Florentin Smarandache

University of New Mexico, USA

Vic Christianto

SciPrint.org administrator

n-ARY FUZZY LOGIC AND NEUTROSOPHIC LOGIC OPERATORS

Abstract

We extend Knuth's 16 Boolean binary logic operators to fuzzy logic and neutrosophic logic binary operators. Then we generalize them to n-ary fuzzy logic and neutrosophic logic operators using the smarandache codification of the Venn diagram and a defined vector neutrosophic law. In such way, new operators in neutrosophic logic/set/probability are built.

Keywords: binary/trinary/n-ary fuzzy logic operators, T-norm, T-conorm, binary/trinary/n-ary neutrosophic logic operators, N-norm, N-conorm

Introduction

For the beginning let's consider the Venn Diagram of two variables x and y, for each possible operator, as in Knuth's table, but we adjust this table to the Fuzzy Logic (FL).

Let's denote the fuzzy logic values of these variables as

$$
F L(x)=\left(t_{1}, f_{1}\right)
$$

where
$t_{1}=$ truth value of variable x,
$f_{1}=$ falsehood value of variable x,
with $0 \leq t_{1}, f_{1} \leq 1$ and $t_{1}+f_{1}=1$;
and similarly for y :

$$
F L(y)=\left(t_{2}, f_{2}\right)
$$

with the same $0 \leq t_{2}, f_{2} \leq 1$ and $t_{2}+f_{2}=1$.
We can define all 16 Fuzzy Logical Operators with respect to two $F L$ operators: $F L$ conjunction $(F L C)$ and $F L$ negation ($F L N$).

Since in $F L$ the falsehood value is equal to 1-truth value, we can deal with only one component: the truth value.

The Venn Diagram for two sets X and Y

has $2^{2}=4$ disjoint parts:
$0=$ the part that does not belong to any set (the complement or negation)
$1=$ the part that belongs to $1^{\text {st }}$ set only;
$2=$ the part that belongs to $2^{\text {nd }}$ set only;
$12=$ the part that belongs to $1^{\text {st }}$ and $2^{\text {nd }}$ set only;
\{called Smarandache's codification [1]\}.
Shading none, one, two, three, or four parts in all possible combinations will make $2^{4}=2^{2^{2}}=16$ possible binary operators.

We can start using a T - norm and the negation operator.
Let's take the binary conjunction or intersection (which is a T - norm) denoted as $c_{F}(x, y)$:

$$
c_{F}:([0,1] \times[0,1])^{2} \rightarrow[0,1] \times[0,1]
$$

and unary negation operator denoted as $n_{F}(x)$, with:

$$
n_{F}:[0,1] \times[0,1] \rightarrow[0,1] \times[0,1]
$$

The fuzzy logic value of each part is:
$P 12=$ part $12=$ intersection of x and y; so $F L(P 12)=c_{F}(x, y)$.
$P 1=$ part $1=$ intersection of x and negation of $y ; F L(P 1)=c_{F}\left(x, n_{F}(y)\right)$.
$P 2=$ part $2=$ intersection of negation of x and $y ; F L(P 2)=c_{F}\left(n_{F}(x), y\right)$.
$P 0=$ part $0=$ intersection of negation of x and the negation of y;
$F L(P 0)=c_{F}\left(n_{F}(x), n_{F}(y)\right)$.
and for normalization we set the condition:

$$
c_{F}(x, y)+c_{F}\left(\left(n_{F}(x), y\right)+c_{F}\left(x, n_{F}(y)\right)+c_{F}\left(n_{F}(x), n_{F}(y)\right)=(1,0) .\right.
$$

Then consider a binary T - conorm (disjunction or union), denoted by $d_{F}(x, y)$:

$$
\begin{gathered}
d_{F}:([0,1] \times[0,1])^{2} \rightarrow[0,1] \times[0,1] \\
d_{F}(x, y)=\left(t_{1}+t_{2}, f_{1}+f_{2}-1\right)
\end{gathered}
$$

if x and y are disjoint and $t_{1}+t_{2} \leq 1$.
This fuzzy disjunction operator of disjoint variables allows us to add the fuzzy truth-values of disjoint parts of a shaded area in the below table. When the truth-value increases, the false value decreases. More general, $d_{F}^{k}\left(x_{1}, x_{2}, \ldots, x_{k}\right)$, as a k-ary disjunction (or union), for $K \geq 2$, is defined as:

$$
\begin{aligned}
d_{F}^{k} & :([0,1] \times[0,1])^{k} \rightarrow[0,1] \times[0,1] \\
d_{F}^{k}\left(x_{1}, x_{2}, \ldots, x_{k}\right) & =\left(t_{1}+t_{2}+\ldots+t_{k}, f_{1}+f_{2}+\ldots+f_{k}-k-1\right)
\end{aligned}
$$

if all x_{i} are disjoint two by two and $t_{1}+t_{2}+\ldots+t_{k} \leq 1$.
As a particular case let's take as a binary fuzzy conjunction:

$$
c_{F}(x, y)=\left(t_{1} t_{2}, f_{1}+f_{2}-f_{1} f_{2}\right)
$$

and as unary fuzzy negation:

$$
n_{F}(x)=\left(1-t_{1}, 1-f_{1}\right)=\left(f_{1}, t_{1}\right),
$$

where

$$
\begin{aligned}
& F L(x)=\left(t_{1}, f_{1}\right), \text { with } t_{1}+f_{1}=1, \text { and } 0 \leq t_{1}, f_{1} \leq 1 ; \\
& F L(y)=\left(t_{2}, f_{2}\right), \text { with } t_{2}+f_{2}=1, \text { and } 0 \leq t_{2}, f_{2} \leq 1 ;
\end{aligned}
$$

