## Advances and Applications of DSmT for Information Fusion

Dr. Jean Dezert<br>French Aerospace Research Lab 29 Av. de la Division Leclerc 92320 Châtillon, France

jean.dezert@onera.fr

Dr. Florentin Smarandache
Chair of Maths \& Sciences Dept.
University of New Mexico
Gallup, NM 87301, USA
smarand@unm.edu

Web info : http://fs.gallup.unm.edu/DSmT.htm

## Outline

Introduction
Part 1 : Fusion based on belief functions in DST
Dempster-Shafer Theory (DST)
Rules of combinations and limitations of DST
Part 2 : Fusion based on belief functions in DSmT
Dezert-Smarandache Theory (DSmT)
Modeling, fusion and conditioning for quantitative beliefs
Extension to qualitative beliefs
Fusion of sources with different importance
Part 3 : Probabilistic Transformations
Part 4 : Multicriteria Decision Making using DSmT
Part 5 : Browsing some applications
Conclusions \& References

## Main theories dealing with uncertainty

Probability Theory (Blaise Pascal I634 to Kolmogorov 1933): objective (\# of favorable cases / \# of possible cases) assuming uniform distribution,Frequencies of occurrence drawn from statistical data, or subjective (De Finetti's betting approach interpreting $P($.$) as degree of belief)$

Possibility Theory (Zadeh 1978) : based on fuzzy sets (I965) of mutual exclusive values. Zadeh interprets fuzzy sets as possibility distributions.

Belief Function Theory : introduced by Shafer in 1976
Imprecise Probabilities (Walley 1991): deals with probability intervals

## Why belief functions?

Probabilities do not account for partial knowledge since it deals generally with information drawn from generic knowledge based either on population of items, laws of physics, common sense, ...

Probabilities capture only one aspect of uncertain information (the randomness, i.e. the variability through repeated measurements). Probability can't distinguish between uncertainty due to variability and uncertainty due to the lack of knowledge.

Beliefs often are related with singular event and are not necessarily related with statistical data and generic knowledge. They are related with singular evidence. Belief functions are well adapted for dealing with partial knowledge contrariwise to probabilities.

Variability: Precisely observed random observations
Incompletness/non specificity: missing/partial information

## Introduction: What is DSmT in short?

DSmT (Dezert-Smarandache Theory) started in end of 2001 as a natural extension to Dempster-Shafer Theory (DST) which :

I - proposes a new mathematical framework for quantitative or qualitative information fusion

2 - incorporates any kinds of model (free, hybrid DSm models and/ or Shafer's model) for taking into account any integrity constraints of the fusion problem

3 - combines uncertain, high conflicting and imprecise sources of evidence with new rules of combination and overcomes limitations of the Dempster's rule

4 - is adapted to static or dynamic fusion applications represented in terms of belief functions based on the same general unified formalism

## Outline

Introduction

## Part 1 : Fusion based on belief functions in DST

Dempster-Shafer Theory (DST)
Rules of combinations and limitations of DST
Part 2 : Fusion based on belief functions in DSmT
Dezert-Smarandache Theory (DSmT)
Modeling, fusion and conditioning for quantitative beliefs
Extension to qualitative beliefs
Fusion of sources with different importance
Part 3 : Probabilistic Transformations
Part 4 : Multicriteria Decision Making using DSmT
Part 5 : Browsing some applications
Conclusions \& References

## Dempster-Shafer Theory (DST) - 1976

We are concerned with the true value of some quantity or hypothesis $\theta$ taking its possible values in $\Theta$.

Working with subsets as propositions: $\quad \mathcal{P}_{\theta}(A) \triangleq$ The true value of $\theta$ is in a subset $A$ of $\Theta$.

| Operations | Subsets | Propositions |
| :--- | :---: | :---: |
| Intersection/conjunction | $A \cap B$ | $\mathcal{P}_{\theta}(A) \wedge \mathcal{P}_{\theta}(B)$ |
| Union/disjunction | $A \cup B$ | $\mathcal{P}_{\theta}(A) \vee \mathcal{P}_{\theta}(B)$ |
| Inclusion/implication | $A \subset B$ | $\mathcal{P}_{\theta}(A) \Rightarrow \mathcal{P}_{\theta}(B)$ |
| Complementation/negation | $A=c_{\Theta}(B)$ | $\mathcal{P}_{\theta}(A)=\neg \mathcal{P}_{\theta}(B)$ |

Frame of discernment: $\Theta=\left\{\theta_{i}, i=1, \ldots, n\right\} \quad$ Finite set of exhaustive and exclusive elements
Shafer's model : Close world assumption + exclusivity (implicit refinement done)
Power set: $\quad \mathcal{P}(\Theta) \triangleq 2^{\ominus} \quad|\mathcal{P}(\Theta)|=2^{|\Theta|}$
Example:
$\Theta=\left\{\theta_{1}, \theta_{2}, \theta_{3}\right\} \Rightarrow$

$2^{\Theta}=\left\{\emptyset, \theta_{1}, \theta_{2}, \theta_{3}, \theta_{1} \cup \theta_{2}, \theta_{1} \cup \theta_{3}, \theta_{2} \cup \theta_{3}, \theta_{1} \cup \theta_{2} \cup \theta_{3}\right\}$

$$
\left|2^{\Theta}\right|=2^{3}=8
$$

## Belief functions in DST

Basic belief assignment (bba)/mass

$$
m(.): 2^{\Theta} \rightarrow[0,1] \quad m(\emptyset)=0 \quad \text { and } \quad \sum_{A \in 2^{\ominus}} m(A)=1
$$

$A$ is a focal element iff $m(A)>0$
Belief of A

$$
\operatorname{Bel}(A)=\sum_{B \in 2^{\ominus}, B \subseteq A} m(B)
$$

Total mass of information implying the occurence of A

Core of $\mathbf{m}()=$. set of focal elements
Plausibility of $A$
$\operatorname{Pl}(A)=\sum_{B \in 2^{\ominus}, B \cap A \neq \emptyset} m(B)$
Total mass of information consistent with A

$$
\text { In general, } 0 \leq \operatorname{Bel}(A) \leq \operatorname{Pl}(A) \leq 1
$$

