify moreover that CuzzP (.) is mathematically not defined
when m(.) is already a probabilistic belief mass because in such case all
terms Δ(.) equal zero in (3.9) so that one gets 0/0 indetermination in
Cuzzolin’s formula. This remark is important only from the mathematical
point of view.

3.5 A new generalized pignistic transformation

We propose a new generalized pignistic transformation, denoted DSmP to
avoid confusion with the previous existing transformations, which is straight-
forward, and also different from Sudano’s and Cuzzolin’s redistributions which
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are more refined but less exact in our opinions than what we present here.
The basic idea of our DSmP (.) transformation consists in a new way of pro-
portionalizations of the mass of each partial ignorance such as A1 ∪ A2 or
A1 ∪ (A2 ∩ A3) or (A1 ∩ A2) ∪ (A3 ∩ A4), etc. and the mass of the total ig-
norance A1 ∪ A2 ∪ . . . ∪ An, to the elements involved in the ignorances. This
new transformation takes into account both the values of the masses and the
cardinality of elements in the proportional redistribution process. We first
present the general formula for this new transformation, and the numerical
examples, and comparisons with respect to other transformations are given in
next sections.

3.5.1 The DSmP formula

Let’s consider a discrete frame Θ with a given model (free DSm model, hybrid
DSm model or Shafer’s model), the DSmP mapping is defined by DSmPε(∅) =
0 and ∀X ∈ GΘ \ {∅} by

DSmPε(X) =
∑

Y ∈GΘ

∑
Z⊆X∩Y
C(Z)=1

m(Z) + ε · C(X ∩ Y )

∑
Z⊆Y
C(Z)=1

m(Z) + ε · C(Y )
m(Y ) (3.11)

where ε ≥ 0 is a tuning parameter and GΘ corresponds to the hyper-power
set including eventually all the integrity constraints (if any) of the model M;
C(X ∩ Y ) and C(Y ) denote the DSm cardinals6 of the sets X ∩ Y and Y re-
spectively.

The parameter ε allows to reach the maximum PIC value of the approx-
imation of m(.) into a subjective probability measure. The smaller ε, the
better/bigger PIC value. In some particular degenerate cases however, the
DSmPε=0 values cannot be derived, but the DSmPε>0 values can however al-
ways be derived by choosing ε as a very small positive number, say ε = 1/1000
for example in order to be as close as we want to the maximum of the PIC (see
the next sections for details and examples).

It is interesting to note also that when ε = 1 and when the masses of all
elements Z having C(Z) = 1 are zero, (3.11) reduces to (3.3), i.e. DSmPε=1 =
BetP . The passage from a free DSm model to a Shafer’s model induces a

6We have omitted the index of the model M for notational convenience.



92 Chapter 3: Transformations of belief masses . . .

change in the Venn diagram representation, and so the cardinals change as
well in the formula (3.11).

If one works on a (ultimate refined) frame Θ, which implies that Shafer’s
model holds, then the DSmPε(θi) probability of any element θi, i = 1, 2, . . . , n
of the frame Θ = {θ1, . . . , θn} can be directly obtained by:

DSmPε(θi) = m(θi) + (m(θi) + ε)
∑

X∈2Θ

X⊃θi

C(X)≥2

m(X)∑
Y ∈2Θ

Y⊂X
C(Y )=1

m(Y ) + ε · C(X)
(3.12)

The probabilities of (partial or total) ignorances are then obtained from the
additivity property of the probabilities of elementary exclusive elements, i.e.
for i, j = 1, . . . , n, i 
= j, DSmPε(θi ∪ θj) = DSmPε(θi) +DSmPε(θj), etc.

3.5.2 Advantages of DSmP

DSmP works for all models (free, hybrid and Shafer’s). In order to apply
classical BetP , CuzzP or Sudano’s mappings, we need at first to refine the
frame (on the cases when it is possible!) in order to work with Shafer’s model,
and then apply their formulas. In the case where refinement makes sense, then
one can apply the other subjective probabilities on the refined frame. DSmP
works on the refined frame as well and gives the same result as it does on the
non-refined frame. Thus DSmP with ε > 0 works on any model and so is
very general and appealing. It is a combination of PrBel and BetP . PrBel
performs a redistribution of an ignorance mass to the singletons involved in that
ignorance proportionally with respect to the singleton masses. While BetP also
does a redistribution of an ignorance mass to the singletons involved in that
ignorance but proportionally with respect to the singleton cardinals. PrBel
does not work when the masses of all singletons involved in an ignorance are
null since it gives the indetermination 0/0; and in the case when at least one
singleton mass involved in an ignorance is zero, that singleton does not receive
any mass from the distribution even if it was involved in an ignorance, which
is not fair/good. BetP works all the time, but the redistribution is rough and
does not take into account the masses of the singletons.

So, DSmP solves the PrBel problem by doing a redistribution of the ig-
norance mass with respect to both the singleton masses and the singletons’
cardinals in the same time. Now, if all masses of singletons involved in all ig-
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norances are different from zero, then we can take ε = 0, and DSmP coincides
with PrBel and both of them give the best result, i.e. the best PIC value.

PrNPl is not satisfactory since it yields an abnormal behavior. Indeed,
in any model, when a bba m(.) is transformed into a probability, normally
(we mean it is logically that) the masses of ignorances are transferred to the
masses of elements of cardinal 1 (in Shafer’s model these elements are single-
tons). Thus, the resulting probability of an element whose cardinal is 1 should
be greater than or equal to the mass of that element. In other words, if A in
GΘ and C(A) = 1, then P (A) ≥ m(A) for any probability transformation P (.).
This legitimate property is not satisfied by PrNPl as seen in the following
example.

Example: Let’s consider Shafer’s model with Θ = {A,B,C} and m(A) =
0.2, m(B) = m(C) = 0 and m(B ∪ C) = 0.8, then the DSmP transformation
provides for any ε > 0:

DSmPε(A) = 0.2 = BetP (A)

DSmPε(B) = 0.4 = BetP (B)

DSmPε(C) = 0.4 = BetP (C)

Applying Sudano’s probabilities formulas (3.4)-(3.8), one gets7:

- Probability PrP l(.):

PrP l(A) = 0.2 · [0.2/0.2] = 0.2

PrP l(B) = 0.8 · [0.8/(0.8 + 0.8)] = 0.4

PrP l(C) = 0.8 · [0.8/(0.8 + 0.8)] = 0.4

- Probability PrBel(.):

PrBel(A) = 0.2 · [0.2/0.2] = 0.2

PrBel(B) = 0 · [0.8/(0 + 0)] = NaN

PrBel(C) = 0 · [0.8/(0 + 0)] = NaN

- Probability PrNPl(.):

PrNPl(A) = 0.2/(0.2 + 0.8 + 0.8) ≈ 0.1112

PrNPl(B) = 0.8/(0.2 + 0.8 + 0.8) ≈ 0.4444

PrNPl(C) = 0.8/(0.2 + 0.8 + 0.8) ≈ 0.4444

7We use NaN acronym here standing for Not a Number . We could also use the standard
”N/A” standing for ”does not apply”.



94 Chapter 3: Transformations of belief masses . . .

- Probability PraP l(.): ε = 1−0.2−0−0
0.2+0.8+0.8 ≈ 0.4444

PraP l(A) = 0.2 + 0.4444 · 0.2 ≈ 0.2890

PraP l(B) = 0 + 0.4444 · 0.8 ≈ 0.3555

PraP l(C) = 0 + 0.4444 · 0.8 ≈ 0.3555

- Probability PrHyb(.):

PrHyb(A) = 0.2890 · [ 0.2

0.2890
] = 0.2

PrHyb(B) = 0.3555 · [ 0.8

0.3555 + 0.3555
] = 0.4

PrHyb(C) = 0.3555 · [ 0.8

0.3555 + 0.3555
] = 0.4

Applying Cuzzolin’s probabilities formula (3.9), one gets:

CuzzP (A) = m(A) +
Δ(A)

Δ(A) + Δ(B) + Δ(C)
· TNSM

= 0.2 +
0

0 + 0.8 + 0.8
· 0.8 = 0.2

CuzzP (B) = m(B) +
Δ(B)

Δ(A) + Δ(B) + Δ(C)
· TNSM

= 0 +
0.8

0 + 0.8 + 0.8
· 0.8 = 0.4

CuzzP (C) = m(C) +
Δ(C)

Δ(A) + Δ(B) + Δ(C)
· TNSM

= 0 +
0.8

0 + 0.8 + 0.8
· 0.8 = 0.4

since TNSM = m(B ∪ C) = 0.8, Δ(A) = Pl(A) − m(A) = 0, Δ(B) =
Pl(B)−m(B) = 0.8 and Δ(C) = Pl(C)−m(C) = 0.8.

In such a particular example, BetP , PrP l, CuzzP , PrHyb and DSmPε>0

transformations coincide. PrBel(.) is mathematically not defined. Such con-
clusion is not valid in general as we will show in the next examples of this
chapter. From this very simple example, one sees clearly the abnormal behav-
ior of PrNPl(.) transformation because PrNPl(A) = 0.1112 < m(A) = 0.2;
it is not normal that singleton A looses mass when m(.) is transformed into a
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subjective probability since the resulted subjective probability of an element
whose cardinal is 1 should be greater than or equal to the mass of that element.

In summary, DSmP does an improvement of all Sudano, Cuzzolin, and
BetP formulas, in the sense that DSmP mathematically makes a more accurate
redistribution of the ignorance masses to the singletons involved in ignorances.
DSmP and BetP work in both theories: DST (= Shafer’s model) and DSmT
(= free or hybrid models) as well. In order to use Sudano’s and Cuzzolin’s in
DSmT models, we have to refine the frame (see Example 3.7.5).

3.6 PIC metric for the evaluation of the transformations

Following Sudano’s approach [17, 18, 21], we adopt the Probabilistic Informa-
tion Content (PIC) criterion as a metric depicting the strength of a critical
decision by a specific probability distribution. It is an essential measure in
any threshold-driven automated decision system. The PIC is the dual of the
normalized Shannon entropy. A PIC value of one indicates the total knowledge
(i.e. minimal entropy) or information to make a correct decision (one hypoth-
esis has a probability value of one and the rest are zero). A PIC value of zero
indicates that the knowledge or information to make a correct decision does
not exist (all the hypothesis have an equal probability value), i.e. one has the
maximal entropy. The PIC is used in our analysis to sort the performances
of the different pignistic transformations through several numerical examples.
We first recall what Shannon entropy and PIC measure are and their tight
relationship.