Florentin Smarandache, Vic Christianto
whence:

$$
\begin{aligned}
& F L(P 12)=\left(t_{1} t_{2}, f_{1}+f_{2}-f_{1} f_{2}\right) \\
& F L(P 1)=\left(t_{1} f_{2}, f_{1}+t_{2}-f_{1} t_{2}\right) \\
& F L(P 2)=\left(f_{1} t_{2}, t_{1}+f_{2}-t_{1} f_{2}\right) \\
& F L(P 0)=\left(f_{1} f_{2}, t_{1}+t_{2}-t_{1} t_{2}\right)
\end{aligned}
$$

The Venn Diagram for $n=2$ and considering only the truth values, becomes:

since

$$
\begin{aligned}
& t_{1} f_{2}=t_{1}\left(1-t_{2}\right)=t_{1}-t_{1} t_{2} \\
& f_{1} t_{2}=\left(1-t_{1}\right) t_{2}=t_{2}-t_{1} t_{2} \\
& f_{1} f_{2}=\left(1-t_{1}\right)\left(1-t_{2}\right)=1-t_{1}-t_{2}+t_{1} t_{2}
\end{aligned}
$$

We now use:
$d_{F}^{k}(P 12, P 1, P 2, P 0)=\left(\left(t_{1} t_{2}\right)+\left(t_{1}-t_{1} t_{2}\right)+\left(t_{2}-t_{1} t_{2}\right)+\left(1-t_{1}-t_{2}+t_{1} t_{2}\right)\right.$,
$\left.\left(f_{1}+f_{2}-f_{1} f_{2}\right)+\left(f_{1}+t_{2}-f_{1} t_{2}\right)+\left(t_{1}+f_{2}-t_{1} f_{2}\right)+\left(t_{1}+t_{2}-t_{1} t_{2}\right)-3\right)=(1,0)$.
So, the whole fuzzy space is normalized under $F L(\cdot)$.
For the neurosophic logic, we consider

$$
\begin{aligned}
& N L(x)=\left(T_{1}, I_{1}, F_{1}\right), \text { with } 0 \leq T_{1}, I_{1}, F_{1} \leq 1 ; \\
& N L(y)=\left(T_{2}, I_{2}, F_{2}\right), \text { with } 0 \leq T_{2}, I_{2}, F_{2} \leq 1 ;
\end{aligned}
$$

if the sum of components is 1 as in Atanassov's intuitionist fuzzy logic, i.e. $T_{i}+I_{i}+F_{i}=1$, they are considered normalized; otherwise non-normalized,
i.e. the sum of the components is <1 (sub-normalized) or >1 (over-normalized).

We define a binary neutrosophic conjunction (intersection) operator, which is a particular case of an N-norm (neutrosophic norm, a generalization of the fuzzy t-norm):

$$
\begin{gathered}
c_{N}:([0,1] \times[0,1] \times[0,1])^{2} \rightarrow[0,1] \times[0,1] \times[0,1] \\
c_{N}(x, y)=\left(T_{1} T_{2}, I_{1} I_{2}+I_{1} T_{2}+T_{1} I_{2}, F_{1} F_{2}+F_{1} I_{2}+F_{1} T_{2}+F_{2} T_{1}+F_{2} I_{1}\right) .
\end{gathered}
$$

The neutrosophic conjunction (intersection) operator $x \wedge_{N} y$ component truth, indeterminacy, and falsehood values result from the multiplication

$$
\left(T_{1}+I_{1}+F_{1}\right) \cdot\left(T_{2}+I_{2}+F_{2}\right)
$$

since we consider in a prudent way $T \prec I \prec F$, where " \prec " means "weaker", i.e. the products $T_{i} I_{j}$ will go to $I, T_{i} F_{j}$ will go to F, and $I_{i} F_{j}$ will go to F (or reciprocally we can say that F prevails in front of I and of T,

So, the truth value is $T_{1} T_{2}$, the indeterminacy value is $I_{1} I_{2}+I_{1} T_{2}+T_{1} I_{2}$ and the false value is $F_{1} F_{2}+F_{1} I_{2}+F_{1} T_{2}+F_{2} T_{1}+F_{2} I_{1}$. The norm of $x \wedge_{N} y$ is $\left(T_{1}+I_{1}+F_{1}\right) \cdot\left(T_{2}+I_{2}+F_{2}\right)$. Thus, if x and y are normalized, then $x \wedge_{N} y$ is also normalized. Of course, the reader can redefine the neutrosophic conjunction operator, depending on application, in a different way, for example in a more optimistic way, i.e. $I \prec T \prec F$ or T prevails with respect to I, then we get:

$$
c_{N}^{I T F}(x, y)=\left(T_{1} T_{2}+T_{1} I_{2}+T_{2} I_{1}, I_{1} I_{2}, F_{1} F_{2}+F_{1} I_{2}+F_{1} T_{2}+F_{2} T_{1}+F_{2} I_{1}\right) .
$$

Or, the reader can consider the order $T \prec F \prec I$, etc.

Let's also define the unary neutrosophic negation operator:

$$
\begin{aligned}
n_{N}:[0,1] \times[0,1] \times[0,1] & \rightarrow[0,1] \times[0,1] \times[0,1] \\
n_{N}(T, I, F) & =(F, I, T)
\end{aligned}
$$

by interchanging the truth T and falsehood F vector components. Then:

$$
\begin{aligned}
& N L(P 12)=\left(T_{1} T_{2}, I_{1} I_{2}+I_{1} T_{2}+I_{2} T_{1}, F_{1} F_{2}+F_{1} I_{2}+F_{1} T_{2}+F_{2} T_{1}+F_{2} I_{1}\right) \\
& N L(P 1)=\left(T_{1} F_{2}, I_{1} I_{2}+I_{1} F_{2}+I_{2} T_{1}, F_{1} T_{2}+F_{1} I_{2}+F_{1} F_{2}+T_{2} T_{1}+T_{2} I_{1}\right) \\
& N L(P 2)=\left(F_{1} T_{2}, I_{1} I_{2}+I_{1} T_{2}+I_{2} F_{1}, T_{1} F_{2}+T_{1} I_{2}+T_{1} T_{2}+F_{2} F_{1}+F_{2} I_{1}\right) \\
& N L(P 0)=\left(F_{1} F_{2}, I_{1} I_{2}+I_{1} F_{2}+I_{2} F_{1}, T_{1} T_{2}+T_{1} I_{2}+T_{1} F_{2}+T_{2} F_{1}+T_{2} I_{1}\right)
\end{aligned}
$$