Vacuous belief Assignment (VBA) (represents ignorant source)

$$
\forall A \neq \Theta, m_{v}(A)=0 \text { and } m_{v}(\Theta)=1 \quad \rightleftharpoons \quad \forall A \neq \Theta, \operatorname{Bel}(A)=0 \quad \operatorname{Bel}(\Theta)=1
$$

Bayesian belief assignment : focal elements are singletons of the power set

$$
m(.)=\operatorname{Bel}(.)=P l(.)=P(.)
$$

## Dempster's rule of combination

Fusion of 2 independent equally reliable sources with bba's $m_{1}$ and $m_{2}$
(DS) $\quad m(\emptyset)=0 \quad$ and $\quad \forall A \neq \emptyset, m(A)=\frac{1}{1-k_{12}} \sum_{\substack{X, Y \in 2^{\ominus} \\ X \cap Y=A}} m_{1}(X) m_{2}(Y)$
Degre of (total) conflict $\quad k_{12}=\sum_{\substack{X, Y \in 2^{\ominus} \\ X \cap Y=\emptyset}} m_{1}(X) m_{2}(Y)$
Example: $\quad \Theta=\left\{\theta_{1}, \theta_{2}\right\}$

$$
\begin{array}{llll}
m_{1}\left(\theta_{1}\right)=0.1 & m_{1}\left(\theta_{2}\right)=0.2 & m_{1}\left(\theta_{1} \cup \theta_{2}\right)=0.7 & k_{12}=m_{1}\left(\theta_{1}\right) m_{2}\left(\theta_{2}\right)+m_{1}\left(\theta_{2}\right) m_{2}\left(\theta_{1}\right) \\
m_{2}\left(\theta_{1}\right)=0.3 & m_{2}\left(\theta_{2}\right)=0.2 & m_{2}\left(\theta_{1} \cup \theta_{2}\right)=0.5 & k_{12}=0.1 \cdot 0.2+0.2 \cdot 0.3=0.02+0.06=0.08
\end{array}
$$

$m\left(\theta_{1}\right)=\left[m_{1}\left(\theta_{1}\right) m_{2}\left(\theta_{1}\right)+m_{1}\left(\theta_{1}\right) m_{2}\left(\theta_{1} \cup \theta_{2}\right)+m_{2}\left(\theta_{1}\right) m_{1}\left(\theta_{1} \cup \theta_{2}\right)\right] /\left(1-k_{12}\right)=0.29 / 0.92 \approx 0.316$
$m\left(\theta_{2}\right)=\left[m_{1}\left(\theta_{2}\right) m_{2}\left(\theta_{2}\right)+m_{1}\left(\theta_{2}\right) m_{2}\left(\theta_{1} \cup \theta_{2}\right)+m_{2}\left(\theta_{2}\right) m_{1}\left(\theta_{1} \cup \theta_{2}\right)\right] /\left(1-k_{12}\right)=0.28 / 0.92 \approx 0.304$
$m\left(\theta_{1} \cup \theta_{2}\right)=m_{1}\left(\theta_{1} \cup \theta_{2}\right) m_{2}\left(\theta_{1} \cup \theta_{2}\right) /\left(1-k_{12}\right)=0.35 / 0.92 \approx 0.380$

## Advantages and drawbacks of DS rule

## Advantages

- Commutativity and associativity
- Extension for $N>2$ sources
- Neutrality of VBA
- Coherence with Bayes' rule when $m(.) \equiv P($.


## Drawbacks

- (DS) is not defined when conflict is 1
- (DS) provides questionable results when $k_{12}$ increases
- No way to trust (DS) result beforehand
- Justification/necessity of working with Shafer's model ?
[Zadeh I979, Yager I983, Dubois\&Prade 1986, Pearl I988,
Voorbraak I99I,Walley 1996, Fixsen\&Mahler I997]


## Several origins of the problem

1 Different reliability of the sources (statistical criteria), but sources can be equally reliable.

2 Limited knowledge or experience of sources/experts. Sources have their own interpretation of elements of the frame - subjectivity and biasness is possible.

3 The final interest of experts can also be different when they report their assessment on a given problem ...

## Infinite classes of counter-examples for (DS)

Class \#1 : Trivial
If every column contains at least one zero, (DS) is not defined

Class \#2 : Generalization of Zadeh's example
I. If there exists a column of small positive masses for say for element i
2. If all other columns $\neq \mathrm{i}$ include at least a zero
(DS) provides a counter-intuitive result because it is independent of values of column $i$ and can reflect the minority opinion

## Infinite classes of counter-examples for (DS)

Class \#3 : Smarandache (extension of Zadeh's class to non Bayesian case)

$$
\Theta=\left\{\theta_{1}, \ldots, \theta_{n}\right\}, n \geq 2
$$

|  | $\theta_{1}$ | $\ldots$ | $\theta_{n}$ | $u_{1}$ | $\ldots$ | $u_{p}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Source 1 | $m_{s_{1}}\left(\theta_{1}\right)$ | $\ldots$ | $m_{s_{1}}\left(\theta_{n}\right)$ | $m_{s_{1}}\left(u_{1}\right)$ | $\ldots$ | $m_{s_{1}}\left(u_{p}\right)$ |
| Source 2 | $m_{s_{2}}\left(\theta_{1}\right)$ | $\ldots$ | $m_{s_{2}}\left(\theta_{n}\right)$ | $m_{s_{2}}\left(u_{1}\right)$ | $\ldots$ | $m_{s_{2}}\left(u_{p}\right)$ |
| $\vdots$ |
| Source k | $m_{s_{k}}\left(\theta_{1}\right)$ | $\ldots$ | $m_{s_{k}}\left(\theta_{n}\right)$ | $m_{s_{k}}\left(u_{1}\right)$ | $\ldots$ | $m_{s_{k}}\left(u_{p}\right)$ |