3.6.1 Shannon entropy

Shannon entropy, usually expressed in bits (binary digits), of a discrete pro-
bability measure P{.} over a discrete finite set Θ = {θ1, . . . , θn} is defined
by8 [11]:

H(P ) � −
n∑

i=1

P{θi} log2(P{θi}) (3.13)

H(P ) measures the randomness carried by any discrete probability measure
P{.}. H(P ) is maximal for the uniform probability measure over Θ, i.e. when
P{θi} = 1/n for i = 1, 2, . . . , n. In that case, one gets:

8with common convention 0 log2 0 = 0 as in [1].
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H(P ) = Hmax = −
n∑

i=1

1

n
log2(

1

n
) = log2(n)

H(P ) is minimal for a totally deterministic probability measure, i.e. for any
P{.} such that P{θi} = 1 for some i ∈ {1, 2, . . . , n} and P{θj} = 0 for j 
= i.

3.6.2 The probabilistic information content

The Probabilistic Information Content (PIC) of a discrete probability measure
P{.} over a discrete finite set Θ = {θ1, . . . , θn} is defined by [18]:

PIC(P ) = 1 +
1

Hmax
·

n∑
i=1

P{θi} log2(P{θi}) (3.14)

The PIC metric is nothing but the dual of the normalized Shannon entropy
and is actually unitless. It actually measures the information content of a prob-
abilistic source characterized by the probability measure P{.}. The PIC(P )
metric takes its values in [0, 1] and is maximum, i.e. PIC(P ) = PICmax = 1
with any deterministic probability measures. PIC(P ) = PICmin = 0 when
the probability measure is uniform over the frame Θ, i.e. P{θi} = 1/n for
i = 1, 2, . . . , n. The simple relationships between H(P ) and PIC(P ) are :

PIC(P ) = 1− H(P )

Hmax
(3.15)

H(P ) = Hmax · (1− PIC(P )) (3.16)

3.7 Examples and comparisons on a 2D frame

3.7.1 Example 1: Shafer’s model with a general source

Let’s consider the 2D frame Θ = {A,B} with Shafer’s model (i.e. A ∩B = ∅)
and the non-Bayesian quantitative belief assignment (mass) given in Table 3.1.
In this example since one adopts Shafer’s model for the frame Θ, GΘ coincides
with 2Θ, i.e. GΘ = 2Θ = {∅, A,B,A∪B}.

A B A ∪B
m(.) 0.3 0.1 0.6

Table 3.1: Quantitative input for example 3.7.1
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Let’s explain in details the derivations of the different transformations9:

• With the pignistic probability:

BetP (A) = m(A) +
1

2
m(A ∪B) = 0.3 + (0.6/2) = 0.60

BetP (B) = m(B) +
1

2
m(A ∪B) = 0.1 + (0.6/2) = 0.40

Since we are working with Shafer’s model, the generalized pignistic probability
given by (3.3) coincides with the classical pignistic probability.

• With Sudano’s probabilities:

Applying Sudano’s probabilities formulas (3.4)-(3.8), one gets:

- With the probability PrP l(.):

PrP l(A) = 0.9 · [0.3/0.9 + 0.6/(0.9 + 0.7)] = 0.6375

PrP l(B) = 0.7 · [0.1/0.7 + 0.6/(0.9 + 0.7)] = 0.3625

- With the probability PrBel(.):

PrBel(A) = 0.3 · [0.3/0.3 + 0.6/(0.3 + 0.1)] = 0.7500

PrBel(B) = 0.1 · [0.1/0.1 + 0.6/(0.3 + 0.1)] = 0.2500

- With the probability PrNPl(.):

PrNPl(A) = 0.9/(0.9 + 0.7) = 0.5625

PrNPl(B) = 0.7/(0.9 + 0.7) = 0.4375

- With the probability PraP l(.): ε = 1−0.3−0.1
0.9+0.7 = 0.375

PraP l(A) = 0.3 + 0.375 · 0.9 = 0.6375

PraP l(B) = 0.1 + 0.375 · 0.7 = 0.3625

- With the probability PrHyb(.):

PrHyb(A) = 0.6375 · [ 0.3

0.6375
+

0.6

0.6375 + 0.3625
] = 0.6825

PrHyb(B) = 0.3625 · [ 0.1

0.3625
+

0.6

0.6375 + 0.3625
] = 0.3175

9All results presented here are rounded to their fourth decimal place for convenience.
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• With Cuzzolin’s probability:

Since TNSM = m(A ∪ B) = 0.6, Δ(A) = Pl(A) − m(A) = 0.6 and
Δ(B) = Pl(B)−m(B) = 0.6, one gets

CuzzP (A) = m(A) +
Δ(A)

Δ(A) + Δ(B)
· TNSM = 0.3 +

0.6

0.6 + 0.6
· 0.6 = 0.6000

CuzzP (B) = m(B) +
Δ(B)

Δ(A) + Δ(B)
· TNSM = 0.1 +

0.6

0.6 + 0.6
· 0.6 = 0.4000

• With DSmP transformation:

If one uses the DSmP formula (3.11) for this 2D case with Shafer’s model,
one gets:

DSmPε(A) =
m(A) + ε · C(A)

m(A) + ε · C(A)
·m(A) +

0

m(B) + ε · C(B)
·m(B)

+
m(A) + ε · C(A)

m(A) +m(B) + ε · C(A ∪B)
·m(A ∪B) (3.17)

DSmPε(B) =
0

m(A) + ε · C(A)
·m(A) +

m(B) + ε · C(B)

m(B) + ε · C(B)
·m(B)

+
m(B) + ε · C(B)

m(A) +m(B) + ε · C(A ∪B)
·m(A ∪B) (3.18)

DSmPε(A ∪B) =
m(A) + ε · C(A)

m(A) + ε · C(A)
· m(A) +

m(B) + ε · C(B)

m(B) + ε · C(B)
· m(B)

+
m(A) +m(B) + ε · C(A ∪B)

m(A) +m(B) + ε · C(A ∪B)
·m(A ∪B) (3.19)

Since we use Shafer’s model in this example C(A) = C(B) = 1 and C(A ∪
B) = 2 and finally one gets with the DSmP transformation the following ana-
lytical expressions:

DSmPε(A) = m(A) +
m(A) + ε

m(A) +m(B) + 2 · ε · m(A ∪B)



Chapter 3: Transformations of belief masses . . . 99

DSmPε(B) = m(B) +
m(B) + ε

m(A) +m(B) + 2 · ε ·m(A ∪B)

DSmPε(A ∪B) = m(A) +m(B) +m(A ∪B) = 1

One can verify that the expressions of DSmPε(A) and DSmPε(B) are also
consistent with the formula (3.12) and it can be easily verified that

DSmPε(A) +DSmPε(B) = DSmPε(A ∪B) = 1.

- Applying formula (3.11) (or equivalently the three previous expressions)
for ε = 0.001 yields:

DSmPε=0.001(A) ≈ 0.3 + 0.4492 = 0.7492

DSmPε=0.001(B) ≈ 0.1 + 0.1508 = 0.2508

DSmPε=0.001(A ∪B) = 1

- Applying formula (3.11) for ε = 0 yields10:

DSmPε=0(A) = 0.3 + 0.45 = 0.75

DSmPε=0(B) = 0.1 + 0.15 = 0.25

DSmPε=0(A ∪B) = 1

A B PIC(.)
PrNPl(.) 0.5625 0.4375 0.0113
BetP (.) 0.6000 0.4000 0.0291
CuzzP (.) 0.6000 0.4000 0.0291
PrP l(.) 0.6375 0.3625 0.0553
PraP l(.) 0.6375 0.3625 0.0553
PrHyb(.) 0.6825 0.3175 0.0984
DSmPε=0.001(.) 0.7492 0.2508 0.1875
PrBel(.) 0.7500 0.2500 0.1887
DSmPε=0(.) 0.7500 0.2500 0.1887

Table 3.2: Results for example 3.7.1.

Results: We summarize in Table 3.2, the results of the subjective probabi-
lities and their corresponding PIC values sorted by increasing values. It is
interesting to note that DSmPε→0(.) provides same result as with PrBel(.)
and PIC(DSmPε→0(.)) is greater than the PIC values obtained with PrNPL,
BetP , CuzzP , PrP l and PraP l transformations.

10It is possible since the masses of A and B are not zero, so we actually get a proportion-
alization with respect to masses only.
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3.7.2 Example 2: Shafer’s model with the ignorant source

Let’s consider the 2D frame Θ = {A,B} with Shafer’s model (i.e. A ∩B = ∅)
and the vacuous belief mass characterizing the totally ignorant source given in
Table 3.3.

A B A ∪B
m(.) 0 0 1

Table 3.3: Vacuous belief mass for example 3.7.2

• With the pignistic probability:

BetP (A) = BetP (B) = 0 + (1/2) = 0.5

• With Sudano’s probabilities:

Applying Sudano’s probabilities formulas (3.4)-(3.8), one gets:

- Probability PrP l(.):

PrP l(A) = PrP l(B) = 1 · [0/1 + 1/(1 + 1)] = 0.5

- With the probability PrBel(.):

PrBel(A) = PrBel(A) = 0 · [0/0 + 1/(0 + 0)] = NaN

- With the probability PrNPl(.):

PrNPl(A) = PrNPl(B) = 1/(1 + 1) = 0.5

- With the probability PraP l(.): ε = 1−0−0
1+1 = 0.5

PraP l(A) = PraP l(B) = 0 + 0.5 · 1 = 0.5

- With the probability PrHyb(.):

PrHyb(A) = PrHyb(B) = 0.5 · [ 0

0.5
+

1

0.5 + 0.5
] = 0.5
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• With Cuzzolin’s probability:

Since TNSM = m(A ∪ B) = 1, Δ(A) = Pl(A) − m(A) = 1 and Δ(B) =
Pl(B)−m(B) = 1, one gets

CuzzP (A) = CuzzP (B) = 0 +
1

1 + 1
· 1 = 0.5

• With DSmP transformation:

Applying formula (3.11) (or (3.12) since we work here with Shafer’s model)
for ε > 0 yields11:

DSmPε>0(A) = m(A ∪B)/2 = 0.5

DSmPε>0(B) = m(A ∪B)/2 = 0.5

DSmPε>0(A ∪B) = 1

In the particular case of the totally ignorant source characterized by the vacuous
belief assignment, all transformations coincide with the uniform probability
measure over singletons of Θ, except PrBel(.) which is mathematically not
defined in that case. This result can be easily proved for any size of the frame
Θ with |Θ| > 2. We summarize in Table 3.4, the results of the subjective
probabilities and their corresponding PIC values.

A B PIC(.)
PrBel(.) NaN NaN NaN
BetP (.) 0.5 0.5 0
PrP l(.) 0.5 0.5 0
PrNPl(.) 0.5 0.5 0
PraP l(.) 0.5 0.5 0
PrHyb(.) 0.5 0.5 0
CuzzP (.) 0.5 0.5 0
DSmPε>0(.) 0.5 0.5 0

Table 3.4: Results for example 3.7.2.