Similarly as in our above fuzzy logic work, we now define a binary $N-$ conorm (disjunction or union), i.e. neutrosophic conform.

$$
\begin{gathered}
d_{N}:([0,1] \times[0,1] \times[0,1])^{2} \rightarrow[0,1] \times[0,1] \times[0,1] \\
d_{N}(x, y)=\left(T_{1}+T_{2},\left(I_{1}+I_{2}\right) \cdot \frac{\tau-T_{1}-T_{2}}{I_{1}+I_{2}+F_{1}+F_{2}},\left(F_{1}+F_{2}\right) \cdot \frac{\tau-T_{1}-T_{2}}{I_{1}+I_{2}+F_{1}+F_{2}}\right)
\end{gathered}
$$

if x and y are disjoint, and $T_{1}+T_{2} \leq 1$ where τ is the neutrosophic norm of $x \vee_{N} y$, i.e.

$$
\tau=\left(T_{1}+I_{1}+F_{1}\right) \cdot\left(T_{2}+I_{2}+F_{2}\right)
$$

We consider as neutrosophic norm of x, where $N L(x)=T_{1}+I_{1}+F_{1}$, the sum of its components: $T_{1}+I_{1}+F_{1}$, which in many cases is 1 , but can also be positive <1 or >1.

When the truth value increases $\left(T_{1}+T_{2}\right)$ is the above definition, the indeterminacy and falsehood values decrease proportionally with respect to their sums $I_{1}+I_{2}$ and respectively $F_{1}+F_{2}$.

This neutrosophic disjunction operator of disjoint variables allows us to add neutrosophic truth values of disjoint parts of a shaded area in a Venn Diagram.

Now, we complete Donald E. Knuth's Table of the Sixteen Logical Operators on two variables with Fuzzy Logical operators on two variables with Fuzzy Logic truth values, and Neutrosophic Logic truth/indeterminacy/false values (for the case $T \prec I \prec F$).

Table 1

Fuzzy Logic Truth Values	Venn Diagram	Notations	Operator symbol	Name(s)
0	Q	0	\perp	Contradiction, falsehood; constant 0
$t_{1} t_{2}$		$x y, x \wedge y, x \& y$	\wedge	Conjunction; and
$t_{1}-t_{1} t_{2}$	0	$x \wedge \bar{y}, x \not \supset y,[x>y], x-y$	$\bar{\top}$	Nonimplication; difference, but not
t_{1}	\bigcirc	x	L	Left projection
$t_{2}-t_{1} t_{2}$		$\bar{x} \wedge y, x \not \subset y,[x<y], y-x$	$\bar{\sim}$	Converse nonimplication; not...but
t_{2}		y	R	Right projection
$t_{1}+t_{2}-2 t_{1} t_{2}$		$x \oplus y, x \neq y, x^{\wedge} y$	\oplus	Exclusive disjunction; nonequivalence; "xor"
$t_{1}+t_{2}-t_{1} t_{2}$		$x \vee y, x \mid y$	\checkmark	(Inclusive) disjunction; or; and/or
$1-t_{1}-t_{2}+t_{1} t_{2}$		$\bar{x} \wedge \bar{y}, \overline{x \vee y}, x \bar{\nabla} y, x \uparrow y$	V	Nondisjunction, joint denial, neither...nor
$1-t_{1}-t_{2}+2 t_{1} t_{2}$		$x \equiv y, x \leftrightarrow y, x \Leftrightarrow y$	三	Equivalence; if and only if
$1-t_{2}$		$\bar{y}, \neg y,!y, \sim y$	\bar{R}	Right complementation
$1-t_{2}+t_{1} t_{2}$		$x \vee \bar{y}, x \subset y, x \Leftarrow y,[x \geq y], x^{y}$	c	Converse implication if
$1-t_{1}$		$\bar{x}, \neg x,!x, \sim x$	\bar{L}	Left complementation
$1-t_{1}+t_{1} t_{2}$		$\bar{x} \vee y, x \supset y, x \Rightarrow y,[x \leq y], y^{x}$	\supset	Implication; only if; if..then
$1-t_{1} t_{2}$		$\bar{x} \vee \bar{y}, \overline{x \wedge y}, x \wedge y, x \mid y$	π	Nonconjunction, not both...and; "nand"
1	0	1	T	Affirmation; validity; tautology; constant 1