$u_{m}, m=1, \ldots, p$ are disjunctions of elements $\theta_{i},(i \in\{1, \ldots, n\}$ of the frame $\Theta$.
I. If there is at least one zero in every column $\theta_{1}, \theta_{2}, \ldots \theta_{n}$
2. If there exists one column $u_{i}$ which contains non zero

Then

$$
m\left(u_{i}\right)=\left[m_{s_{1}} \oplus m_{s_{2}} \oplus \ldots \oplus m_{s_{n}}\right]\left(u_{i}\right)=1
$$

independent of the positive values involved in $u_{i}!!!$

Example:
$\Theta=\left\{\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}\right\}$

|  | $\theta_{1}$ | $\theta_{2}$ | $\theta_{3}$ | $\theta_{4}$ | $\theta_{3} \cup \theta_{4}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $m_{1}()$. | 0.99 | 0 | 0 | 0 | 0.01 |
| $m_{2}()$. | 0 | 0.98 | 0 | 0 | 0.02 |

(DS) result

$$
m\left(\theta_{3} \cup \theta_{4}\right)=\frac{(0.01 \cdot 0.02)}{(0+0+0+0+0.01 \cdot 0.02)}=1
$$

## How to circumvent troubles with DS rule?

## Classical solutions

Apply some heuristic/ad hoc thresholding techniques on the level of the conflict to accept (or reject) the fusion result. How to choose the threshold?

Apply discounting techniques on sources. How to be sure that no problem will occur with DS rule after discounting? How to discount sources when no statistical data are available?

Mix the two previous «solutions». How and justification?
Use other alternative rules. Which one ? Why?

## Main question: How to prevent troubles in fusion beforehand ?

## Proposal (detailed in part 2)

Switch to a new paragdim to deal with the fusion of vague, uncertain, imprecise, highly conflicting quantitative and qualitative information fusion for static or dynamic problematics.

## Main alternatives to DS rule

## Assumption: Shafer's model

Disjunctive rule: $m_{\text {Disj }}(A)=\sum_{\substack{B, C \in 2^{\ominus} \\ B \cup C=A}} m_{1}(B) m_{2}(C)$

Yager's rule: [Yager 1983]

$$
\begin{cases}m_{Y}(\emptyset)=0 \\ m_{Y}(A)=\sum_{\substack{X, Y \in 2^{\Theta} \\ X \cap=A}} m_{1}(X) m_{2}(Y) & \forall A \in 2^{\Theta}, A \neq \emptyset, A \neq \Theta \\ m_{Y}(\Theta)=m_{1}(\Theta) m_{2}(\Theta)+\sum_{\substack{X, Y \in 2^{\ominus} \\ X \cap Y=\emptyset}} m_{1}(X) m_{2}(Y) & \text { when } A=\Theta\end{cases}
$$

Dubois \& Prade's (hybrid) rule: [Dubois \& Prade 1988]
(DP) $\quad\left\{\begin{array}{l}m_{D P}(\emptyset)=0 \\ m_{D P}(A)=\sum_{\substack{X, Y \in 2^{\ominus} \\ X \cap=A \\ X \cap Y \neq \emptyset}} m_{1}(X) m_{2}(Y)+\sum_{\substack{X, Y \in 2^{\ominus} \\ X \cup Y=A \\ X \cap Y=\emptyset}} m_{1}(X) m_{2}(Y) \quad \forall A \neq \emptyset, ~ \\ X \cap O\end{array}\right.$
Adaptive Combination Rule (ACR): [FIorea 2005]
A weighted balance between conjunctive and disjunctive rules depending on the total conflict.
Assumption: Open-world
Smets' rule: [Smets 1994] It is the non-normalized version of Dempster's rule (keep conflicting mass on empty set at credal level when combining).

## Unified formulation of the rules

## General Weighted Operator (GWO)

Step 1 : Derivation of the TOTAL conflict

$$
k_{12} \triangleq \sum_{\substack{X_{1}, X_{2} \in 2^{\ominus} \\ X_{1} \cap X_{2}=\emptyset}} m_{1}\left(X_{1}\right) m_{2}\left(X_{2}\right)
$$

Step2 : Redistribution of the total conflict with given set of weights

$$
m(\emptyset)=w_{m}(\emptyset) \cdot k_{12} \quad \sum_{X \in 2^{\ominus}} w_{m}(X)=1 \quad \text { et } \quad w_{m}(X) \in[0,1]
$$

(GWO)

$$
\forall(X \neq \emptyset) \in 2^{\Theta} \quad m(X)=\left[\sum_{\substack{X_{1}, X_{2} \in 2^{\Theta} \\ X_{1} \cap X_{2}=X}} m_{1}\left(X_{1}\right) m_{2}\left(X_{2}\right)\right]+w_{m}(X) k_{12}
$$

The GWO formalism includes most of known fusion operators based on the conjunctive consensus (Dempster, Smets, Yager, etc) depending on the choice of weighting factors.

There is an infinity of fusion rules !!!

## Reliability Discounting of sources

Consider an unreliable source providing the bba $m($.$) and having a known reli-$ ability factor $\alpha \in[0,1]$.
$\alpha=1$ means no discounting (full reliability of the source)
$\alpha=0$ means total discounting (full unreliable/ignorant source)
Discounted bba $\quad\left\{\begin{array}{l}m(A) \\ m(\Theta)\end{array} \rightarrow\left\{\begin{array}{l}m^{\prime}(A)=\alpha \cdot m(A) \quad \forall A \neq \Theta \\ m^{\prime}(\Theta)=(1-\alpha)+\alpha \cdot m(\Theta)\end{array}\right.\right.$
This approach makes sense (and has to be used) if one has a good estimation of reliability factor of each source (based on statistical experiment AND ground truth).
A sophisticated method exists [Denoeux et al. 2005,2006] where discounting factor depends on subsets.

Remark : Discounting $=$ conjunctive fusion on $\{\Theta \times\{$ Rel, notRel $\}\}$ and the marginalization on $\Theta$ [Haenni 2005]
We are not sure of discounting factors (most of the time we don't have these factors at all !!!). Discounting in such cases appears only as an ad-hoc engineering trick to prevent troubles with (DS) ...
Fundamentally, discounting do not solve the inherent problem of (DS); it's just a mean to increase the mass of belief on the total ignorance.