11It is not possible to apply the DSmP formula for ε = 0 in this particular case, but ε can
be chosen as small as we want.
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3.7.3 Example 3: Shafer’s model with a probabilistic source

Let’s consider the 2D frame Θ = {A,B} and let’s assume Shafer’s model and
let’s see what happens when applying all the transformations on a probabilistic
source12 which commits a belief mass only to singletons of 2Θ, i.e. a Bayesian
mass [10]. It is intuitively expected that all transformations are idempotent
when dealing with probabilistic sources, since actually there is no reason/need
to modify m(.) (the input mass) to obtain a new subjective probability measure
since Bel(.) associated with m(.) is already a probability measure.

If we consider, for example, the uniform probabilistic mass given in Table
3.5, it is very easy to verify in this case, that almost all transformations coincide
with the probabilistic input mass as expected, so that the idempotency property
is satisfied.

A B A ∪B
mu(.) 0.5 0.5 0

Table 3.5: Uniform probabilistic mass for example 3.7.3

Only Cuzzolin’s transformation fails to satisfy this property because in
CuzzP (.) formula (3.9) one gets 0/0 indetermination since all Δ(.) = 0 in
(3.9). This remark is valid whatever the dimension of the frame is, and for any
probabilistic mass, not only for uniform belief mass mu(.). We summarize in
Table 3.6, the results of the subjective probabilities and their corresponding
PIC values:

A B PIC(.)
CuzzP (.) NaN NaN NaN
BetP (.) 0.5 0.5 0
PrP l(.) 0.5 0.5 0
PrNPl(.) 0.5 0.5 0
PraP l(.) 0.5 0.5 0
PrHyb(.) 0.5 0.5 0
PrBel(.) 0.5 0.5 0
DSmPε(.) 0.5 0.5 0

Table 3.6: Results for example 3.7.3.

12This has obviously no practical interest since the source already provides a probability
measure, nevertheless this is very interesting to see the theoretical behavior of the transfor-
mations in such case.
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3.7.4 Example 4: Shafer’s model with a non-Bayesian mass

Let’s assume Shafer’s model and the non-Bayesian mass (more precisely the
simple support mass) given in Table 3.7. We summarize in Table 3.8, the
results obtained with all transformations. One sees that PIC(DSmPε→0) is
maximum among all PIC values. PrBel(.) does not work correctly since it can
not have a division by zero; even overcoming it13, PrBel does not do a fair
redistribution of the ignorance m(A ∪ B) = 0.6 because B does not receive
anything from the mass 0.6, although B is involved in the ignorance A ∪ B.
All m(A ∪B) = 0.6 was unfairly redistributed to A only.

A B A ∪B
m(.) 0.4 0 0.6

Table 3.7: Quantitative input for example 3.7.4

A B PIC(.)
PrBel(.) 1 NaN NaN
PrNPl(.) 0.6250 0.3750 0.0455
BetP (.) 0.7000 0.3000 0.1187
CuzzP (.) 0.7000 0.3000 0.1187
PrP l(.) 0.7750 0.2250 0.2308
PraP l(.) 0.7750 0.2250 0.2308
PrHyb(.) 0.8650 0.1350 0.4291
DSmPε=0.001(.) 0.9985 0.0015 0.9838
DSmPε=0(.) 1 0 1

Table 3.8: Results for example 3.7.4.

3.7.5 Example 5: Free DSm model

Let’s consider the 2D frame Θ = {A,B} with the free DSm model (i.e. A∩B 
=
∅) and the following generalized quantitative belief given in Table 3.9. In the
case of free-DSm (or hybrid DSm) models, the pignistic probability BetP and
the DSmP can be derived directly from m(.) without the ultimate refinement
of the frame Θ whereas Sudano’s and Cuzzolin’s probabilities cannot be derived

13since the direct derivation of PrBel(B) cannot be done from the formula (3.5) because
of the undefined form 0/0, we could however force it to PrBel(B) = 0 since PrBel(B) =
1 − PrBel(A) = 1 − 1 = 0, and consequently we indirectly take PIC(PrBel) = 1.
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directly from the formulas (3.4)-(3.9) in such models. However, Sudano’s and
Cuzzolin’s probabilities can be obtained indirectly after an intermediary step
of ultimate refinement of the frame Θ into Θref which satisfies Shafer’s model.
More precisely, instead of working directly on the 2D frame Θ = {A,B} with
m(.) given in Table 3.9, we need to work on the 3D frame Θref = {A′ �
A \ {A∩B}, B′ � B \ {A∩B}, C′ � A∩B} satisfying Shafer’s model with the
equivalent bba m(.) defined as in Table 3.10.

A ∩B A B A ∪B
m(.) 0.4 0.2 0.1 0.3

Table 3.9: Quantitative input on the original frame Θ

C′ A′ ∪ C′ B′ ∪ C′ A′ ∪B′ ∪ C′

m(.) 0.4 0.2 0.1 0.3

Table 3.10: Quantitative equivalent input on the refined frame Θref

• With the pignistic probability: With the generalized pignistic trans-
formation [12] (Chap.7, p. 148), one gets:

BetP (A) = m(A) +
m(B)

2
+m(A ∩B) +

2

3
m(A ∪B)

= 0.2 + 0.05 + 0.4 + 0.2 = 0.85

BetP (B) = m(B) +
m(A)

2
+m(A ∩B) +

2

3
m(A ∪B)

= 0.1 + 0.1 + 0.4 + 0.2 = 0.80

BetP (A ∩B) =
m(A)

2
+

m(B)

2
+m(A ∩B) +

1

3
m(A ∪B)

= 0.1 + 0.05 + 0.4 + 0.1 = 0.65

We can easily check that

BetP (A ∪B) = BetP (A) +BetP (B)−BetP (A ∩B) = 0.85 + 0.80− 0.65 = 1



Chapter 3: Transformations of belief masses . . . 105

• With Sudano’s probabilities: Working on the refined frame Θref, with
the bba m(.) defined in Table 3.10, one finally obtains from (3.4)-(3.8):

- With the probability PrP l(.):

PrP l(A′) ≈ 0.1456

PrP l(B′) ≈ 0.0917

PrP l(C′) ≈ 0.7627

so that:

PrP l(A) = 0.1456 + 0.7627 = 0.9083

PrP l(B) = 0.0917 + 0.7627 = 0.8544

PrP l(A ∩B) = PrP l(C ′) = 0.7627

- With the probability PrBel(.): It cannot be directly computed by (3.5)
because of the division by zero involved in derivation of PrBel(A′) and
PrBel(B′), i.e. formally one gets

PrBel(A′) = NaN

PrBel(B′) = NaN

PrBel(C′) = 1

But because PrBel(C′) = 1, one can set artificially/indirectlyPrBel(A′) =
0 and PrBel(B′) = 0, so that:

PrBel(A) = NaN + 1 ≈ 0 + 1 = 1

PrBel(B) = NaN + 1 ≈ 0 + 1 = 1

PrBel(A ∩B) = 1

but fundamentally, PrBel(A) = NaN and PrBel(B) = NaN from
PrBel(.) formula.

- With the probability PrNPl(.):

PrNPl(A′) ≈ 0.2632

PrNPl(B′) ≈ 0.2105

PrNPl(C′) ≈ 0.5263

so that:

PrNPl(A) = 0.2632 + 0.5263 = 0.7895

PrNPl(B) = 0.2105 + 0.5263 = 0.7368

PrNPl(A ∩B) = PrNPl(C ′) = 0.5263
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- With the probability PraP l(.): ε ≈ 0.3157

PraP l(A′) ≈ 0.1579

PraP l(B′) ≈ 0.1264

PraP l(C′) ≈ 0.7157

so that:

PraP l(A) = 0.1579 + 0.7157 = 0.8736

PraP l(B) = 0.1264 + 0.7157 = 0.8421

PraP l(A ∩B) = PraP l(C ′) = 0.7157

- With the probability PrHyb(.):

PrHyb(A′) ≈ 0.0835

PrHyb(B′) ≈ 0.0529

PrHyb(C′) ≈ 0.8636

so that:

PrHyb(A) = 0.0835 + 0.8636 = 0.9471

PrHyb(B) = 0.0529 + 0.8636 = 0.9165

PrHyb(A ∩B) = PrHyb(C ′) = 0.8636

• With Cuzzolin’s probability: Working on the refined frame Θref, with
the bba m(.) defined in Table 3.10, one has TNSM = m(A′∪C′)+m(B′∪
C′)+m(A′ ∪B′ ∪C′) = 0.6, Δ(A′) = 0.5, Δ(B′) = 0.4 and Δ(C′) = 0.4.
Therefore:

CuzzP (A′) = m(A′) +
Δ(A′)

Δ(A′) + Δ(B′) + Δ(C′)
· TNSM

= 0 +
0.5

0.5 + 0.4 + 0.6
· 0.6 = 0.20

CuzzP (B′) = m(B′) +
Δ(B′)

Δ(A′) + Δ(B′) + Δ(C′)
· TNSM

= 0 +
0.4

0.5 + 0.4 + 0.6
· 0.6 = 0.16

CuzzP (C′) = m(C′) +
Δ(C′)

Δ(A′) + Δ(B′) + Δ(C′)
· TNSM

= 0.4 +
0.6

0.5 + 0.4 + 0.6
· 0.6 = 0.64
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which finally gives:

CuzzP (A) = CuzzP (A′) + CuzzP (C′) = 0.84

CuzzP (B) = CuzzP (B′) + CuzzP (C′) = 0.80

CuzzP (A ∩B) = CuzzP (C ′) = 0.64

• With DSmP transformation:

If one uses the DSmP formula (3.11) for this 2D case with the free DSm
model where C(A ∩ B) = 1, C(A) = C(B) = 2 and C(A ∪ B) = 3, one gets the
following analytical expressions of DSmPε(.) (assuming all denominators are
strictly positive):

DSmPε(A∩B) = m(A∩B)+
m(A ∩B) + ε

m(A ∩B) + 2 · ε ·m(A)+
m(A ∩B) + ε

m(A ∩B) + 2 · ε ·m(B)

+
m(A ∩B) + ε

m(A ∩B) + 3 · ε ·m(A ∪B) (3.20)

DSmPε(A) = m(A ∩B) + m(A) +
m(A ∩B) + ε

m(A ∩B) + 2 · ε ·m(B)

+
m(A ∩B) + 2 · ε
m(A ∩B) + 3 · ε ·m(A ∪B) (3.21)

DSmPε(B) = m(A ∩B) +m(B) +
m(A ∩B) + ε

m(A ∩B) + 2 · ε ·m(A)

+
m(A ∩B) + 2 · ε
m(A ∩B) + 3 · ε ·m(A ∪B) (3.22)

DSmPε(A ∪ B) = m(A ∩ B) + m(A) + m(B) + m(A ∪ B) = 1 (3.23)

- Applying formula (3.11) for ε = 0.001 yields:

DSmPε=0.001(A ∩B) ≈ 0.9978

DSmPε=0.001(A) ≈ 0.9990

DSmPε=0.001(B) ≈ 0.9988

DSmPε=0.001(A ∪B) = 1
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which induces the underlying probability measure on the refined frame

p1 = P (A \ (A ∩B)) ≈ 0.0012

p2 = P (B \ (A ∩B)) ≈ 0.0010

p3 = P (A ∩B) ≈ 0.9978

This yields to PIC ≈ 0.9842.