Florentin Smarandache, Vic Christianto
Table 2

Venn Diagram	Neutrosophic Logic Values
	$(0,0,1)$
	$\left(T_{1} T_{2}, I_{1} I_{2}+I T, F_{1} F_{2}+F I+F T\right)$, where $I T=I_{1} T_{2}+I_{2} T_{1}$ similarly $F I, F T$
	$(T_{1} F_{2}, \underbrace{I_{1} I_{2}+I T_{\bar{y}}}_{I_{P 1}}, \underbrace{F_{\bar{y}} F_{\bar{y}}+F_{\bar{y}} I+F_{\bar{y}} T}_{F_{P 2}})$
	$\left(T_{1}, I_{1}, F_{1}\right)$
	$(F_{1} T_{2}, \underbrace{I_{1} I_{2}+I T_{\bar{x}}}_{I_{P 2}}, \underbrace{F_{\bar{x}} F_{\bar{x}}+F_{\bar{x}} I+F_{\bar{x}} T}_{F_{P 2}})$
	$\left(T_{2}, I_{2}, F_{2}\right)$
0	$\left(T F,\left(I_{P 1}+I_{P 2}\right) \cdot \frac{\tau-T F}{I_{P 1}+I_{P 2}+F_{P 1}+F_{P 2}},\left(F_{P 1}+F_{P 2}\right) \cdot \frac{\tau-T F}{I_{P 1}+I_{P 2}+F_{P 1}+F_{P 2}}\right)$ where $\tau=\left(T_{1}+I_{1}+F_{1}\right) \cdot\left(T_{2}+I_{2}+F_{2}\right)$ which is the neutrosophic norm
I	$\left(T_{1} T_{2}+T I+T F, I_{1} I_{2}+I F, F_{1} F_{2}\right)$
γ	$\left(F_{1} F_{2}, I_{1} I_{2}+I F, T_{1} T_{2}+T I+T F\right)$
	$\left(\left(F_{P 1}+F_{P 2}\right) \cdot \frac{\tau-T F}{I_{P 1}+I_{P 2}+F_{P 1}+F_{P 2}},\left(I_{P 1}+I_{P 2}\right) \cdot \frac{\tau-T F}{I_{P 1}+I_{P 2}+F_{P 1}+F_{P 2}}, T F\right)$
	$\left(F_{2}, I_{2}, T_{2}\right)$
	$\left(F_{\bar{x}} F_{\bar{x}}+F_{\bar{x}} I+F_{\bar{x}} T, I_{1} I_{2}+I T_{\bar{x}}, F_{1} T_{2}\right)$
θ	$\left(F_{1}, I_{1}, T_{1}\right)$
\bigcirc	$\left(F_{\bar{y}} F_{\bar{y}}+F_{\bar{y}} I+F_{\bar{y}} T, I_{1} I_{2}+I T_{\bar{y}}, T_{1} F_{2}\right)$
	$\left(F_{1} F_{2}+F I+F T, I_{1} I_{2}+I T, T_{1} T_{2}\right)$
0	$(1,0,0)$

These 16 neutrosophic binary operators are approximated, since the binary N-conorm gives an approximation because of 'indeterminacy' component.

Tri-nary Fuzzy Logic and Neutrosophic Logic Operators

In a more general way, for $k \geq 2$:

$$
\begin{gathered}
d_{N}^{k}:([0,1] \times[0,1] \times[0,1])^{k} \rightarrow[0,1] \times[0,1] \times[0,1], \\
d_{N}^{k}\left(x_{1}, x_{2}, \ldots, x_{k}\right)=\left(\sum_{i=1}^{k} T_{i},\left(\sum_{i=1}^{k} I_{i}\right) \cdot \frac{\tau_{k}-\sum_{i=1}^{k} T_{i}}{\sum_{i=1}^{k}\left(I_{i}+F_{i}\right)},\left(\sum_{i=1}^{k} F_{i}\right) \cdot \frac{\tau_{k}-\sum_{i=1}^{k} T_{i}}{\sum_{i=1}^{k}\left(I_{i}+F_{i}\right)}\right)
\end{gathered}
$$

if all x_{i} are disjoint two by two, and $\sum_{i=1}^{k} T_{i} \leq 1$.
We can extend Knuth's Table from binary operators to tri-nary operators (and we get $2^{2^{3}}=256$ tri-nary operators) and in general to n -ary operators (and we get $2^{2^{n}} n$-ary operators).

Let's present the tri-nary Venn Diagram, with 3 variables x, y, z

using the name Smarandache codification.
This has $2^{3}=8$ disjoint parts, and if we shade none, one, two, ..., or eight of them and consider all possible combinations we get $2^{8}=256$ tri-nary operators in the above tri-nary Venn Diagram.

Florentin Smarandache, Vic Christianto
For $n=3$ we have:

$$
\begin{aligned}
& P 123=c_{F}(x, y, z) \\
& P 12=c_{F}\left(x, y, n_{F}(z)\right) \\
& P 13=c_{F}\left(x, n_{F}(y), z\right) \\
& P 23=c_{F}\left(n_{F}(x), y, z\right) \\
& P 1=c_{F}\left(x, n_{F}(y), n_{F}(z)\right) \\
& P 2=c_{F}\left(n_{F}(x), y, n_{F}(z)\right) \\
& P 3=c_{F}\left(n_{F}(x), n_{F}(y), z\right) \\
& P 0=c_{F}\left(n_{F}(x), n_{F}(y), n_{F}(z)\right)
\end{aligned}
$$

Let

$$
\begin{array}{lll}
F L(x)=\left(t_{1}, f_{1}\right), & \text { with } t_{1}+f_{1}=1, & 0 \leq t_{1}, \\
f_{1} \leq 1, \\
F L(y)=\left(t_{2}, f_{2}\right), & \text { with } t_{2}+f_{2}=1, & 0 \leq t_{2}, \\
f_{2} \leq 1, \\
F L(u)=\left(t_{3}, f_{3}\right), & \text { with } t_{3}+f_{3}=1, & 0 \leq t_{3},
\end{array} f_{3} \leq 1, ~ \$
$$

We consider the particular case defined by tri-nary conjunction fuzzy operator:

$$
\begin{gathered}
c_{F}:([0,1] \times[0,1])^{3} \rightarrow[0,1] \times[0,1] \\
c_{F}(x, y, z)=\left(t_{1} t_{2} t_{3}, f_{1}+f_{2}+f_{3}-f_{1} f_{2}-f_{2} f_{3}-f_{3} f_{1}+f_{1} f_{2} f_{3}\right)
\end{gathered}
$$

because

$$
\begin{aligned}
\left(\left(t_{1}, f_{1}\right) \wedge_{F}\left(t_{2}, f_{2}\right)\right) & \wedge_{F}\left(t_{3}, f_{3}\right)=\left(t_{1} t_{2}, f_{1}+f_{2}-f_{1} f_{2}\right) \wedge_{F}\left(t_{3}, f_{3}\right)= \\
& =\left(t_{1} t_{2} t_{3}, f_{1}+f_{2}+f_{3}-f_{1} f_{2}-f_{2} f_{3}-f_{3} f_{1}+f_{1} f_{2} f_{3}\right)
\end{aligned}
$$

and the unary negation operator:

$$
\begin{aligned}
& n_{F}:([0,1] \times[0,1]) \rightarrow[0,1] \times[0,1] \\
& n_{F}(x)=\left(1-t_{1}, 1-f_{1}\right)=\left(f_{1}, t_{1}\right) .
\end{aligned}
$$