## Outline

Introduction
Part 1 : Fusion based on belief functions in DST
Dempster-Shafer Theory (DST)
Rules of combinations and limitations of DST
Part 2 : Fusion based on belief functions in DSmT
Dezert-Smarandache Theory (DSmT)
Modeling, fusion and conditioning for quantitative beliefs
Extension to qualitative beliefs
Fusion of sources with different importance
Part 3 : Probabilistic Transformations
Part 4 : Multicriteria Decision Making using DSmT
Part 5 : Browsing some applications
Conclusions \& References

## Fusion Spaces

Frame of the problem $\Theta=\left\{\theta_{1}, \theta_{2}, \ldots, \theta_{n}\right\}$. Finite set of exhaustive elements (discrete/continuous/fuzzy/relative concepts)

Fusion spaces: Power sets, Hyper-power set (Dedekind's lattice) and Super-power sets

$$
\left|2^{\Theta_{r e f}}=S^{\Theta} \triangleq(\Theta, \cup, \cap, c(.))\right|>\left|D^{\Theta}=(\Theta, \cup, \cap)\right|>\left|2^{\Theta}=(\Theta, \cup)\right|
$$

$$
\downarrow \downarrow \downarrow \downarrow
$$



Super-power set = power set of the refined frame

## Hyper-power sets

$\Theta=\left\{\theta_{1}, \theta_{2}, \ldots, \theta_{n}\right\}$.

## How to generate it

1. $\emptyset, \theta_{1}, \ldots, \theta_{n} \in D^{\Theta}$
2. $\forall A \in D^{\Theta}, B \in D^{\Theta},(A \cup B) \in D^{\Theta},(A \cap B) \in D^{\Theta}$
3. No other elements belong to $D^{\Theta}$, except those, obtained by using rules 1 or 2 .
Hyper-power set reduces to classical power set for the Shafer's model (when all elements are exclusive)
The cardinality of hyper-power sets follows Dedekind's numbers sequence when the size of the frame increases.

Example for $\mathrm{n}=3 \quad \Theta=\left\{\theta_{1}, \theta_{2}, \theta_{3}\right\} \quad \mathrm{d}(\mathrm{n}=3)=19$

$$
\begin{array}{lllll}
\alpha_{0} \triangleq \emptyset & \alpha_{4} \triangleq \theta_{2} \cap \theta_{3} & \alpha_{8} \triangleq\left(\theta_{1} \cap \theta_{2}\right) \cup\left(\theta_{1} \cap \theta_{3}\right) \cup\left(\theta_{2} \cap \theta_{3}\right) & \alpha_{12} \triangleq\left(\theta_{1} \cap \theta_{2}\right) \cup \theta_{3} & \alpha_{16} \triangleq \theta_{1} \cup \theta_{3} \\
\alpha_{1} \triangleq \theta_{1} \cap \theta_{2} \cap \theta_{3} & \alpha_{5} \triangleq\left(\theta_{1} \cup \theta_{2}\right) \cap \theta_{3} & \alpha_{9} \triangleq \theta_{1} & \alpha_{13} \triangleq\left(\theta_{1} \cap \theta_{3}\right) \cup \theta_{2} & \alpha_{17} \triangleq \theta_{2} \cup \theta_{3} \\
\alpha_{2} \triangleq \theta_{1} \cap \theta_{2} & \alpha_{6} \triangleq\left(\theta_{1} \cup \theta_{3}\right) \cap \theta_{2} & \alpha_{10} \triangleq \theta_{2} & \alpha_{14} \triangleq\left(\theta_{2} \cap \theta_{3}\right) \cup \theta_{1} & \alpha_{18} \triangleq \theta_{1} \cup \theta_{2} \cup \theta_{3} \\
\alpha_{3} \triangleq \theta_{1} \cap \theta_{3} & \alpha_{7} \triangleq\left(\theta_{2} \cup \theta_{3}\right) \cap \theta_{1} & \alpha_{11} \triangleq \theta_{3} & \alpha_{15} \triangleq \theta_{1} \cup \theta_{2} &
\end{array}
$$

## DSmT basics : DSm Models

The granularity of the model of the frame characterizes the intrinsic nature (discrete/ continuous, precise/vague,absolute/relative, etc) of the concepts involved in the fusion process.

Parts have vague boundaries


Parts have precise boundaries

## Generalized (quantitative) belief functions

Generalized basic belief assignment (gbba)

$$
m(.): G^{\Theta} \rightarrow[0,1] \quad \text { with } \quad m(\emptyset)=0 \quad \text { and } \quad \sum_{A \in G^{\ominus}} m(A)=1
$$

where $G^{\Theta}$ is the fusion space (i.e. $2^{\Theta}, D^{\Theta}$, or $S^{\Theta}=2^{\Theta_{\text {refined }} \text { ) }}$

Generalized belief function

$$
\operatorname{Bel}(A)=\sum_{\substack{B \subseteq A \\ B \in G^{\Theta}}} m(B)
$$

Question: How to combine efficiently belief functions generated by several sources of evidence?

$$
\left[m_{1} \oplus \ldots \oplus m_{s}\right](X)
$$

## Generalized bba (example)

Let's consider the simple frame $\Theta=\{A, B\}$, then depending on the model we choose for $G^{\Theta}$, one will deal with:

- $G^{\Theta}$ as $\Theta$ (Bayesian bba):

$$
m(A)+m(B)=1
$$

- $G^{\Theta}$ as the power set $2^{\Theta}$ and therefore:

$$
m(A)+m(B)+m(A \cup B)=1
$$

- $G^{\Theta}$ as the hyper-power set $D^{\Theta}$ and therefore:

$$
m(A)+m(B)+m(A \cup B)+m(A \cap B)=1
$$

- $G^{\Theta}$ as the super-power set $S^{\Theta}$ and therefore:

$$
\begin{aligned}
& m(A)+m(B)+m(A \cup B)+m(A \cap B) \\
& \quad+m(c(A))+m(c(B))+m(c(A) \cup c(B))=1
\end{aligned}
$$