- Applying formula (3.11) for ε = 0 yields14: One gets

DSmPε=0(A ∩B) = 1 DSmPε=0(A) = 1

DSmPε=0(A ∪B) = 1 DSmPε=0(B) = 1

which induces the underlying probability measure on the refined frame

p1 = P (A \ (A ∩B)) = 0

p2 = P (B \ (A ∩B)) = 0

p3 = P (A ∩B) = 1

which yields the maximum PIC value, i.e. PIC = 1.

We summarize in Table 3.11, the results of the subjective probabilities and
their corresponding PIC values sorted in increasing order:

A B A ∩B PIC(.)
PrNPl(.) 0.7895 0.7368 0.5263 0.0741
CuzzP (.) 0.8400 0.8000 0.6400 0.1801
BetP (.) 0.8500 0.8000 0.6500 0.1931
PraP l(.) 0.8736 0.8421 0.7157 0.2789
PrP l(.) 0.9083 0.8544 0.7627 0.3570
PrHyb(.) 0.9471 0.9165 0.8636 0.5544
DSmPε=0.001(.) 0.9990 0.9988 0.9978 0.9842
PrBel(.) NaN NaN 1 1
DSmPε=0(.) 1 1 1 1

Table 3.11: Results for example 3.7.5.

14It is possible since the mass of A ∩ B is not zero.
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From Table 3.11, one sees that PIC(DSmPε→0) is the maximum value.
PrBel does not work correctly because it cannot be directly evaluated for A
and B since the underlying PrBel(A′) and PrBel(B′) are mathematically un-
defined in such case.

Remark : If one works on the refined frame Θref and one applies the DSmP
mapping of the bba m(.) defined in Table 3.10, one obtains naturally the same
results for DSmP as those given in table 3.11. Of course the results of BetP
in Table 3.11 are the same using directly the formula (3.3) as those using (3.1)
on Θref.

Proof: Applying (3.11) with Shafer’s model for m(.) defined in Table 3.10, one
gets directly the DSmPε values of atomic elements A′, B′ and C′ of the refined
frame Θref, i.e.:

DSmPε(A
′) =

ε · C(A′)
m(C′) + ε · C(A′ ∪ C′)

· m(A′ ∪ C′)

+
ε · C(A′)

m(C′) + ε · C(A′ ∪B′ ∪ C′)
· m(A′ ∪B′ ∪ C′) (3.24)

DSmPε(B
′) =

ε · C(B′)
m(C′) + ε · C(B′ ∪ C′)

· m(B′ ∪C′)

+
ε · C(B′)

m(C′) + ε · C(A′ ∪B′ ∪ C′)
· m(A′ ∪B′ ∪ C′) (3.25)

DSmPε(C
′) =

m(C′) + ε · C(C′)
m(C′) + ε · C(C′) · m(C′)

+
m(C′) + ε · C(C′)

m(C′) + ε · C(A′ ∪ C′)
·m(A′ ∪C′) +

m(C′) + ε · C(C′)
m(C′) + ε · C(B′ ∪C′)

·m(B′ ∪ C′)

+
m(C ′) + ε · C(C′)

m(C′) + ε · C(A′ ∪B′ ∪ C′)
· m(A′ ∪B′ ∪ C′) (3.26)

Since on the refined frame with Shafer’s model, C(A′) = C(B′) = C(C′) = 1,
C(A′∪B′) = C(A′∪C′) = C(B′∪C′) = 2 and C(A′∪B′∪C′) = 3, the previous
expressions can be simplified as:

DSmPε(A
′) =

ε

m(C′) + 2 · ε ·m(A′ ∪C′)+
ε

m(C′) + 3 · ε ·m(A′ ∪B′ ∪C′)

(3.27)
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DSmPε(B
′) =

ε

m(C′) + 2 · ε ·m(B′ ∪C′)+
ε

m(C′) + 3 · ε ·m(A′ ∪B′ ∪C′)

(3.28)

DSmPε(C
′) = m(C ′)+

m(C′) + ε

m(C′) + 2 · ε ·m(A′∪C′)+
m(C′) + ε

m(C′) + 2 · ε ·m(B′∪C′)

+
m(C′) + ε

m(C′) + 3 · ε ·m(A′ ∪B′ ∪ C′) (3.29)

One sees that the expressions of DSmPε(A
′), DSmPε(B

′) and DSmPε(C
′) we

obtain here, coincide with the expressions that one would obtain by applying
directly the formula (3.12) specifically when Shafer’s model holds (i.e. when a
ultimate refined frame is used). It can be easily verified that:

DSmPε(A
′) +DSmPε(B

′) +DSmPε(C
′) = 1

Replacing ε and m(C′), m(A′∪C′), m(B′∪C′) and m(A′∪B′∪C′) by their
numerical values, one gets the same numerical values as those given by p1, p2

and p3. For example if ε = 0.001, one obtains from the previous expressions:

DSmPε=0.001(A
′) =

0.001

0.4 + 2 · 0.001 · 0.2 + 0.001

0.4 + 3 · 0.001 · 0.3 ≈ 0.0012

DSmPε=0.001(B
′) =

0.001

0.4 + 2 · 0.001 · 0.1 + 0.001

0.4 + 3 · 0.001 · 0.3 ≈ 0.0010

DSmPε=0.001(C
′) = 0.4 +

0.4 + 0.001

0.4 + 2 · 0.001 · 0.2

+
0.4 + 0.001

0.4 + 2 · 0.001 · 0.1 + 0.4 + 0.001

0.4 + 3 · 0.001 · 0.3 ≈ 0.9978

From the probabilities of these atomic elements A′, B′ and C′, one can
easily compute the probability of A ∩ B = C′, A = A′ ∪ C′, B = B′ ∪ C′ and
A ∪B = A′ ∪B′ ∪ C′ by:

DSmPε(A ∩B) = DSmPε(C
′)

DSmPε(A) = DSmPε(A
′) +DSmPε(C

′)
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DSmPε(B) = DSmPε(B
′) +DSmPε(C

′)

DSmPε(A ∪B) = DSmPε(A
′) +DSmPε(B

′) +DSmPε(C
′)

Therefore, for ε = 0.001, one obtains:

DSmPε=0.1(A ∩B) = 0.9978

DSmPε=0.1(A) = 0.0012 + 0.9978 = 0.9990

DSmPε=0.1(B) = 0.0010 + 0.9978 = 0.9988

DSmPε=0.1(A ∪B) = 0.0012 + 0.0010 + 0.9978 = 1

We can verify that this result is the same result as the one obtained directly
with formula 3.11 when one uses the free DSm model (see 7th row of the Table
3.11). This completes the proof.

3.8 Examples on a 3D frame

3.8.1 Example 6: Shafer’s model with a non-Bayesian mass

This example is drawn from [21]. Let’s consider the 3D frame Θ = {A,B,C}
with Shafer’s model and the following non-Bayesian quantitative belief mass.

A B C A ∪B A ∪ C B ∪C A ∪B ∪C
m(.) 0.35 0.25 0.02 0.20 0.07 0.05 0.06

Table 3.12: Quantitative input for example 3.8.1

• With the pignistic probability: Applying formula (3.1), one gets

BetP (A) = 0.35 +
0.20

2
+

0.07

2
+

0.06

3
= 0.5050

BetP (B) = 0.25 +
0.20

2
+

0.05

2
+

0.06

3
= 0.3950

BetP (C) = 0.02 +
0.07

2
+

0.05

2
+

0.06

3
= 0.1000

• With Sudano’s probabilities: The belief and plausibility ao A, B and
C are

Bel(A) = 0.35 Bel(B) = 0.25 Bel(C) = 0.02

Pl(A) = 0.68 Pl(B) = 0.56 Pl(C) = 0.20

Applying formulas (3.4)-(3.8), one obtains the following Sudano’s proba-
bilities:
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– With the probability PrP l(.):

PrP l(A) = Pl(A) · [ m(A)

Pl(A)
+

m(A ∪B)

Pl(A) + Pl(B)
+

m(A ∪C)

Pl(A) + Pl(C)

+
m(A ∪B ∪ C)

Pl(A) + Pl(B) + Pl(C)
]

= 0.68 · [ 0.35
0.68

+
0.20

1.24
+

0.07

0.88
+

0.06

1.44
] ≈ 0.5421

and similarly,

PrP l(B) ≈ 0.4005 PrP l(C) ≈ 0.0574

– With the probability PrBel(.):

PrBel(A) = Bel(A) · [ m(A)

Bel(A)
+

m(A ∪B)

Bel(A) +Bel(B)

+
m(A ∪ C)

Bel(A) +Bel(C)
+

m(A ∪B ∪ C)

Bel(A) +Bel(B) +Bel(C)
]

= 0.35 · [ 0.35
0.35

+
0.20

0.60
+

0.07

0.37
+

0.06

0.62
] ≈ 0.5668

and similarly,

PrBel(B) ≈ 0.4038 PrBel(C) ≈ 0.0294

– With the probability PrNPl(.):

PrNPl(A) =
1

Δ
Pl(A) =

Pl(A)

Pl(A) + Pl(B) + Pl(C)
=

0.68

1.44
≈ 0.4722

and similarly,

PrNPl(B) ≈ 0.3889 PrNPl(C) ≈ 0.1389

– With the probability PraP l(.): Applying formula (3.7), one gets

ε =
1−Bel(A)−Bel(B)−Bel(C)

Pl(A) + Pl(B) + Pl(C)
=

0.38

1.44

PraP l(A) = Bel(A) + ε · Pl(A) = 0.35 +
0.38

1.44
· 0.68 ≈ 0.5294

and similarly,

PraP l(B) ≈ 0.3978 PraP l(C) ≈ 0.0728
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– With the probability PrHyb(.):

PrHyb(A) = PraP l(A) · [ m(A)

PraP l(A)
+

m(A ∪B)

PraP l(A) + PraP l(B)

+
m(A ∪ C)

PraP l(A) + PraP l(C)

+
m(A ∪B ∪ C)