We define the function:

$$
\begin{gathered}
L_{1}:[0,1] \times[0,1] \times[0,1] \rightarrow[0,1] \\
L_{1}(\alpha, \beta, \gamma)=\alpha \cdot \beta \cdot \gamma
\end{gathered}
$$

and the function

$$
\begin{gathered}
L_{2}:[0,1] \times[0,1] \times[0,1] \rightarrow[0,1] \\
L_{2}(\alpha, \beta, \gamma)=\alpha+\beta+\gamma-\alpha \beta-\beta \gamma-\gamma \alpha+\alpha \beta \gamma
\end{gathered}
$$

then:

$$
\begin{aligned}
F L(P 123) & =\left(L_{1}\left(t_{1}, t_{2}, t_{3}\right), L_{2}\left(f_{1}, f_{2}, f_{3}\right)\right) \\
F L(P 12) & =\left(L_{1}\left(t_{1}, t_{2}, f_{3}\right), L_{2}\left(f_{1}, f_{2}, t_{3}\right)\right) \\
F L(P 13) & =\left(L_{1}\left(t_{1}, f_{2}, t_{3}\right), L_{2}\left(f_{1}, t_{2}, f_{3}\right)\right) \\
F L(P 23) & =\left(L_{1}\left(f_{1}, t_{2}, t_{3}\right), L_{2}\left(t_{1}, f_{2}, f_{3}\right)\right) \\
F L(P 1) & =\left(L_{1}\left(t_{1}, f_{2}, f_{3}\right), L_{2}\left(f_{1}, t_{2}, t_{3}\right)\right) \\
F L(P 2) & =\left(L_{1}\left(f_{1}, t_{2}, f_{3}\right), L_{2}\left(t_{1}, f_{2}, t_{3}\right)\right) \\
F L(P 3) & =\left(L_{1}\left(f_{1}, f_{2}, t_{3}\right), L_{2}\left(t_{1}, t_{2}, f_{3}\right)\right) \\
F L(P 0) & =\left(L_{1}\left(f_{1}, f_{2}, f_{3}\right), L_{2}\left(t_{1}, t_{2}, t_{3}\right)\right)
\end{aligned}
$$

We thus get the fuzzy truth-values as follows:

$$
\begin{aligned}
F L_{t}(P 123)= & t_{1} t_{2} t_{3} \\
F L_{t}(P 12)= & t_{1} t_{2}\left(1-t_{3}\right)=t_{1} t_{2}-t_{1} t_{2} t_{3} \\
F L_{t}(P 13)= & t_{1}\left(1-t_{2}\right) t_{3}=t_{1} t_{3}-t_{1} t_{2} t_{3} \\
F L_{t}(P 23)= & \left(1-t_{1}\right) t_{2} t_{3}=t_{2} t_{3}-t_{1} t_{2} t_{3} \\
F L_{t}(P 1)= & t_{1}\left(1-t_{2}\right)\left(1-t_{3}\right)=t_{1}-t_{1} t_{2}-t_{1} t_{3}+t_{1} t_{2} t_{3} \\
F L_{t}(P 2)= & \left(1-t_{1}\right) t_{2}\left(1-t_{3}\right)=t_{2}-t_{1} t_{2}-t_{2} t_{3}+t_{1} t_{2} t_{3} \\
F L_{t}(P 3)= & \left(1-t_{1}\right)\left(1-t_{2}\right) t_{3}=t_{3}-t_{1} t_{3}-t_{2} t_{3}+t_{1} t_{2} t_{3} \\
F L_{t}(P 0)= & \left(1-t_{1}\right)\left(1-t_{2}\right)\left(1-t_{3}\right)=1-t_{1}-t_{2}-t_{3}+t_{1} t_{2}+t_{1} t_{3}+ \\
& +t_{2} t_{3}-t_{1} t_{2} t_{3} .
\end{aligned}
$$

We, then, consider the same disjunction or union operator $d_{F}(x, y)=t_{1}+t_{2}$, $f_{1}+f_{2}-1$, if x and y are disjoint, and $t_{1}+t_{2} \leq 1$ allowing us to add the fuzzy truth values of each part of a shaded area.

Neutrophic Composition Law

Let's consider $k \geq 2$ neutrophic variables, $x_{i}\left(T_{i}, I_{i}, F_{I}\right)$, for all $i \in\{1$, $2, \ldots, k\}$. Let denote

$$
\begin{aligned}
& T=\left(T_{1}, \ldots, T_{k}\right) \\
& I=\left(I_{1}, \ldots, I_{k}\right) \\
& F=\left(F_{1}, \ldots, F_{k}\right)
\end{aligned}
$$

We now define a neutrosophic composition law o_{N} in the following way:

$$
o_{N}:\{T, I, F\} \rightarrow[0,1]
$$

Florentin Smarandache, Vic Christianto

$$
\begin{aligned}
& \text { If } z \in\{T, I, F\} \quad \text { then } \quad z_{o_{N}} z=\prod_{i=1}^{k} z_{i} . \\
& \text { If } z, w \in\{T, I, F\} \text { then } \\
& z_{o_{N}} w=w_{o_{N}} z=\sum_{\substack{r=1 \\
\left\{i_{1}, \ldots, i_{r}, j_{r+1}, \ldots, j_{k}\right\} \equiv\{1,2, \ldots, k\} \\
\left(i_{1}, \ldots, i_{r}\right) \in C^{k}(1,2, \ldots, k) \\
\left(j_{r+1}, \ldots, j_{k}\right) \in C^{-r}(1,2, \ldots, k)}}^{k-1} z_{i_{1}} \ldots z_{i_{r}} w_{j_{r+1}} \ldots w_{j_{k}}
\end{aligned}
$$

where $C^{r}(1,2, \ldots, k)$ means the set of combinations of the elements $\{1,2, \ldots, k\}$ taken by r. [Similarly for $\left.C^{k-r}(1,2, \ldots, k)\right]$.

