ABOUT VERY PERFECT NUMBERS

Mihály Bencze and Florin Popovici Department of Mathematics Áprily Lajos College Braşov, Romania

Florentin Smarandache, Ph D Professor Chair of Department of Math & Sciences University of New Mexico 200 College Road Gallup, NM 87301, USA E-mail: smarand@unm.edu

Abstract.

In this short paper we prove that the square of an odd prime number cannot be a very perfect number.

Introduction.

A natural number *n* is called *very perfect* if $\sigma(\sigma(n)) = 2n$ (see [1]), where $\sigma(x)$ means the sum of all positive divisors of the natural number x.

We now prove the following result:

Theorem. The square of an odd prime number cannot be a very perfect number.

Proof: Let's consider $n = p^2$, where p is an odd prime number, then $\sigma(n) = 1 + p + p^2$, $\sigma(\sigma(n)) = \sigma(1 + p + p^2) = 2p^2$.

We decompose $\sigma(n)$ in canonical form, from where $1 + p + p^2 = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$. Because p(p+1)+1 is odd, in the canonical decompose there must be only odd numbers.

$$\sigma(\sigma(n)) = (1 + p_1 + \dots + p_1^{\alpha}) \dots (1 + p_k + \dots + p_k^{\alpha_k}) = \frac{p_1^{\alpha_1 + 1} - 1}{p_1 - 1} \dots \frac{p_k^{\alpha_k + 1} - 1}{p_k - 1} = 2p^2$$

Because

$$\frac{p_1^{\alpha_1+1}-1}{p_1-1} > 2, \dots, \frac{p_k^{\alpha_k+1}-1}{p_k-1} > 2$$

one obtains that $2p^2$ cannot be decomposed in more than two factors, then each one is > 2, therefore $k \le 2$.

Case 1. For k = 1 we find $\sigma(n) = 1 + p + p^2 = p_1^{\alpha_1}$, from where one obtains

$$p_1^{\alpha_1+1} = p_1(1+p+p^2)$$
 and
 $\sigma(\sigma(n)) = \frac{p_1^{\alpha_1+1}-1}{p_1-1} = 2p^2, \ p_1(1+p+p^2)-1 = 2p^2(p_1-1),$

from where

$$p_1 - 1 = p(pp_1 - 2p - p_1).$$

The right side is divisible by p, thus $p_1 - 1$ is a p multiple. Because $p_1 > 2$ it results that

$$p_1 \ge p-1$$
 and $p_1^2 \ge (p+1)^2 > p^2 + p + 1 = p_1^{\alpha_1}$,

thus $\alpha_1 = 1$ and

$$\sigma(n) = p^2 + p + 1 = p_1, \ \sigma(\sigma(n)) = \sigma(p_1) = 1 + p_1.$$

If *n* is very perfect then $1 + p_1 = 2p^2$ or $p^2 + p + 2 = 2p^2$. The solutions of the equation are p = -1, and p = 2 which is a contradiction.

Case 2. For
$$k = 2$$
 we have $\sigma(n) = p^2 + p + 1 = p_1^{\alpha_1} p_2^{\alpha_2}$.
 $\sigma(\sigma(n)) = (1 + p_1 + ... + p_1^{\alpha})(1 + p_2 + ... + p_2^{\alpha_2}) = \frac{p_1^{\alpha_1 + 1} - 1}{p_1 - 1} \cdot \frac{p_2^{\alpha_2 + 1} - 1}{p_2 - 1} = 2p^2$.

Because

$$\frac{p_1^{\alpha_1+1}-1}{p_1-1} > 2$$
 and $\frac{p_2^{\alpha_2+1}-1}{p_2-1} > 2$,

it results

$$\frac{p_1^{\alpha_1+1}}{p_1-1} = p$$
 and $\frac{p_2^{\alpha_2+1}-1}{p_2-1} = 2p$

(or inverse), thus

$$p_1^{\alpha_1+1}-1=p(p_1-1), p_2^{\alpha_2+1}-1=2p(p_2-1),$$

then

$$p_1^{\alpha_1+1}p_2^{\alpha_2+1} - p_1^{\alpha_1+1} - p_2^{\alpha_2+1} + 1 = 2p^2(p_1-1)(p_2-1),$$

thus

$$\sigma(n) = p^{2} + p + 1 = p_{1}^{\alpha_{1}+1} p_{2}^{\alpha_{2}+1}$$

and

$$p_1 p_2 (p^2 + p + 1) = 2 p^2 (p_1 - 1) (p_2 - 1) + p_1^{\alpha_1 + 1} + p_2^{\alpha_2 + 1} - 1$$

or

$$p_1 p_2 p(p+1) + p_1 p_2 - 1 = 2 p^2 (p_1 - 1)(p_2 - 1) + (p_1^{\alpha_1 + 1} - 1) + (p_2^{\alpha_2 + 1} - 1) = 2 p^2 (p_1 - 1)(p_2 - 1) + p(p_1 - 1) + 2 p(p_2 - 1)$$

accordingly p divides $p_1p_2 - 1$, thus $p_1p_2 > p + 1$ and

$$p_1^2 p_2^2 \ge (p+1)^2 > p^2 + p + 1 = p_1^{\alpha_1} p_2^{\alpha_2}.$$

Hence:

$$\Pi_1) \text{ If } \alpha_1 = 1 \text{ and } n = 2p^2,$$

then

$$\sigma(n) = p^2 + p + 1 = p_1 p_2^{\alpha_2}$$
 and $\frac{p_1^2 - 1}{p_1 - 1} = p$, and $\frac{p_2^{\alpha_2 + 1} - 1}{p_2 - 1} = 2p$,

thus $p_1 + 1 = p$ which is a contradiction.

 Π_2) If $\alpha_2 = 1$ and $n = 2p^2$,

then

$$\sigma(n) = p^{2} + p + 1 = p_{1}^{\alpha_{1}} p_{2} \text{ and } \frac{p_{1}^{\alpha_{1}+1} - 1}{p_{1} - 1} = p, \text{ and}$$
$$\frac{p_{2}^{2} - 1}{p_{2} - 1} = 2p,$$

thus

$$p_2 + 1 = 2p$$
, $p_2 = 2p - 1$

and

$$\sigma(n) = p^{2} + p + 1 = p_{1}^{\alpha_{1}}(2p+1),$$

from where

$$4\sigma(n) = (2p-1)(2p+3) + 7 = 4p_1^{\alpha_1}(2p-1)$$

accordingly 7 is divisible by 2p-1 and thus p is divisible by 4 which is a contradiction.

Reference:

[1] Suryanarayama – Elemente der Mathematik – 1969.

[Published in "Octogon", Braşov, Vol. 5, No. 2, 53-4, October 1997.]