PraP l(A) + PraP l(B) + PraP l(C)
] ≈ 0.5575

and similarly,

PrHyb(B) ≈ 0.4019 PrHyb(C) ≈ 0.0406

• With Cuzzolin’s probability: Since TNSM = m(A ∪ B) = 0.38,
Δ(A) = Pl(A) − m(A) = 0.33, Δ(B) = Pl(B) − m(B) = 0.31 and
Δ(C) = Pl(C)−m(C) = 0.18, one gets:

CuzzP (A) = 0.35 +
0.33

0.33 + 0.31 + 0.18
· 0.38 ≈ 0.5029

CuzzP (B) = 0.25 +
0.31

0.33 + 0.31 + 0.18
· 0.38 ≈ 0.3937

CuzzP (C) = 0.02 +
0.18

0.33 + 0.31 + 0.18
· 0.38 ≈ 0.1034

• With DSmP transformation:

- Applying formula (3.11) for ε = 0.001 yields:

DSmPε=0.001(A) ≈ 0.5665

DSmPε=0.001(B) ≈ 0.4037

DSmPε=0.001(C) ≈ 0.0298

DSmPε=0.001(A ∪B) ≈ 0.9702

DSmPε=0.001(A ∪C) ≈ 0.5963

DSmPε=0.001(B ∪C) ≈ 0.4335

DSmPε=0.001(A ∪B ∪C) = 1
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- Applying formula (3.11) for ε = 0 yields:

DSmPε=0(A) ≈ 0.5668

DSmPε=0(B) ≈ 0.4038

DSmPε=0(C) ≈ 0.0294

DSmPε=0(A ∪B) ≈ 0.9706

DSmPε=0(A ∪ C) ≈ 0.5962

DSmPε=0(B ∪ C) ≈ 0.4332

DSmPε=0(A ∪B ∪ C) = 1

We summarize in Table 3.13, the results of the subjective probabilities and
their corresponding PIC values sorted in increasing order.

A B C PIC(.)
PrNPl(.) 0.4722 0.3889 0.1389 0.0936
CuzzP (.) 0.5029 0.3937 0.1034 0.1377
BetP (.) 0.5050 0.3950 0.1000 0.1424
PraP l(.) 0.5294 0.3978 0.0728 0.1861
PrP l(.) 0.5421 0.4005 0.0574 0.2149
PrHyb(.) 0.5575 0.4019 0.0406 0.2517
DSmPε=0.001(.) 0.5665 0.4037 0.0298 0.2783
PrBel(.) 0.5668 0.4038 0.0294 0.2793
DSmPε=0(.) 0.5668 0.4038 0.0294 0.2793

Table 3.13: Results for example 3.8.1.

One sees that DSmPε→0 provides the same result as PrBel which corre-
sponds the best result in term of PIC for this example.

3.8.2 Example 7: Shafer’s model with another non-Bayesian
mass

Let’s consider the 3D frame Θ = {A,B,C} with Shafer’s model and the fol-
lowing non-Bayesian quantitative belief mass:
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A B C A ∪B A ∪ C B ∪ C A ∪B ∪ C
m(.) 0.1 0 0.2 0.3 0.1 0 0.3

Table 3.14: Quantitative input for example 3.8.2

• With the pignistic probability:

BetP (A) = 0.1 +
0.3

2
+

0.1

2
+

0.3

3
= 0.40

BetP (B) = 0 +
0.3

2
+

0.3

3
= 0.25

BetP (C) = 0.2 +
0.1

2
+

0.3

3
= 0.35

• With Sudano’s probabilities: The belief and plausibility of A, B and
C are

Bel(A) = 0.10 Bel(B) = 0 Bel(C) = 0.20

Pl(A) = 0.80 Pl(B) = 0.60 Pl(C) = 0.60

Applying formulas (3.4)-(3.8), one obtains:

– With the probability PrP l(.):

PrP l(A) = Pl(A) · [ m(A)

Pl(A)
+

m(A ∪B)

Pl(A) + Pl(B)

+
m(A ∪ C)

Pl(A) + Pl(C)
+

m(A ∪B ∪ C)

Pl(A) + Pl(B) + Pl(C)
]

= 0.80 · [ 0.10
0.80

+
0.30

1.40
+

0.10

1.40
+

0.30

2
] ≈ 0.4486

and similarly,

PrP l(B) ≈ 0.2186 PrP l(C) ≈ 0.3328

– With the probability PrBel(.):

PrBel(A) = Bel(A) · [ m(A)

Bel(A)
+

m(A ∪B)

Bel(A) +Bel(B)

+
m(A ∪ C)

Bel(A) +Bel(C)
+

m(A ∪B ∪ C)

Bel(A) +Bel(B) +Bel(C)
]

= 0.10 · [ 0.10
0.80

+
0.30

0.10
+

0.10

0.30
+

0.30

0.30
] ≈ 0.5333



116 Chapter 3: Transformations of belief masses . . .

PrBel(C) ≈ 0.4667 but from the formula (3.5), one gets PrBel(B) =
NaN because of the division by zero. Since PrBel(A)+PrBel(B)+
PrBel(C) must be one, one could circumvent the problem by taking
PrBel(B) = 0.

– With the probability PrNPl(.):

PrNPl(A) =
Pl(A)

Pl(A) + Pl(B) + Pl(C)
=

0.80

2
= 0.40

PrNPl(B) =
Pl(B)

Pl(A) + Pl(B) + Pl(C)
=

0.60

2
= 0.30

PrNPl(C) =
Pl(C)

Pl(A) + Pl(B) + Pl(C)
=

0.60

2
= 0.30

– With the probability PraP l(.): Applying formula (3.7), one gets

ε =
1−Bel(A)−Bel(B)−Bel(C)

Pl(A) + Pl(B) + Pl(C)
= 0.35

PraP l(A) = 0.10 + 0.35 · 0.80 = 0.38

PraP l(B) = 0 + 0.35 · 0.60 = 0.21

PraP l(C) = 0.20 + 0.35 · 0.60 = 0.41

– With the probability PrHyb(.):

PrHyb(A) ≈ 0.4553 PrHyb(B) ≈ 0.1698 PrHyb(C) ≈ 0.3749

• With Cuzzolin’s probability: Since TNSM = 0.3 + 0.1 + 0.3 = 0.7,
Δ(A) = 0.7, Δ(B) = 0.6 and Δ(C) = 0.4, one gets:

CuzzP (A) = 0.1 +
0.7

1.7
× 0.7 = 0.388

CuzzP (B) = 0 +
0.6

1.7
× 0.7 = 0.247

CuzzP (C) = 0.2 +
0.4

1.7
× 0.7 = 0.365
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• With DSmP transformation:

- Applying formula (3.11) for ε = 0.001 yields:

DSmPε=0.001(A) ≈ 0.5305

DSmPε=0.001(B) ≈ 0.0039

DSmPε=0.001(C) ≈ 0.4656

DSmPε=0.001(A ∪B) ≈ 0.5344

DSmPε=0.001(A ∪C) ≈ 0.9961

DSmPε=0.001(B ∪C) ≈ 0.4695

DSmPε=0.001(A ∪B ∪C) = 1

- The formula (3.11) for ε = 0 cannot be applied in this example because
of 0/0 indetermination, but one can always choose ε arbitrary small in
order to evaluate DSmPε→0(.).

A B C PIC(.)
PrBel(.) 0.5333 NaN 0.4667 NaN
PrNPl(.) 0.4000 0.3000 0.3000 0.0088
CuzzP (.) 0.3880 0.2470 0.3650 0.0163
BetP (.) 0.4000 0.2500 0.3500 0.0164
PraP l(.) 0.3800 0.2100 0.4100 0.0342
PrP l(.) 0.4486 0.2186 0.3328 0.0368
PrHyb(.) 0.4553 0.1698 0.3749 0.0650
DSmPε=0.001(.) 0.5305 0.0039 0.4656 0.3500

Table 3.15: Results for example 3.8.2.

We summarize in Table 3.15, the results of the subjective probabilities and their
corresponding PIC values sorted in increasing order. One sees that DSmPε→0

provides the highest PIC and PrBel is mathematically undefined. If one set
artificially PrBel(B) = 0, one will get the same result with PrBel as with
DSmPε→0.
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3.8.3 Example 8: Shafer’s model with yet another
non-Bayesian mass

Let’s modify a bit the previous and consider the 3D frame Θ = {A,B,C} with
Shafer’s model and the following non-Bayesian quantitative belief assignments
(mass) having masses on B and C equal zero and according to Table 3.16.

A B C A ∪B A ∪ C B ∪C A ∪B ∪C
m(.) 0.1 0 0 0.2 0 0.3 0.4

Table 3.16: Quantitative input for example 3.8.3

A B C PIC(.)
PrBel(.) 0.7000 NaN NaN NaN
CuzzP (.) 0.3455 0.3681 0.2864 0.0049
PrNPl(.) 0.3043 0.3913 0.3044 0.0067
BetP (.) 0.3333 0.3833 0.2834 0.0068
PraP l(.) 0.3739 0.3522 0.2739 0.0077
PrHyb(.) 0.3526 0.4066 0.2408 0.0203
PrP l(.) 0.3093 0.4377 0.2530 0.0239
DSmPε=0.001(.) 0.6903 0.1558 0.1539 0.2413

Table 3.17: Results for example 3.8.3.

We summarize in Table 3.17, the results of the subjective probabilities and their
corresponding PIC values sorted in increasing order. DSmPε→0 provides here
the best results in term of PIC metric with respect to all other transformations.
PrBel doesn’t work here because the two values PrBel(B) and PrBel(C)
are mathematically undefined. Of course if we set artificially PrBel(B) =
PrBel(C) = (1 − PrBel(A))/2 = 0.15, then we will obtain same result as
with DSmPε→0, but there is no solid reason for using such artificial trick for
circumventing the inherent limitation of the PrBel transformation.

3.8.4 Example 9: Shafer’s model with yet another
non-Bayesian mass

Here is an example where the PrBel(.) provides a counter intuitive result.
Let’s consider again Shafer’s model for Θ = {A,B,C} with the following bba

In this example PrBel(B) and PrBel(C) require division by zero which is
impossible. Even if in PrBel formula we force the mass m(B ∪ C) = 0.9 to
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A B C B ∪ C
m(.) 0.1 0 0 0.9

Table 3.18: Quantitative input for example 3.8.4

be transferred to A, we get PrBel(A) = 1, but it is not fair nor intuitive to
have the mass of B ∪C transferred to A, since A was not at all involved in the
ignoranceB∪C. Using DSmPε we get for the elements of Θ: DSmPε(A) = 0.1,
DSmPε(B) = 0.45 and DSmPε(C) = 0.45 no matter what ε > 0 is equal to.
We summarize in Table 3.19, the results of the subjective probabilities and
their corresponding PIC values sorted in increasing order (the verification is
left to the reader):

A B C PIC(.)
PrBel(.) 0.1000 NaN NaN NaN
PraP l(.) 0.1474 0.4263 0.4263 0.0814
BetP (.) 0.1000 0.4500 0.4500 0.1362
CuzzP (.) 0.1000 0.4500 0.4500 0.1362
PrP l(.) 0.1000 0.4500 0.4500 0.1362
PrHyb(.) 0.1000 0.4500 0.4500 0.1362
DSmPε(.) 0.1000 0.4500 0.4500 0.1362
PrNPl(.) 0.0526 0.4737 0.4737 0.2146

Table 3.19: Results for example 3.8.4.