In other words, $z_{o_{N}} w$ is the sum of all possible products of the components of vectors z and w, such that each product has at least a z_{i} factor and at least w_{j} factor, and each product has exactly k factors where each factor is a different vector component of z or of w. Similarly if we multiply three vectors:

Let's see an example for $k=3$.

$$
\begin{aligned}
& x_{1}\left(T_{1}, I_{1}, F_{1}\right) \\
& x_{2}\left(T_{2}, I_{2}, F_{2}\right) \\
& x_{3}\left(T_{3}, I_{3}, F_{3}\right) \\
& T_{o_{N}} T=T_{1} T_{2} T_{3}, \quad I_{o_{N}} I=I_{1} I_{2} I_{3}, \quad F_{o_{N}} F=F_{1} F_{2} F_{3} \\
& T_{o_{N}} I=T_{1} I_{2} I_{3}+I_{1} T_{2} I_{3}+I_{1} I_{2} T_{3}+T_{1} T_{2} I_{3}+T_{1} I_{2} T_{3}+I_{1} T_{2} T_{3} \\
& T_{o_{N}} F=T_{1} F_{2} F_{3}+F_{1} T_{2} F_{3}+F_{1} F_{2} T_{3}+T_{1} T_{2} F_{3}+T_{1} F_{2} T_{3}+F_{1} T_{2} T_{3} \\
& I_{o_{N}} F=I_{1} F_{2} F_{3}+F_{1} I_{2} F_{3}+F_{1} F_{2} I_{3}+I_{1} I_{2} F_{3}+I_{1} F_{2} I_{3}+F_{1} I_{2} I_{3} \\
& T_{o_{n}} I_{o_{N}} F=T_{1} I_{2} F_{3}+T_{1} F_{2} I_{3}+I_{1} T_{2} F_{3}+I_{1} F_{2} T_{3}+F_{1} I_{2} T_{3}+F_{1} T_{2} I_{3}
\end{aligned}
$$

For the case when indeterminacy I is not decomposed in subcomponents \{as for example $I=P \cup U$ where $P=$ paradox (true and false simultaneously) and $U=$ uncertainty (true or false, not sure which one) $\}$, the previous formulas can be easily written using only three components as:

$$
T_{o_{N}} I_{o_{N}} F=\sum_{i, j, r \in \mathcal{P}(1,2,3)} T_{i} I_{j} F_{r}
$$

where $\mathcal{P}(1,2,3)$ means the set of permutations of $(1,2,3)$ i.e.

$$
\begin{gathered}
\{(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1)\} \\
z_{o_{N}} w=\sum_{\substack{i=1 \\
(i, j)=(1,2,3) \\
(j, r) \in \mathcal{P}^{2}(1,2,3)}}^{3} z_{i} w_{j} w_{j_{r}}+w_{i} z_{j} z_{r}
\end{gathered}
$$

This neurotrophic law is associative and commutative.

Neutrophic Logic Operators

Let's consider the neutrophic logic cricy values of variables x, y, z (so, for $n=3$)

$$
\begin{aligned}
& N L(x)=\left(T_{1}, I_{1}, F_{1}\right) \text { with } 0 \leq T_{1}, I_{1}, F_{1} \leq 1 \\
& N L(y)=\left(T_{2}, I_{2}, F_{2}\right) \text { with } 0 \leq T_{2}, I_{2}, F_{2} \leq 1 \\
& N L(z)=\left(T_{3}, I_{3}, F_{3}\right) \text { with } 0 \leq T_{3}, I_{3}, F_{3} \leq 1
\end{aligned}
$$

In neutrosophic logic it is not necessary to have the sum of components equals to 1 , as in intuitionist fuzzy logic, i.e. $T_{k}+I_{k}+F_{k}$ is not necessary 1 , for $1 \leq k \leq 3$.

As a particular case, we define the tri-nary conjunction neutrosophic operator:

$$
\begin{gathered}
c_{N}:([0,1] \times[0,1] \times[0,1])^{3} \rightarrow[0,1] \times[0,1] \times[0,1] \\
c_{N}(x, y)=\left(T_{o_{N}} T, I_{o_{N}} I+I_{o_{N}} T, F_{o_{N}} F+F_{o_{N}} I+F_{o_{N}} T\right)
\end{gathered}
$$

If x or y are normalized, then $c_{N}(x, y)$ is also normalized.
If x or y are non-normalized then $\left|c_{N}(x, y)\right|=|x| \cdot|y|$ where $|\cdot|$ means norm.
c_{N} is an N -norm (neutrosophic norm, i.e. generalization of the fuzzy t-norm).

Again, as a particular case, we define the unary negation neutrosophic operator:

$$
\begin{gathered}
n_{N}:[0,1] \times[0,1] \times[0,1] \rightarrow[0,1] \times[0,1] \times[0,1] \\
n_{N}(x)=n_{N}\left(T_{1}, I_{1}, F_{1}\right)=\left(F_{1}, I_{1}, T_{1}\right)
\end{gathered}
$$

We take the same Venn Diagram for $n=3$.