## Fusion based on belief functions

## Decision level

## Fusion level

(DSmH/PCR5)

## Integrity level

## Intermediate level

(DSmC)

## Sources level

(+ discounting)

Static scheme (all sources are combined altogether)


## DSm Hybrid rule of combination (DSmH)

For any model, the fusion of $k$ independent equally (otherwise discounting techniques are applied first) reliable sources is done by
(DSmH)
(DSmC)

$$
m_{\mathcal{M}(\Theta)}(X) \triangleq \phi(X)\left[S_{1}(X)+S_{2}(X)+S_{3}(X)\right]
$$

No division is required, DSmH $\neq$ Dempster's rule
hybrid rule means conjunctive mixed with disjunctive

$$
\begin{aligned}
& S_{1}(X) \triangleq \sum_{\substack{X_{1}, X_{2}, \ldots, X_{s} \in D^{\ominus} \\
X_{1} \cap X_{2} \cap \ldots \cap X_{s}=X}} \prod_{i=1}^{s} m_{i}\left(X_{i}\right) \\
& S_{2}(X) \triangleq \sum_{\substack{X_{1}, X_{2}, \ldots, X_{s} \in \emptyset \\
[\mathcal{U}=X] \vee\left[(\mathcal{U} \in \emptyset) \wedge\left(X=I_{t}\right)\right]}} \prod_{i=1}^{s} m_{i}\left(X_{i}\right) \\
& S_{3}(A) \triangleq \sum_{\substack{X_{1}, X_{2}, \ldots, X_{s} \in D^{\ominus} \\
X_{1} \cup X_{2} \cup \ldots \cup X_{s}=A \\
X_{1} \cap X_{2} \cap \ldots \cap X_{s} \in \emptyset}} \prod_{i=1}^{s} m_{i}\left(X_{i}\right) \\
&
\end{aligned}
$$

$I_{t} \triangleq \theta_{1} \cup \ldots \cup \theta_{n}$ is the total ignorance
$\mathcal{U} \triangleq u\left(X_{1}\right) \cup \ldots \cup u\left(X_{k}\right)$
$u(X)$ is the union of all $\theta_{i}$ that compose $X$
$\emptyset \triangleq\left\{\emptyset, \emptyset_{\mathcal{M}}\right\}$
$\emptyset_{\mathcal{M}}=$ set of propositions forced to be empty in $\mathcal{M}$

All propositions involved in formulas are expressed in their canonical form (i.e. disjunctive normal form, also known as disjunction of conjunctions in Boolean algebra, which is unique).

Special case: (DSmH) reduces to classic DSm rule (i.e. DSmC) when the free DSmmodel is used, i.e. only $\mathrm{S} 1(\mathrm{X})$ is kept in (DSmH) formula.

## Static versus dynamic fusion

## Static Fusion : The frame and its model do not change with time

Dynamic Fusion: The frame and/or its model change with time

Example of dynamic fusion (testimony problem)

$\Theta\left(t_{l}\right) \triangleq\left\{\theta_{1} \equiv\right.$ young, $\theta_{2} \equiv$ old, $\theta_{3} \equiv$ white hairs $\}$

$$
\text { Reports } \begin{cases}m_{1}\left(\theta_{1}\right)=0.5 & m_{1}\left(\theta_{3}\right)=0.5 \\ m_{2}\left(\theta_{2}\right)=0.5 & m_{2}\left(\theta_{3}\right)=0.5\end{cases}
$$

$$
m_{\mathcal{M}^{f}\left(\Theta\left(t_{i}\right)\right)}\left(\theta_{1} \cap \theta_{2}\right)=0.25 \quad m_{\mathcal{M}^{f}\left(\Theta\left(t_{l}\right)\right)}\left(\theta_{1} \cap \theta_{3}\right)=0.25 \quad m_{\mathcal{M}^{f}\left(\theta\left(t_{l}\right)\right)}\left(\theta_{2} \cap \theta_{3}\right)=0.25 \quad m_{\mathcal{M}^{f}\left(\theta\left(t_{i}\right)\right)}\left(\theta_{3}\right)=0.25
$$



## Example in Zadeh's class

$$
\Theta=\left\{\theta_{1}, \theta_{2}, \theta_{3}\right\} \quad \text { Inputs } \begin{array}{llrl} 
& m_{1}\left(\theta_{1}\right)=1-e_{1} & m_{1}\left(\theta_{2}\right)=0 & m_{1}\left(\theta_{3}\right)=e_{1} \\
m_{2}\left(\theta_{1}\right)=0 & m_{2}\left(\theta_{2}\right)=1-e_{2} & m_{2}\left(\theta_{3}\right)=e_{2}
\end{array}
$$

If one adopts Shafer's model

$$
m\left(\theta_{3}\right)=\frac{e_{1} e_{2}}{\left(1-e_{1}\right) \cdot 0+0 \cdot\left(1-e_{2}\right)+e_{1} e_{2}}=1
$$

When $0<e_{1}<1$ and $0<e_{2}<1$, Dempster's rule provides in this case same result whatever the values of $e_{1}$ and $e_{2}$ are !!! Dempster's rule is mathematically not defined when $e_{1}=e_{2}=0$.
It provides only a coherent and trivial solution when $e_{1}=e_{2}=1$.
If one adopts free DSm model and DSmC rule

$$
m\left(\theta_{3}\right)=e_{1} e_{2} \quad m\left(\theta_{1} \cap \theta_{2}\right)=\left(1-e_{1}\right)\left(1-e_{2}\right) \quad m\left(\theta_{1} \cap \theta_{3}\right)=\left(1-e_{1}\right) e_{2} \quad m\left(\theta_{2} \cap \theta_{3}\right)=\left(1-e_{2}\right) e_{1}
$$

If one adopts Shafer's model and DSmH rule

$$
m\left(\theta_{3}\right)=e_{1} e_{2} \quad m\left(\theta_{1} \cup \theta_{2}\right)=\left(1-e_{1}\right)\left(1-e_{2}\right) \quad m\left(\theta_{1} \cup \theta_{3}\right)=\left(1-e_{1}\right) e_{2} \quad m\left(\theta_{2} \cup \theta_{3}\right)=\left(1-e_{2}\right) e_{1}
$$

$(\mathrm{DSmH})$ provides a more consistent result which depends on $\mathrm{e}_{1}$ and $\mathrm{e}_{2}$.
$e_{1}$ and $e_{2}$ can take any values in $[0,1]$.
Same conclusion is drawn for examples in Smarandache's class.