One sees that DSmPε coincides with BetP , CuzzP , PrP l(.) and PrHyb(.)
in this special case. PrBel(.) is mathematically undefined. If one forces ar-
tificially PrBel(B) = PrBel(C) = 0, one gets PrBel(A) = 1 which does not
make sense. PrNPl provides a better PIC than other transformations here
only because it is subject to an abnormal behavior as already explained in
section 3.5.2, and therefore it cannot be considered as a serious candidate for
transforming any bba into a subjective probability.

3.8.5 Example 10: Hybrid DSm model

We consider here the hybrid DSm model for the frame Θ = {A,B,C} in which
we force all possible intersection of elements of Θ to be empty, except A∩B. In
this case the hyper-power set DΘ reduces to 9 elements {∅, A∩B,A,B,C,A∪
B,A∪C,B∪C,A∪B∪C}. The quantitative belief masses are chosen according
to Table 3.20 (the mass of elements not included in the Table are equal to zero).
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A ∩B A C
m(.) 0.2 0.1 0.2

A ∪B A ∪ C A ∪B ∪ C
m(.) 0.3 0.1 0.1

Table 3.20: Quantitative input for example 3.8.5

One has according to Figure 3.1 (see [12], page 55): C(A∩B) = 1, C(A) = 2,
C(B) = 2, C(C) = 1, C(A ∪ B) = 3, C(A ∪ C) = 3, C(B ∩ C) = 3 and
C(A ∪B ∪C) = 4.
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Figure 3.1: Hybrid DSm model for example 3.8.4

In order to apply Sudano’s and Cuzzolin’s transformations, we need to work
on the refined frame Θref with Shafer’s model as depicted on Figure 3.2:

Θref = {A′ � A \ (A ∩ B), B′ � B \ (A ∩ B), C′ � C,D′ � A ∩ B}
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B′A′

Figure 3.2: Refined 3D frame
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For Sudano’s and Cuzzolin’s transformations, we use the following equiva-
lent bba as numerical input of the transformations:

D′ A′ ∪D′ C′

m(.) 0.2 0.1 0.2

A′ ∪B′ ∪D′ A′ ∪ C′ ∪D′ A′ ∪B′ ∪C′ ∪D′

m(.) 0.3 0.1 0.1

Table 3.21: Quantitative equivalent input on refined frame for example 3.8.5

• With the pignistic probability:

Applying the generalized pignistic transform (3.3) directly on Θ with m(.)
given in Table 3.20, one gets:

BetP{A ∩B} = BetP{A} = BetP{B} = BetP{C} =
(1/1) · 0.2 (1/1) · 0.2 (1/1) · 0.2 (0/1) · 0.2
+(1/2) · 0.1 +(2/2) · 0.1 +(1/2) · 0.1 +(0/2) · 0.1
+(1/2) · 0 +(1/2) · 0 +(2/2) · 0 +(0/2) · 0
+(0/1) · 0.2 +(0/2) · 0.2 +(0/1) · 0.2 +(1/1) · 0.2
+(1/3) · 0.3 +(2/3) · 0.3 +(2/3) · 0.3 +(0/3) · 0.3
+(1/3) · 0.1 +(2/3) · 0.1 +(1/3) · 0.1 +(1/3) · 0.1
+(1/3) · 0 +(1/3) · 0 +(2/3) · 0 +(1/3) · 0
+(1/4) · 0.1 +(2/4) · 0.1 +(2/4) · 0.1 +(1/4) · 0.1
≈ 0.408333 ≈ 0.616666 ≈ 0.533333 ≈ 0.258333

Table 3.22: Derivation of BetP{A ∩B}, BetP{A}, BetP{B} and BetP{C}

It is easy to verify that the pignistic probability of the whole frame Θ is one since
one has BetP{A∪B∪C} = (1/1) ·0.2+(2/2) ·0.1+(2/2) ·0+(2/2) ·0.2+(3/3) ·
0.3+(3/3)·0.1+(3/3)·0+(4/4)·0.1 = 0.2+0.1+0.2+0.3+0.1+0.1 = 1. Moreover,
one can verify also that the classical equality BetP{A ∪ B} = BetP{A} +
BetP{B}−BetP{A∩B} is satisfied since BetP (.) is a (subjective) probability
measure, similarly for BetP{A∪C} and for BetP{B ∪C}. BetP{A∩C} and
BetP{B ∩ C} equal zero in this example.
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BetP{A ∪B} = BetP{A ∪ C} = BetP{B ∪ C} =
(1/1) · 0.2 (1/1) · 0.2 (1/1) · 0.2
+(2/2) · 0.1 +(2/2) · 0.1 +(1/2) · 0.1
+(2/2) · 0 +(1/2) · 0 +(2/2) · 0
+(0/1) · 0.2 +(1/1) · 0.2 +(2/2) · 0.2
+(3/3) · 0.3 +(2/3) · 0.3 +(2/3) · 0.3
+(2/3) · 0.1 +(3/3) · 0.1 +(2/3) · 0.1
+(2/3) · 0 +(2/3) · 0 +(3/3) · 0
+(3/4) · 0.1 +(3/4) · 0.1 +(3/4) · 0.1
≈ 0.741666 = 0.875000 ≈ 0.791666

Table 3.23: Derivation of BetP{A ∪B}, BetP{A ∪C} and BetP{B ∪ C}

The underlying probability measure of the atomic elements of Θref is then
given by:

BetP{A′} = BetP{A} − BetP{A ∩B} ≈ 0.2084

BetP{B′} = BetP{B} −BetP{A ∩B} ≈ 0.1250

BetP{C′} = BetP{C} ≈ 0.2583

BetP{D′} = BetP{A ∩B} ≈ 0.4083

• With Sudano’s probabilities: The belief and plausibility of elements
of Θref are

Bel(A′) = 0 Pl(A′) = 0.6

Bel(B′) = 0 Pl(B′) = 0.4

Bel(C′) = 0.2 Pl(C′) = 0.4

Bel(D′) = 0.2 Pl(D′) = 0.8

Applying the formulas (3.4)-(3.8) on Θref with the masses given in Table
3.21, one gets:

- With the probability PrP l(.):

PrP l(A′) ≈ 0.2035 PrP l(B′) ≈ 0.0848

PrP l(C′) ≈ 0.2404 PrP l(D′) ≈ 0.4713

- With the probability PrBel(.): One cannot directly apply (3.5) because of
the division by zero involved in derivation of PrBel(A′) and PrBel(B′),
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i.e. formally one gets

PrBel(A′) = NaN PrBel(B′) = NaN

PrBel(C′) = 0.3000 PrBel(D′) = 0.7000

But because PrBel(C′) + PrBel(D′) = 1, one can set artificially/indi-
rectly PrBel(A′) = PrBel(B′) = 0 and this would yield to PIC ≈
0.5593, but fundamentally, PrBel(A′) = NaN and PrBel(B′) = NaN
from PrBel(.) formula, so that PIC is mathematically inderterminate.

- With the probability PrNPl(.):

PrNPl(A′) ≈ 0.2728 PrNPl(B′) ≈ 0.1818

PrNPl(C′) ≈ 0.1818 PrNPl(D′) ≈ 0.3636

- With the probability PraP l(.): ε ≈ 0.2727

PraP l(A′) ≈ 0.1636 PraP l(B′) ≈ 0.1091

PraP l(C′) ≈ 0.3091 PraP l(D′) ≈ 0.4182

- With the probability PrHyb(.):

PrHyb(A′) ≈ 0.1339 PrHyb(B′) ≈ 0.0583

PrHyb(C′) ≈ 0.2656 PrHyb(D′) ≈ 0.5422

• With Cuzzolin’s probability: Working on the refined frame Θref, with
the bba m(.) defined in Table 3.21, one has TNSM = 0.6, Δ(A′) = 0.6,
Δ(B′) = 0.4, Δ(C′) = 0.2 and Δ(D′) = 0.6. Therefore:

CuzzP (A′) = m(A′) +
Δ(A′) · TNSM

Δ(A′) + Δ(B′) + Δ(C′) + Δ(D′)

= 0 +
0.6 · 0.6

0.6 + 0.4 + 0.2 + 06
= 0.2000

CuzzP (B′) = m(B′) +
Δ(B′) · TNSM

Δ(A′) + Δ(B′) + Δ(C′) + Δ(D′)

= 0 +
0.4 · 0.6

0.6 + 0.4 + 0.2 + 06
≈ 0.1333
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CuzzP (C′) = m(C ′) +
Δ(C′) · TNSM

Δ(A′) + Δ(B′) + Δ(C′) + Δ(D′)

= 0.2 +
0.2 · 0.6

0.6 + 0.4 + 0.2 + 06
≈ 0.2667

CuzzP (D′) = m(D′) +
Δ(D′) · TNSM

Δ(A′) + Δ(B′) + Δ(C′) + Δ(D′)

= 0.2 +
0.6 · 0.6

0.6 + 0.4 + 0.2 + 06
= 0.4000

• With DSmP transformation: Applying directly the formula (3.11) on
the frame Θ with this hybrid model and for the chosen bba m(.), yield
to the following analytical expressions:

DSmPε(A∩B) =
m((A ∩B) ∩ (A ∩B)) + ε · C((A ∩B) ∩ (A ∩B))

m(A ∩B) + ε · C(A ∩B)
·m(A∩B)

+
m(A ∩ (A ∩B)) + ε · C(A ∩ (A ∩B))

m(A ∩B) + ε · C(A)
· m(A)

+
m((A ∪B) ∩ (A ∩B)) + ε · C((A ∪B) ∩ (A ∩B))

m(A ∩B) + ε · C(A ∪B)
· m(A ∪B)

+
m((A ∪ C) ∩ (A ∩B)) + ε · C((A ∪ C) ∩ (A ∩B))

m(A ∩B) +m(C) + ε · C(A ∪C)
· m(A ∪ C)

+
m((A ∪B ∪C) ∩ (A ∩B)) + ε · C((A ∪B ∪ C) ∩ (A ∩B))

m(A ∩B) +m(C) + ε · C(A ∪B ∪ C)
·m(A∪B ∪C)

