ABOUT VERY PERFECT NUMBERS

Mihály Bencze and Florin Popovici
Department of Mathematics
Áprily Lajos College
Braşov, Romania
Florentin Smarandache, Ph D
Professor
Chair of Department of Math \& Sciences
University of New Mexico
200 College Road
Gallup, NM 87301, USA
E-mail: smarand@unm.edu

Abstract.

In this short paper we prove that the square of an odd prime number cannot be a very perfect number.

Introduction.

A natural number n is called very perfect if $\sigma(\sigma(n))=2 n$ (see [1]), where $\sigma(x)$ means the sum of all positive divisors of the natural number x .

We now prove the following result:
Theorem. The square of an odd prime number cannot be a very perfect number.
Proof: Let's consider $n=p^{2}$, where p is an odd prime number, then

$$
\sigma(n)=1+p+p^{2}, \quad \sigma(\sigma(n))=\sigma\left(1+p+p^{2}\right)=2 p^{2} .
$$

We decompose $\sigma(n)$ in canonical form, from where $1+p+p^{2}=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}$. Because $p(p+1)+1$ is odd, in the canonical decompose there must be only odd numbers.

$$
\sigma(\sigma(n))=\left(1+p_{1}+\ldots+p_{1}^{\alpha}\right) \ldots\left(1+p_{k}+\ldots+p_{k}^{\alpha_{k}}\right)=\frac{p_{1}^{\alpha_{1}+1}-1}{p_{1}-1} \ldots \frac{p_{k}^{\alpha_{k}+1}-1}{p_{k}-1}=2 p^{2}
$$

Because

$$
\frac{p_{1}^{\alpha_{1}+1}-1}{p_{1}-1}>2, \ldots, \frac{p_{k}^{\alpha_{k}+1}-1}{p_{k}-1}>2
$$

one obtains that $2 p^{2}$ cannot be decomposed in more than two factors, then each one is >2, therefore $k \leq 2$.

Case 1. For $k=1$ we find $\sigma(n)=1+p+p^{2}=p_{1}^{\alpha_{1}}$, from where one obtains

$$
\begin{aligned}
& p_{1}^{\alpha_{1}+1}=p_{1}\left(1+p+p^{2}\right) \text { and } \\
& \sigma(\sigma(n))=\frac{p_{1}^{\alpha_{1}+1}-1}{p_{1}-1}=2 p^{2}, p_{1}\left(1+p+p^{2}\right)-1=2 p^{2}\left(p_{1}-1\right),
\end{aligned}
$$

from where

$$
p_{1}-1=p\left(p p_{1}-2 p-p_{1}\right) .
$$

The right side is divisible by p, thus $p_{1}-1$ is a p multiple. Because $p_{1}>2$ it results that

$$
p_{1} \geq p-1 \text { and } p_{1}^{2} \geq(p+1)^{2}>p^{2}+p+1=p_{1}^{\alpha_{1}},
$$

thus $\alpha_{1}=1$ and

$$
\sigma(n)=p^{2}+p+1=p_{1}, \sigma(\sigma(n))=\sigma\left(p_{1}\right)=1+p_{1} .
$$

If n is very perfect then $1+p_{1}=2 p^{2}$ or $p^{2}+p+2=2 p^{2}$. The solutions of the equation are $p=-1$, and $p=2$ which is a contradiction.

Case 2. For $k=2$ we have $\sigma(n)=p^{2}+p+1=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}}$.

$$
\sigma(\sigma(n))=\left(1+p_{1}+\ldots+p_{1}^{\alpha}\right)\left(1+p_{2}+\ldots+p_{2}^{\alpha_{2}}\right)=\frac{p_{1}^{\alpha_{1}+1}-1}{p_{1}-1} \cdot \frac{p_{2}^{\alpha_{2}+1}-1}{p_{2}-1}=2 p^{2}
$$

Because

$$
\frac{p_{1}^{\alpha_{1}+1}-1}{p_{1}-1}>2 \text { and } \frac{p_{2}^{\alpha_{2}+1}-1}{p_{2}-1}>2,
$$

it results

$$
\frac{p_{1}^{\alpha_{1}+1}}{p_{1}-1}=p \text { and } \frac{p_{2}^{\alpha_{2}+1}-1}{p_{2}-1}=2 p
$$

(or inverse), thus

$$
p_{1}^{\alpha_{1}+1}-1=p\left(p_{1}-1\right), p_{2}^{\alpha_{2}+1}-1=2 p\left(p_{2}-1\right)
$$

then

$$
p_{1}^{\alpha_{1}+1} p_{2}^{\alpha_{2}+1}-p_{1}^{\alpha_{1}+1}-p_{2}^{\alpha_{2}+1}+1=2 p^{2}\left(p_{1}-1\right)\left(p_{2}-1\right),
$$

thus

$$
\sigma(n)=p^{2}+p+1=p_{1}^{\alpha_{1}+1} p_{2}^{\alpha_{2}+1}
$$

and

$$
p_{1} p_{2}\left(p^{2}+p+1\right)=2 p^{2}\left(p_{1}-1\right)\left(p_{2}-1\right)+p_{1}^{\alpha_{1}+1}+p_{2}^{\alpha_{2}+1}-1
$$

or

$$
\begin{aligned}
& p_{1} p_{2} p(p+1)+p_{1} p_{2}-1=2 p^{2}\left(p_{1}-1\right)\left(p_{2}-1\right)+\left(p_{1}^{\alpha_{1}+1}-1\right)+\left(p_{2}^{\alpha_{2}+1}-1\right)= \\
& =2 p^{2}\left(p_{1}-1\right)\left(p_{2}-1\right)+p\left(p_{1}-1\right)+2 p\left(p_{2}-1\right)
\end{aligned}
$$

accordingly p divides $p_{1} p_{2}-1$, thus $p_{1} p_{2}>p+1$ and

$$
p_{1}^{2} p_{2}^{2} \geq(p+1)^{2}>p^{2}+p+1=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} .
$$

Hence:
Π_{1}) If $\alpha_{1}=1$ and $n=2 p^{2}$,
then

$$
\sigma(n)=p^{2}+p+1=p_{1} p_{2}^{\alpha_{2}} \text { and } \frac{p_{1}^{2}-1}{p_{1}-1}=p, \text { and } \frac{p_{2}^{\alpha_{2}+1}-1}{p_{2}-1}=2 p,
$$

thus $p_{1}+1=p$ which is a contradiction.
Π_{2}) If $\alpha_{2}=1$ and $n=2 p^{2}$,
then

$$
\begin{aligned}
& \sigma(n)=p^{2}+p+1=p_{1}^{\alpha_{1}} p_{2} \text { and } \frac{p_{1}^{\alpha_{1}+1}-1}{p_{1}-1}=p, \text { and } \\
& \frac{p_{2}^{2}-1}{p_{2}-1}=2 p
\end{aligned}
$$

thus

$$
p_{2}+1=2 p, p_{2}=2 p-1
$$

and

$$
\sigma(n)=p^{2}+p+1=p_{1}^{\alpha_{1}}(2 p+1),
$$

from where

$$
4 \sigma(n)=(2 p-1)(2 p+3)+7=4 p_{1}^{\alpha_{1}}(2 p-1),
$$

accordingly 7 is divisible by $2 p-1$ and thus p is divisible by 4 which is a contradiction.

Reference:

[1] Suryanarayama - Elemente der Mathematik - 1969.
[Published in "Octogon", Braşov, Vol. 5, No. 2, 53-4, October 1997.]