## Robustness of (DS) and (DSmH) w.r.t. imprecision

Frame

$$
\begin{aligned}
& \Theta=\left\{\theta_{1}, \theta_{2}, \theta_{3}\right\} \quad \text { Inputs } \\
& \text { Shafer's model }
\end{aligned}
$$

|  | $\theta_{1}$ | $\theta_{2}$ | $\theta_{3}$ |
| :--- | :--- | :--- | :--- |
| Source 1 | $m_{1}\left(\theta_{1}\right)=0.99-\epsilon$ | $m_{1}\left(\theta_{2}\right)=\epsilon$ | $m_{1}\left(\theta_{3}\right)=0.01$ |
| Source 2 | $m_{2}\left(\theta_{1}\right)=\epsilon$ | $m_{2}\left(\theta_{2}\right)=0.99-\epsilon$ | $m_{2}\left(\theta_{3}\right)=0.01$ |

## (DS) is not robust

A small variation of $\varepsilon$ induces a big variation of (DS) result

For $\epsilon=0, m\left(\theta_{3}\right)=1$
For $\epsilon=0.0005,\left\{\begin{array}{l}m\left(\theta_{1}\right)=0.45410 \\ m\left(\theta_{2}\right)=0.45410 \\ m\left(\theta_{3}\right)=0.0918\end{array}\right.$

## (DSmH) is more robust

A small variation of $\varepsilon$ induces a small variation of (DSmH) result.
(

## Example in Smarandache's class

$$
\Theta=\left\{\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}\right\} \quad \text { Inputs } \quad \begin{array}{ll} 
& m_{1}\left(\theta_{1}\right)=0.99 \\
& m_{2}\left(\theta_{2}\right)=0.98
\end{array} \quad m_{1}\left(\theta_{3} \cup \theta_{4}\right)=0.01 ~\left(\theta_{3} \cup \theta_{4}\right)=0.02
$$

If one adopts Shafer's model

$$
\begin{equation*}
m\left(\theta_{3} \cup \theta_{4}\right)=\frac{(0.01 \cdot 0.02)}{(0+0+0+0+0.01 \cdot 0.02)}=1 \tag{DS}
\end{equation*}
$$

Other masses are zero. Counter-intuitive result

If one adopts free DSm model
(DSmC) $\quad m\left(\theta_{1} \cap \theta_{2}\right)=0.9702 \quad m\left(\theta_{1} \cap\left(\theta_{3} \cup \theta_{4}\right)\right)=0.0198 \quad m\left(\theta_{2} \cap\left(\theta_{3} \cup \theta_{4}\right)\right)=0.0098 \quad m\left(\theta_{3} \cup \theta_{4}\right)=0.0002$

If one adopts Shafer's model
(DSmH)

$$
m\left(\theta_{1} \cup \theta_{2}\right)=0.9702 \quad m\left(\theta_{1} \cup \theta_{3} \cup \theta_{4}\right)=0.0198 \quad m\left(\theta_{2} \cup \theta_{3} \cup \theta_{4}\right)=0.0098 \quad m\left(\theta_{3} \cup \theta_{4}\right)=0.0002
$$

DSmT still provides a coherent result

## Testinomy example (dynamic case)

$\Theta=\left\{\theta_{1}, \theta_{2}, \theta_{3}\right\}$
set of a priori exclusive and exhaustive suspects
original $\quad m_{1}\left(\theta_{1}\right)=0.1 \quad m_{1}\left(\theta_{2}\right)=0.4 \quad m_{1}\left(\theta_{3}\right)=0.2 \quad m_{1}\left(\theta_{1} \cup \theta_{2}\right)=0.3$
witnesses $m_{2}\left(\theta_{1}\right)=0.5 \quad m_{2}\left(\theta_{2}\right)=0.1 \quad m_{2}\left(\theta_{3}\right)=0.3 \quad m_{2}\left(\theta_{1} \cup \theta_{2}\right)=0.1$
reports
reports

New info arrives: The third suspect provides a strong alibi
$\theta_{3} \stackrel{\mathcal{M}}{=} \emptyset$
(non existential/integrity constraint)
(DSmC)

$$
\begin{aligned}
& \left.\left.m\left(\theta_{1}\right)=0.21 \longrightarrow \begin{array}{l}
\left.m\left(\theta_{2}\right)=0.11 \longrightarrow \theta_{3}\right)=0.13 \subset \\
m\left(\theta_{1} \cap \theta_{2}\right)=0.21
\end{array} \theta_{3}\right)=0.06 \longrightarrow \theta_{3}\right)=0.14
\end{aligned}
$$

The conflicting mass to transfer is then

$$
k_{12}=0.06+0.21+0.13+0.14+0.11=0.65
$$

(DSmH) $\quad m(\emptyset)=0 \quad m\left(\theta_{1}\right)=0.34 \quad m\left(\theta_{2}\right)=0.25 \quad m\left(\theta_{1} \cup \theta_{2}\right)=0.41$
(S) Smets $\quad m_{S}(\emptyset)=0.65 \quad m_{S}\left(\theta_{1}\right)=0.21 \quad m_{S}\left(\theta_{2}\right)=0.11 \quad m_{S}\left(\theta_{1} \cup \theta_{2}\right)=0.03$
(М) Yager $\quad m_{Y}(\emptyset)=0 \quad m_{Y}\left(\theta_{1}\right)=0.21 \quad m_{Y}\left(\theta_{2}\right)=0.11 \quad m_{Y}\left(\theta_{1} \cup \theta_{2}\right)=0.03+k_{12}=0.03+0.65=0.68$