Since we work with this hybrid DSm model, one has C(A∩B) = 1, C(C) = 1,
C(A) = C(B) = 2, C(A∪B) = C(A∪C) = C(B∪C) = 3 and C(A∪B ∪C) = 4.
So that the previous expression can be simplified as:

DSmPε(A ∩B) =
m(A ∩B) + ε · 1
m(A ∩B) + ε · 1 ·m(A ∩B) +

m(A ∩B) + ε · 1
m(A ∩B) + ε · 2 ·m(A)

+
m(A ∩B) + ε · 1
m(A ∩B) + ε · 3 · m(A ∪B) +

m(A ∩B) + ε · 1
m(A ∩B) +m(C) + ε · 3 ·m(A ∪ C)

+
m(A ∩B) + ε · 1

m(A ∩B) +m(C) + ε · 4 ·m(A ∪B ∪ C)
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Similarly, one gets:

DSmPε(A) =
m(A ∩B) + ε · 1
m(A ∩B) + ε · 1 · m(A ∩B) +

m(A ∩B) + ε · 2
m(A ∩B) + ε · 2 · m(A)

+
m(A ∩B) + ε · 2
m(A ∩B) + ε · 3 · m(A ∪B) +

m(A ∩B) + ε · 2
m(A ∩B) +m(C) + ε · 3 ·m(A ∪ C)

+
m(A ∩B) + ε · 2

m(A ∩B) +m(C) + ε · 4 · m(A ∪B ∪ C)

DSmPε(B) =
m(A ∩B) + ε · 1
m(A ∩B) + ε · 1 ·m(A ∩B) +

m(A ∩B) + ε · 1
m(A ∩B) + ε · 2 · m(A)

+
m(A ∩B) + ε · 2
m(A ∩B) + ε · 3 · m(A ∪B) +

m(A ∩B) + ε · 1
m(A ∩B) +m(C) + ε · 3 ·m(A ∪ C)

+
m(A ∩B) + ε · 2

m(A ∩B) +m(C) + ε · 4 · m(A ∪B ∪ C)

DSmPε(C) =
m(C) + ε · 1
m(C) + ε · 1 ·m(C) +

m(C) + ε · 1
m(A ∩B) +m(C) + ε · 3 ·m(A ∪ C)

+
m(C) + ε · 1

m(A ∩B) +m(C) + ε · 4 · m(A ∪B ∪ C)

DSmPε((A∩B)∪C) =
m(A ∩B) + ε · 1
m(A ∩B) + ε · 1 ·m(A∩B)+

m(A ∩B) + ε · 1
m(A ∩B) + ε · 2 ·m(A)

+
m(C) + ε · 1
m(C) + ε · 1 ·m(C) +

m(A ∩B) + ε · 1
m(A ∩B) + ε · 3 · m(A ∪B)

+
m(A ∩B) +m(C) + ε · 2
m(A ∩B) +m(C) + ε · 3 ·m(A∪C)+

m(A ∩B) +m(C) + ε · 3
m(A ∩B) +m(C) + ε · 4 ·m(A∪B∪C)

DSmPε(A ∪B) =
m(A ∩B) + ε · 1
m(A ∩B) + ε · 1 · m(A ∩B) +

m(A ∩B) + ε · 2
m(A ∩B) + ε · 2 ·m(A)

+
m(A ∩B) + ε · 3
m(A ∩B) + ε · 3 · m(A ∪B) +

m(A ∩B) + ε · 2
m(A ∩B) +m(C) + ε · 3 ·m(A ∪ C)

+
m(A ∩B) + ε · 3

m(A ∩B) +m(C) + ε · 4 · m(A ∪B ∪ C)
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DSmPε(A ∪ C) =
m(A ∩B) + ε · 1
m(A ∩B) + ε · 1 ·m(A ∩B) +

m(A ∩B) + ε · 2
m(A ∩B) + ε · 2 ·m(A)

+
m(C) + ε · 1
m(C) + ε · 1 ·m(C) +

m(A ∩B) + ε · 2
m(A ∩B) + ε · 3 · m(A ∪B)

+
m(A ∩B) +m(C) + ε · 3
m(A ∩B) +m(C) + ε · 3 ·m(A∪C)+

m(A ∩B) +m(C) + ε · 3
m(A ∩B) +m(C) + ε · 4 ·m(A∪B∪C)

DSmPε(B ∪ C) =
m(A ∩B) + ε · 1
m(A ∩B) + ε · 1 ·m(A ∩B) +

m(A ∩B) + ε · 1
m(A ∩B) + ε · 2 ·m(A)

+
m(C) + ε · 1
m(C) + ε · 1 ·m(C) +

m(A ∩B) + ε · 2
m(A ∩B) + ε · 3 · m(A ∪B)

+
m(A ∩B) +m(C) + ε · 2
m(A ∩B) +m(C) + ε · 3 ·m(A∪C)+

m(A ∩B) +m(C) + ε · 3
m(A ∩B) +m(C) + ε · 4 ·m(A∪B∪C)

DSmPε(A∪B∪C) =
m(A ∩B) + ε · 1
m(A ∩B) + ε · 1 ·m(A∩B)+

m(A ∩B) + ε · 2
m(A ∩B) + ε · 2 ·m(A)

+
m(C) + ε · 1
m(C) + ε · 1 ·m(C) +

m(A ∩B) + ε · 3
m(A ∩B) + ε · 3 · m(A ∪B)

+
m(A ∩B) +m(C) + ε · 3
m(A ∩B) +m(C) + ε · 3 ·m(A ∪ C)

+
m(A ∩B) +m(C) + ε · 4
m(A ∩B) +m(C) + ε · 4 · m(A ∪B ∪ C) = 1

- Applying formula (3.11) for ε = 0.001 yields:

DSmPε=0.001(A ∩B) ≈ 0.6962

DSmPε=0.001(A) ≈ 0.6987

DSmPε=0.001(B) ≈ 0.6979

DSmPε=0.001(C) ≈ 0.2996

DSmPε=0.001((A ∩B) ∪ C) ≈ 0.9958

DSmPε=0.001(A ∪B) ≈ 0.7004

DSmPε=0.001(A ∪ C) ≈ 0.9983

DSmPε=0.001(B ∪ C) ≈ 0.9975

DSmPε=0.001(A ∪B ∪ C) = 1

which induces the underlying probability measure on the refined frame

P (A′) ≈ 0.0025 P (B′) ≈ 0.0017 P (C′) ≈ 0.2996 P (D′) ≈ 0.6962
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A′ B′ C′ D′ PIC(.)
PrBel(.) NaN NaN 0.3000 0.7000 NaN
PrNPl(.) 0.2728 0.1818 0.1818 0.3636 0.0318
CuzzP (.) 0.2000 0.1333 0.2667 0.4000 0.0553
BetP (.) 0.2084 0.1250 0.2583 0.4083 0.0607
PraP l(.) 0.1636 0.1091 0.3091 0.4182 0.0872
PrP l(.) 0.2035 0.0848 0.2404 0.4713 0.1124
PrHyb(.) 0.1339 0.0583 0.2656 0.5422 0.1928
DSmPε=0.001(.) 0.0025 0.0017 0.2996 0.6962 0.5390

Table 3.24: Results for example 3.8.5.

We summarize in Table 3.24, the results on the refined frame for the subjective
probabilities and their corresponding PIC values sorted in increasing order.
DSmPε→0 provides here the best result in term of PIC metric with respect to
all other transformations.

3.8.6 Example 11: Free DSm model

We consider the free DSm model as Figure 3.3 for Θ = {A,B,C} with the bba
given in Table 3.25.

A ∩B ∩ C A ∩B A
m(.) 0.1 0.2 0.3

A ∪B A ∪B ∪ C
m(.) 0.1 0.3

Table 3.25: Quantitative input for example 3.8.6

In order to apply Sudano’s and Cuzzolin’s transformations, we need to work
one the refined frame

Θref = {A′, B′, C′, D′, E′, F ′, G′}

where elements of Θref corresponds to separate parts (assuming such refine-
ment makes physically sense/meaning - sometimes depending on the nature of
elements A, B and C the refinement has no physical sense but can just be seen
as a mathematical abstract refined frame) of the Venn Diagram of Figure 3.3.
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Figure 3.3: Free DSm model for a 3D frame.

• With the pignistic probabilities: One gets for singletons of Θref.

BetP{A′} ≈ 0.1345 BetP{B′} ≈ 0.0595 BetP{C′} ≈ 0.0429

BetP{D′} ≈ 0.2345 BetP{E′} ≈ 0.1345 BetP{F ′} ≈ 0.0595

BetP{G′} ≈ 0.3345

• With Sudano’s probabilities: The belief and plausibility of elements
of Θref are

Bel(A′) = 0 Pl(A′) = 0.7

Bel(B′) = 0 Pl(B′) = 0.4

Bel(C′) = 0 Pl(C′) = 0.3

Bel(D′) = 0 Pl(D′) = 0.9

Bel(E′) = 0 Pl(E′) = 0.7

Bel(F ′) = 0 Pl(F ′) = 0.4

Bel(G′) = 0.1 Pl(G′) = 1

Applying the formulas (3.4)-(3.8) on Θref one obtains:

- With the probability PrP l(.):

PrP l(A′) ≈ 0.1284 PrP l(B′) ≈ 0.0370 PrP l(C′) ≈ 0.0205

PrP l(D′) ≈ 0.2599 PrP l(E′) ≈ 0.1284 PrP l(F ′) ≈ 0.0370

PrP l(G′) ≈ 0.3887
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- With the probability PrBel(.): If one applies PrBel(.) formula re-
stricted only with positive masses (to circumvent 0/0 undetermi-
nations, one obtains PrBel(G′) = 1 and PIC = 1. But if one
strictly applies PrBel(.) formula which normally must include all
masses (even those taking zero values), then PrBel(.) yields to 0/0
indeterminations and thus PIC = NaN .