Florentin Smarandache, Vic Christianto
So,

$$
\begin{aligned}
& N L(x)=\left(T_{1}, I_{1}, F_{1}\right) \\
& N L(y)=\left(T_{2}, I_{2}, F_{2}\right) \\
& N L(z)=\left(T_{3}, I_{3}, F_{2}\right) .
\end{aligned}
$$

Vectors

$$
T=\left(\begin{array}{l}
T_{1} \\
T_{2} \\
T_{3}
\end{array}\right), \quad I=\left(\begin{array}{l}
I_{1} \\
I_{2} \\
I_{3}
\end{array}\right) \quad \text { and } F=\left(\begin{array}{c}
F_{1} \\
F_{2} \\
F_{3}
\end{array}\right) .
$$

We note

$$
T_{\bar{x}}=\left(\begin{array}{l}
F_{1} \\
T_{2} \\
T_{3}
\end{array}\right), \quad T_{\bar{y}}=\left(\begin{array}{c}
T_{1} \\
F_{2} \\
T_{3}
\end{array}\right), \quad T_{\bar{z}}=\left(\begin{array}{l}
T_{1} \\
T_{2} \\
F_{3}
\end{array}\right), \quad T_{\overline{x y}}=\left(\begin{array}{c}
F_{1} \\
F_{2} \\
T_{3}
\end{array}\right), \quad \text { etc. }
$$

and similarly

$$
F_{\bar{x}}=\left(\begin{array}{l}
T_{1} \\
F_{2} \\
F_{3}
\end{array}\right), \quad F_{\bar{y}}=\left(\begin{array}{l}
F_{1} \\
T_{2} \\
F_{3}
\end{array}\right), \quad F_{\overline{x z}}=\left(\begin{array}{l}
T_{1} \\
F_{2} \\
T_{3}
\end{array}\right), \quad \text { etc. }
$$

For shorter and easier notations let's denote $z_{o_{N}} w=z w$ and respectively $z_{o_{N}} w_{o_{N}} v=z w v$ for the vector neutrosophic law defined previously. Then

$$
\begin{aligned}
& N L(P 123)=c_{N}(x, y)=(T T, I I+I T, F F+F I+F T+F I T)= \\
& =\left(T_{1} T_{2} T_{3}, I_{1} I_{2} I_{3}+I_{1} I_{2} T_{3}+I_{1} T_{2} I_{3}+T_{1} I_{2} I_{3}+I_{1} T_{2} T_{3}+T_{1} I_{2} T_{3}+T_{1} T_{2} I_{3},\right. \\
& F_{1} F_{2} F_{3}+F_{1} F_{2} I_{3}+F_{1} I_{2} F_{3}+I_{1} F_{2} F_{3}+F_{1} I_{2} I_{3}+I_{1} F_{2} I_{3}+I_{1} I_{2} F_{3}+ \\
& +F_{1} F_{2} T_{3}+F_{1} T_{2} F_{3}+T_{1} F_{2} F_{3}+F_{1} T_{2} T_{3}+T_{1} F_{2} T_{3}+T_{1} T_{2} F_{3}+ \\
& \left.+T_{1} I_{2} F_{3}+T_{1} F_{2} I_{3}+I_{1} F_{2} T_{3}+I_{1} T_{2} F_{3}+F_{1} I_{2} T_{3}+F_{1} T_{2} I_{3}\right) \\
& N L(P 12)=c_{N}\left(x, y, n_{N}(z)\right)= \\
& =\left(T_{\bar{z}} T_{\bar{z}}, I I+I T_{\bar{z}}, F_{\bar{z}} F_{\bar{z}}+F_{\bar{z}} I+F_{\bar{z}} T_{\bar{z}}+F_{\bar{z}} I T_{\bar{z}}\right) \\
& N L(P 13)=c_{N}\left(x, n_{N}(y), z\right)= \\
& =\left(T_{\bar{y}} T_{\bar{y}}, I I+I T_{\bar{y}}, F_{\bar{y}} F_{\bar{y}}+F_{\bar{y}} I+F_{\bar{y}} T_{\bar{y}}+F_{\bar{y}} I T_{\bar{y}}\right) \\
& N L(P 23)=c_{N}\left(n_{N}(x), y, z\right)= \\
& =\left(T_{\bar{x}} T_{\bar{x}}, I I+I T_{\bar{x}}, F_{\bar{x}} F_{\bar{x}}+F_{\bar{x}} I+F_{\bar{x}} T_{\bar{x}}+F_{\bar{x}} I T_{\bar{x}}\right) \\
& N L(P 1)=c_{N}\left(x, n_{N}(y), n_{N}(z)\right)= \\
& =\left(T_{\overline{y z}} T_{\overline{y z}}, I I+I T_{\overline{y z}}, F_{\overline{y z}} F_{\overline{y z}}+F_{\overline{y z}} I+F_{\overline{y z}} T_{\overline{y z}}+F_{\overline{y z}} I T_{\overline{y z}}\right) \\
& N L(P 2)=c_{N}\left(n_{N}(x), y, n_{N}(z)\right)= \\
& =\left(T_{\overline{x z}} T_{\overline{x z}}, I I+I T_{\overline{x z}}, F_{\overline{x z}} F_{\overline{x z}}+F_{\overline{x z}} I+F_{\overline{x z}} T_{\overline{x z}}+F_{\overline{x z}} I T_{\overline{x z}}\right)
\end{aligned}
$$

$$
\begin{aligned}
N L(P 0)= & c_{N}\left(n_{N}(x), n_{N}(y), n_{N}(z)\right)= \\
= & \left(T_{\overline{x y z}} T_{\overline{x y z}}, I I+I T_{\overline{x y z}}, F_{\overline{x y z}} F_{\overline{x y z}}+F_{\overline{x y z}} I+F_{\overline{x y z}} T_{\overline{x y z}}+\right. \\
& \left.+F_{\overline{x y z}} I T_{\overline{x y z}}\right)=(F F, I I+I F, T T+T I+T F+T I F)
\end{aligned}
$$

n-ary Fuzzy Logic and Neutrosophic Logic Operators

We can generalize for any integer $n \geq 2$.
The Venn Diagram has $2^{2^{n}}$ disjoint parts. Each part has the form $P i_{1} \ldots i_{k} j_{k+1} \ldots j_{n}$, where $0 \leq k \leq n$, and of course $0 \leq n-k \leq n$; $\left\{i_{1}, \ldots, i_{k}\right\}$ is a combination of k elements of the set $\{1,2, \ldots, n\}$, while $\left\{j_{k+1}, \ldots, j_{n}\right\}$ the $n-k$ elements left, i.e. $\left\{j_{k+1}, \ldots, j_{n}\right\}=\{1,2, \ldots, n\} \backslash$ $\backslash\left\{i_{1}, \ldots, i_{k}\right\} .\left\{i_{1}, \ldots, i_{k}\right\}$ are replaced by the corresponding numbers from $\{1,2, \ldots, n\}$, while $\left\{j_{k+1}, \ldots, j_{n}\right\}$ are replaced by blanks.