## Testinomy example (dynamic case)

## Dempster's rule

(DS) $\quad m_{D S}(\emptyset)=0 \quad m_{D S}\left(\theta_{1}\right)=\frac{0.21}{1-0.65}=0.60 \quad m_{D S}\left(\theta_{2}\right)=\frac{0.11}{1-0.65} \approx 0.314 \quad m_{D S}\left(\theta_{1} \cup \theta_{2}\right)=\frac{0.03}{1-0.65} \approx 0.086$

## Dubois \& Prade's rule (DP)

$$
\begin{aligned}
& m_{D P}(\emptyset)=0 \\
& m_{D P}\left(\theta_{1}\right)=\left[m_{1}\left(\theta_{1}\right) m_{2}\left(\theta_{1}\right)+m_{1}\left(\theta_{1}\right) m_{2}\left(\theta_{1} \cup \theta_{2}\right)+m_{2}\left(\theta_{1}\right) m_{1}\left(\theta_{1} \cup \theta_{2}\right)\right]+\left[m_{1}\left(\theta_{1}\right) m_{2}\left(\theta_{3}\right)+m_{2}\left(\theta_{1}\right) m_{1}\left(\theta_{3}\right)\right]=0.34 \\
& m_{D P}\left(\theta_{2}\right)=\left[m_{1}\left(\theta_{2}\right) m_{2}\left(\theta_{2}\right)+m_{1}\left(\theta_{2}\right) m_{2}\left(\theta_{1} \cup \theta_{2}\right)+m_{2}\left(\theta_{2}\right) m_{1}\left(\theta_{1} \cup \theta_{2}\right)\right]+\left[m_{1}\left(\theta_{2}\right) m_{2}\left(\theta_{3}\right)+m_{2}\left(\theta_{2}\right) m_{1}\left(\theta_{3}\right)\right]=0.25 \\
& m_{D P}\left(\theta_{1} \cup \theta_{2}\right)=\left[m_{1}\left(\theta_{1} \cup \theta_{2}\right) m_{2}\left(\theta_{1} \cup \theta_{2}\right)\right]+\left[m_{1}\left(\theta_{1} \cup \theta_{2}\right) m_{2}\left(\theta_{3}\right)+m_{2}\left(\theta_{1} \cup \theta_{2}\right) m_{1}\left(\theta_{3}\right)\right]+\left[m_{1}\left(\theta_{1}\right) m_{2}\left(\theta_{2}\right)+m_{2}\left(\theta_{1}\right) m_{1}\left(\theta_{2}\right)\right]=0.35
\end{aligned}
$$

If one adds the masses up, one gets 0.94 < I

Dubois \& Prade's rule doesn't work for dynamic fusion problems when a singleton or an union of singletons becomes empty.
This problem is fixed by the sum $\mathrm{S}_{2}$ in DSmH.
When there is no non-existential constraint, DSmH = DP

## DSm rules for imprecise beliefs

| Operations on sets | Addition | $S_{1} \boxplus S_{2}=S_{2} \boxplus S_{1} \triangleq\left\{x \mid x=s_{1}+s_{2}, s_{1} \in S_{1}, s_{2} \in S_{2}\right\}$ |
| :--- | :--- | :--- |
|  | Subtraction | $S_{1} \boxminus S_{2} \triangleq\left\{x \mid x=s_{1}-s_{2}, s_{1} \in S_{1}, s_{2} \in S_{2}\right\}$ |
|  | Multiplication | $S_{1} \boxminus S_{2} \triangleq\left\{x \mid x=s_{1} \cdot s_{2}, s_{1} \in S_{1}, s_{2} \in S_{2}\right\}$ |

Inputs: Imprecise admissible generalized bba $\mathbf{m}^{\mathrm{I}}($.$) are of the form$

$$
m^{I}(A)=\left[a_{1}, b_{1}\right] \cup \ldots \cup\left[a_{m}, b_{m}\right] \cup\left(c_{1}, d_{1}\right) \cup \ldots \cup\left(c_{n}, d_{n}\right) \cup\left(e_{1}, f_{1}\right] \cup \ldots \cup\left(e_{p}, f_{p}\right] \cup\left[g_{1}, h_{1}\right) \cup \ldots \cup\left[g_{q}, h_{q}\right) \cup\left\{A_{1}, \ldots, A_{r}\right\}
$$

where all the bounds or elements involved into $m^{I}(A)$ belong to $[0,1]$
DSmH for imprecise beliefs

$$
\text { (DSmH=Imp) } \quad m_{\mathcal{M}(\Theta)}^{I}(A) \triangleq \phi(A) \boxtimes\left[S_{1}^{I}(A) \boxplus S_{2}^{I}(A) \boxplus S_{3}^{I}(A)\right]
$$

A simple 2D example

| $A \in D^{\Theta}$ | $m_{1}^{I}(A)$ | $m_{2}^{I}(A)$ |
| :---: | :---: | :---: |
| $\theta_{1}$ | $[0.1,0.2] \cup\{0.3\}$ | $[0.4,0.5]$ |
| $\theta_{2}$ | $(0.4,0.6) \cup[0.7,0.8]$ | $[0,0.4] \cup\{0.5,0.6\}$ |

Inputs
(DSmH-Imp)

(DSmC-Imp)

| $A \in D^{\Theta}$ | $m_{\mathcal{M}}^{I}(A)=\left[m_{1}^{I} \oplus m_{2}^{I}\right](A)$ |
| :---: | :---: |
| $\theta_{1}$ | $[0.04,0.10] \cup[0.12,0.15]$ |
| $\theta_{2}$ | $[0,0.40] \cup[0.42,0.48]$ |
| $\theta_{1} \cap \theta_{2} \xlongequal{\mathcal{M}} \emptyset$ | 0 |
| $\theta_{1} \cup \theta_{2}$ | $(0.16,0.58]$ |


| $A \in D^{\Theta}$ | $m^{I}(A)=\left[m_{1}^{I} \oplus m_{2}^{I}\right](A)$ |
| :---: | :---: |
| $\theta_{1}$ | $[0.04,0.10] \cup[0.12,0.15]$ |
| $\theta_{2}$ | $[0,0.40] \cup[0.42,0.48]$ |
| $\theta_{1} \cap \theta_{2}$ | $(0.16,0.58]$ |
| $\theta_{1} \cup \theta_{2}$ | 0 |