- With the probability PrNPl(.):

PrNPl(A′) ≈ 0.1591 PrNPl(B′) ≈ 0.0909

PrNPl(C′) ≈ 0.0682 PrNPl(D′) ≈ 0.2045

PrNPl(E′) ≈ 0.1591 PrNPl(F ′) ≈ 0.0909

PrNPl(G′) ≈ 0.2273

- With the probability PraP l(.): ε ≈ 0.2045

PraP l(A′) ≈ 0.1432 PraP l(B′) ≈ 0.0818

PraP l(C′) ≈ 0.0614 PraP l(D′) ≈ 0.1841

PraP l(E′) ≈ 0.1432 PraP l(F ′) ≈ 0.0818

PraP l(G′) ≈ 0.3045

- With the probability PrHyb(.):

PrHyb(A′) ≈ 0.1136 PrHyb(B′) ≈ 0.0333

PrHyb(C′) ≈ 0.0184 PrHyb(D′) ≈ 0.2214

PrHyb(E′) ≈ 0.1136 PrHyb(F ′) ≈ 0.0333

PrHyb(G′) ≈ 0.4663

• With Cuzzolin’s probability: Working on the refined frame Θref, one
has TNSM = 0.9, Δ(A′) = 0.7, Δ(B′) = 0.4, Δ(C′) = 0.3, Δ(D′) = 0.9,
Δ(E′) = 0.7, Δ(F ′) = 0.4 and Δ(G′) = 0.9. Therefore:

CuzzP (A′) ≈ 0.1465 CuzzP (B′) ≈ 0.0837

CuzzP (C′) ≈ 0.0628 CuzzP (D′) ≈ 0.1884

CuzzP (E′) ≈ 0.1465 CuzzP (F ′) ≈ 0.0837

CuzzP (G′) ≈ 0.2884



130 Chapter 3: Transformations of belief masses . . .

• With DSmP transformation:

Applying formula (3.11) for ε = 0.001 yields15:

DSmPε=0.001(A ∩B ∩ C) ≈ 0.9678

DSmPε=0.001(A ∩B) ≈ 0.9764

DSmPε=0.001(A ∩ C) ≈ 0.9745

DSmPε=0.001(B ∩C) ≈ 0.9716

DSmPε=0.001((A ∪B) ∩ C) ≈ 0.9782

DSmPε=0.001((A ∪ C) ∩B) ≈ 0.9802

DSmPε=0.001((B ∪ C) ∩A) ≈ 0.9831

DSmPε=0.001((A ∩B) ∪ (A ∩C) ∪ (B ∩ C)) ≈ 0.9868

DSmPε=0.001(A) ≈ 0.9897

DSmPε=0.001(B) ≈ 0.9839

DSmPε=0.001(C) ≈ 0.9810

DSmPε=0.001((A ∩B) ∪ C) ≈ 0.9896

DSmPε=0.001((A ∩ C) ∪B) ≈ 0.9963

DSmPε=0.001((B ∩ C) ∪A) ≈ 0.9935

DSmPε=0.001(A ∪B) ≈ 0.9972

DSmPε=0.001(A ∪ C) ≈ 0.9963

DSmPε=0.001(B ∪C) ≈ 0.9934

DSmPε=0.001(A ∪B ∪ C) = 1

which induces the underlying probability measure on the refined frame16

P (A′) = DSmP (A)−DSmP (A ∩B)−DSmP (A ∩ C)

+DSmP (A ∩B ∩C) ≈ 0.0066

P (B′) = DSmP (B)−DSmP (A ∩B)−DSmP (B ∩C)

+DSmP (A ∩B ∩ C) ≈ 0.0038

P (C ′) = DSmP (C)−DSmP (A ∩ C)−DSmP (B ∩ C)

+DSmP (A ∩B ∩ C) ≈ 0.0028

15The verification is left to the reader.
16Here we use the Poincaré’s formula. The index ε has been omitted due to space limitation

for notational convenience.
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P (D′) = DSmP (A ∩B)−DSmP (A ∩B ∩ C) ≈ 0.0086

P (E′) = DSmP (A ∩ C)−DSmP (A ∩B ∩ C) ≈ 0.0067

P (F ′) = DSmP (B ∩ C)−DSmP (A ∩B ∩ C) ≈ 0.0037

P (G′) = DSmP (A ∩B ∩C) ≈ 0.9678

Note that these probabilities can also be computed directly by the formula
(3.12) using the proper bba defined on the refined frame. For example
by applying (3.12), one gets for this example (with m(A) = m(A′ ∪D′ ∪
E′ ∪ G′) = 0.3, m(A ∪ B) = m(A′ ∪ B′ ∪ D′ ∪ E′ ∪ F ′ ∪ G′) = 0.1 and
m(A ∪B ∪ C) = m(A′ ∪B′ ∪ C′ ∪D′ ∪ E′ ∪ F ′ ∪G′) = 0.2)

P (A′) =
ε · 0.3

0.1 + ε · 4 +
ε · 0.1

0.1 + ε · 6 +
ε · 0.3

0.1 + ε · 7
which is equal to 0.0066 when ε = 0.001. Similar derivations can be done
using (3.12) to obtain directly the probabilities of the other elements of
the refined frame.

We summarize in Table 3.26, the PIC values obtained with the different trans-
formations sorted in increasing order. DSmPε→0 provides here again the best
result in term of PIC metric with respect to all other transformations.

Transformations PIC(.)
PrBel(.) NaN
PrNPl(.) 0.0414
CuzzP (.) 0.0621
PraP l(.) 0.0693
BetP (.) 0.1176
DSmPε=0.1(.) 0.1854
PrP l(.) 0.1940
PrHyb(.) 0.2375
DSmPε=0.001(.) 0.8986

Table 3.26: Results for example 3.8.6.

3.9 Extension of DSmP for qualitative belief

In order to compute directly with words (linguistic labels), Smarandache and
Dezert have defined in [13] a qualitative basic belief assignment qm(.) as a
mapping function from GΘ into a set of linguistic labels L = {L0, L̃, Lm+1}
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where L̃ = {L1, · · · , Lm} is a finite set of linguistic labels and where m ≥ 2
is an integer. For example, L1 can take the linguistic value “poor”, L2 the
linguistic value “good”, etc. L̃ is endowed with a total order relationship ≺,
so that L1 ≺ L2 ≺ · · · ≺ Ln. To work on a true closed linguistic set L un-
der linguistic operators, L̃ is extended with two extreme values L0 = Lmin

and Lm+1 = Lmax, where L0 corresponds to the minimal qualitative value
and Lm+1 corresponds to the maximal qualitative value, in such a way that
L0 ≺ L1 ≺ L2 ≺ · · · ≺ Lm ≺ Lm+1, where ≺ means inferior to, or less (in
quality) than, or smaller than, etc.

From the isomorphism between the set of linguistic equidistant labels and
a set of numbers in the interval [0, 1] and the DSm Field and Linear Algebra of
Refined Labels (FLARL) proposed in Chapter 2, one disposes of a set of precise
operators on linguistic labels (addition, subtraction, multiplication, division,
etc) which allows a direct extension of (quantitative) DSmP formula to its
qualitative version as follows: qDSmPε(∅) = L0 and ∀X ∈ GΘ \ {∅} by

qDSmPε(X) =
∑

Y ∈GΘ

∑
Z⊆X∩Y
C(Z)=1

qm(Z) + ε · C(X ∩ Y )

∑
Z⊆Y
C(Z)=1

qm(Z) + ε · C(Y )
qm(Y ) (3.30)

where all operations17 in (3.30) are referred to labels as explained in Chapter 2.

The derivation of a qualitative PIC from qualitative DSmP can be also
obtained as follows: Let’s consider a finite space of discrete exclusive events
Θ = {θ1, θ2, . . . , θn} and a subjective qualitative alike probability measure
qP (.) : Θ �→ L = {L0, L1, . . . , Lm, Lm+1}. Then one defines the entropy and
PIC metrics from qP (.) as

H(qP ) � −
n∑

i=1

qP{θi} log2(qP{θi}) (3.31)

PIC(qP ) = 1 +
1

Hmax
·

n∑
i=1

qP{θi} log2(qP{θi}) (3.32)

where Hmax = log2(n) and in order to compute the logarithms, one utilizes the
isomorphism Li = i/(m+ 1).

17In our previous papers, we used only approximate operators for labels. In working with
FLARL, we use precise operators for labels.
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3.10 Example for qualitative DSmP

Let’s consider the frame Θ = {A,B,C} with Shafer’s model and the following
set of linguistic labels L = {L0, L1, L2, L3, L4, L5} (m = 4) with L0 = Lmin

and L5 = Lmax. Let’s consider the following qualitative belief assignment
qm(A) = L1, qm(B ∪ C) = L4 and qm(X) = L0 for all X ∈ 2Θ \ {A,B ∪ C}.
qm(.) is quasi-normalized since

∑
X∈2Θ qm(X) = L5 = Lmax. In this example,

qm(B ∪C) = L4 is redistributed by qDSmPε(.) to B and C only, since B and
C were involved in the ignorance, proportionally with respect to their cardinals
(since their masses are L0 ≡ 0). Applying qDSmPε(.) formula (3.30), one gets
for this example:

qDSmPε(A) = L1

qDSmPε(B) =
qm(B) + ε · C(B)

qm(B) + qm(C) + ε · C(B ∪ C)
qm(B ∪ C)

=
L0 + ε · 1

L0 + L0 + ε · 2 · L4 =
L0+(ε·1)·5

L0+0+(ε·2)·5
· L4

=
Lε·5

Lε·10
· L4 = L 5ε

10ε ·5
· L4 = L2.5 · L4

= L2.5·4/5 = L10/5 = L2

Similarly, one gets

qDSmPε(C) =
qm(C) + ε · C(C)

qm(B) + qm(C) + ε · C(B ∪ C)
qm(B ∪ C)

=
L0 + ε · 1

L0 + L0 + ε · 2 · L4 = L2

Thanks to the isomorphism between labels and numbers, all the properties
of operations with numbers are transmitted to the operations with labels.
qDSmPε(.) is normalized since qDSmPε(A) + qDSmPε(B) + qDSmPε(C)
equals L1 + L2 + L2 = L5 = Lmax. Applying the PIC formula (3.32), one
obtains (here n =| Θ |= 3):

PIC(qDSmPε) = 1+
1

log2 3
(L1 log2(L1)+L2 log2(L2)+L2 log2(L2) ≈ 1

5
L1

where in order to compute the qualitative logarithms, one utilized the isomor-
phism Li =

i
m+1 .
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3.11 Conclusions

Motivated by the necessity to use a better (more informational) probabilistic
approximation of belief assignment m(.) for applications involving hard and/or
soft decisions, we have developed in this chapter a new probabilistic transfor-
mation, called DSmP , for approximating m(.) into a subjective probability
measure. DSmP provides the maximum of the Probabilistic Information Con-
tent (PIC) of the source because it is based on proportional redistribution of
partial and total uncertainty masses to elements of cardinal 1 with respect to
their corresponding masses and cardinalities. DSmP works with any model
(Shafer’s, hybrid, or free DSm model) of the frame. DSmPε=0 coincides with
Sudano’s PrBel transformation for the cases when all masses of singletons
involved in ignorances are nonzero. PrBel formula is restricted to work on
Shafer’s model only while DSmPε>0 is always defined and for any model. We
have clearly shown through simple examples that the classical BetP and Cuz-
zolin’s transformations do not perform well in term of PIC criterion. It has
been shown also how DSmP can be extended to the qualitative domain to ap-
proximate qualitative belief assignments provided by human sources in natural
language.
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