For example, when $n=3$,

$$
\begin{aligned}
& P i_{1} i_{2} j_{3}=P 13 \quad \text { if } \quad\left\{i_{1}, i_{2}\right\}=\{1,3\}, \\
& P i_{1} j_{2} j_{3}=P 1 \quad \text { if }\left\{i_{1}\right\}=\{1\} .
\end{aligned}
$$

Hence, for fuzzy logic we have:

$$
P i_{1} \ldots i_{k} j_{k+1} \ldots j_{n}=c_{F}\left(x_{i_{1}}, \ldots, x_{i_{k}}, n_{F}\left(x_{j_{k+1}}\right), \ldots, n_{F}\left(x_{j_{n}}\right)\right)
$$

whence

$$
F L\left(P i_{1} \ldots i_{k} j_{k+1} \ldots j_{n}\right)=\left(\left(\prod_{r=1}^{k} t_{i_{r}}\right)\left(\prod_{s=k+1}^{n}\left(1-t_{j_{s}}\right)\right), \varphi\left(f_{1}, f_{2}, \ldots, f_{n}\right)\right)
$$

where $\varphi:[0,1]^{n} \rightarrow[0,1]$,

$$
\varphi\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)=S_{1}-S_{2}+S_{3}+\ldots+(-1)^{n+1} S_{n}=\sum_{l=1}^{n}(-1)^{l+1} S_{i}
$$

where

$$
\begin{aligned}
& S_{1}=\sum_{i=1}^{n} \alpha_{i} \\
& S_{2}=\sum_{1 \leq i<j \leq n} \alpha_{i} \alpha_{j}
\end{aligned}
$$

$$
S_{i}=\sum_{1 \leq i_{1}<i_{2}<\ldots<i_{j} \leq n} \alpha_{i_{1}} \alpha_{i_{2}} \ldots \alpha_{i_{j}}
$$

$$
S_{n}=\alpha_{1} \cdot \alpha_{2} \cdot \ldots \cdot \alpha_{n}
$$

And for neutrosophic logic we have:

$$
P i_{1} \ldots i_{k} j_{k+1} \ldots j_{n}=c_{N}\left(x_{i_{1}}, \ldots, x_{i_{k}}, n_{N}\left(x_{j_{k+1}}\right), \ldots, n_{N}\left(x_{j_{n}}\right)\right),
$$

whence:

$$
N L\left(P i_{1} \ldots i_{k} j_{k+1} \ldots j_{n}\right)=\left(T_{12 \ldots n}, I_{12 \ldots n}, F_{12 \ldots n}\right),
$$

where

$$
\begin{aligned}
T_{12 \ldots n}= & T_{\bar{x}_{j_{k+1}} \ldots \bar{x}_{j_{n}}} T_{\bar{x}_{j_{k+1}} \ldots \bar{x}_{j_{n}}}=\left(\prod_{r=1}^{k} T_{i_{r}}\right) \cdot \prod_{s=k+1}^{n} F_{j_{s}} . \\
I_{12 \ldots n}= & I I+I T_{\bar{x}_{j_{k+1}} \ldots \bar{x}_{j_{n}}} \\
F_{12 \ldots n}= & F_{\bar{x}_{j_{k+1}} \ldots \bar{x}_{j_{n}}} F_{\bar{x}_{j_{k+1}} \ldots \bar{x}_{j_{n}}}+F_{\bar{x}_{j_{k+1}} \ldots \bar{x}_{j_{n}}} I+F_{\bar{x}_{j_{k+1}} \ldots \bar{x}_{j_{n}}} T_{\bar{x}_{j_{k+1}} \ldots \bar{x}_{j_{n}}}+ \\
& +F_{\bar{x}_{j_{k+1}} \ldots \bar{x}_{j_{n}}} I T_{\bar{x}_{j_{k+1}} \ldots \bar{x}_{j_{n}}}
\end{aligned}
$$

Conclusion

A generalization of Knuth's Boolean binary operations is presented in this paper, i.e. we present n-ary Fuzzy Logic Operators and Neutrosophic Logic Operators based on Smarandache's codification of the Venn Diagram and on a defined vector neutrosophic law which helps in calculating fuzzy and neutrosophic operators.

Better neutrosophic operators than in [2] are proposed herein.

References

[1] F. Smarandache \& J. Dezert, Advances and Applications of DSmt for Information Fusion, Am. Res. Press, 2004.
[2] F. Smarandache, A unifying field in logics: Neutrosophic Logic, Neutrosophy, Neutrosophic Set, Neutrosophic Probability and Statistics, 1998, 2001, 2003.
[3] Knuth, Art of Computer Programming, The, Volumes 1-3 Boxed Set (2nd Edition), Addison-Wesley Professional, 1998.
[4] Zadeh, Fuzzy Sets, Information and Control, Vol. 8, 338-353, 1965.
[5] Driankov, Dimiter; Hellendoorn, Hans; and Reinfrank, Michael: An Introduction to Fuzzy Control. Springer, Berlin/Heidelberg, 1993.
[6] Atanassov, K., Stoyanova, D., Remarks on the intuitionistic fuzzy sets. II, Notes on Intuitionistic Fuzzy Sets, Vol. 1, No. 2, 85-86, 1995.

Florentin Smarandache
University of New Mexico
Department of Mathematics and Science
200 College Road
Gallup, NM87301, USA
smarand@unm.edu, fsmarandache@yahoo.com

Vic Christianto
Institute of Gravitation and Cosmology
PFUR, Moscow, 117198
Russia
e-mail: vxianto@yahoo.com