## Proportional Conflict Redistribution (PCR)

## Why PCR fusion rules? To not increase the mass on uncertainties in the fusion

- Step 1: Compute the conjunctive rule $m_{12}(X)=\sum_{\substack{X_{1}, X_{2} \in G^{\ominus} \\ X_{1} \cap X_{2}=X}} m_{1}\left(X_{1}\right) m_{2}\left(X_{2}\right)$
- Step 2: compute all the conflicting masses (partial and/or total).

$$
k_{12}=\sum_{\substack{X_{1}, X_{2} \in G^{\Theta} \\ X_{1} \cap X_{2}=\emptyset}} m_{1}\left(X_{1}\right) m_{2}\left(X_{2}\right)
$$

- Step 3: then proportionally redistribute the conflicting mass (total or partial) to non-empty sets involved in the model according to all integrity constraints.

The way the conflicting mass is redistributed yields to several versions of PCR (PCR1-PCR6) which work for any degree of conflict and for any models and both in DST and DSmT and for static or dynamical fusion applications.

## PCR rule \# 5 (PCR5)

PCR5 transfers the partial conflicting masses to the elements involved in the partial conflict proportionally to mass $\mathrm{m}_{1}($.$) and \mathrm{m}_{2}($. of elements involved in the partial conflict ONLY.
$\forall X \neq \emptyset, X \in G^{\Theta}$

$$
m_{P C R 5}(X)=m_{12}(X)+\sum_{\substack{Y \in G^{\ominus} \backslash\{X\} \\ X \cap Y=\emptyset}}\left[\frac{m_{1}(X)^{2} m_{2}(Y)}{m_{1}(X)+m_{2}(Y)}+\frac{m_{2}(X)^{2} m_{1}(Y)}{m_{2}(X)+m_{1}(Y)}\right]
$$

Extension possible for $\mathrm{N}>2$ sources
Advantage : PCR5 does a more exact redistribution than PCR1-PCR4. PCR5 works on any model and preserves the neutrality of VBA.

A new rule (PCR6), more intuitive than (PCR5) for combining $s>2$ sources, is proposed by Martin \& Osswald in DSmT Book,Vol. 2.

Drawback: PCR5 as most rules (but DS rule) is not associative (quasi-associative only)

## TCN Fusion rule (Fuzzified PCR5)

[Tchamova, Dezert, Smarandache 2006, DSmT Book3 Chap 15]
This rule is based on fuzzy T-norm (min for conjunction) and fuzzy T-conorm (max for disjunction) operators.
min T-norm conjunctive consensus

$$
m(A)=\sum_{\substack{X, Y \in G^{\ominus} \\ X \cap Y=A}} \min \left\{m_{1}(X), m_{2}(Y)\right\}
$$

Conflicting masses are distributed to all non-empty sets involved in the conflict proportionally with respect to the maximum between the elements of corresponding mass matrix's columns, associated with the given element of $G^{\Theta}$.

$$
\begin{aligned}
& \tilde{m}_{12 T C N}(A)=\sum_{\substack{X, Y \in G^{\ominus} \\
X \cap Y=A}} \min \left\{m_{1}(X), m_{2}(Y)\right\}+ \\
& \quad \sum_{\substack{X \in G^{\ominus} \\
X \cap A=\emptyset}}\left(m_{1}(A) \times \frac{\min \left\{m_{1}(A), m_{2}(X)\right\}}{\max \left\{m_{1}(A), m_{2}(X)\right\}}+m_{2}(A) \times \frac{\min \left\{m_{2}(A), m_{1}(X)\right\}}{\max \left\{m_{2}(A), m_{1}(X)\right\}}\right) \xrightarrow{\text { Normalization }} m_{T C N}(A)=\frac{\tilde{m}_{T C N}(A)}{\sum_{A \in G^{\ominus}} \tilde{m}_{T C N}(A)}
\end{aligned}
$$

Can be extented to N sources;
TCN does not belong to the General Weighted Operator Class; very easy to implement, satisfying the neutrality of Vacuous Belief Assignment; commutative, convergent to idempotence, reflecting majority opinion.

## Example for PCR5

$\Theta=\{A, B\} \quad$ Inputs<br>Shafer's model

|  | $A$ | $B$ | $A \cup B$ |
| :---: | :---: | :---: | :---: |
| $m_{1}()$. | 0.6 | 0.3 | 0.1 |
| $m_{2}()$. | 0.2 | 0.3 | 0.5 |
| $m_{12}()$. | 0.44 | 0.27 | 0.05 |

$$
\begin{aligned}
k_{12} & =m_{12}(A \cap B) \\
& =m_{1}(A) m_{2}(B)+m_{1}(B) m_{2}(A) \\
& =0.18+0.06=0.24
\end{aligned}
$$

$m_{2}(A)=0.2$ and $m_{1}(B)=0.3$ did make an impact on the conflict because $m_{2}(A) m_{1}(B)=0.2 \cdot 0.3=0.06$ was added to the conflicting mass. So, $A$ and $B$ are involved in the conflict ( $A \cup B$ is not involved), hence only $A$ and $B$ deserve a part of the conflicting mass, $A \cup B$ does not deserve.

Let $x_{1}$ be the conflicting mass to be redistributed to $A$, and $y_{1}$ the conflicting mass redistributed to $B$ from the first partial conflicting mass 0.18 , and similarly for $x_{2}$ and $y_{2}$ with partial conflict 0.06 ; one has:

$$
\begin{aligned}
& x_{1} / 0.6=y_{1} / 0.3=\left(x_{1}+y_{1}\right) /(0.6+0.3)=0.18 / 0.9=0.2 \\
& x_{2} / 0.2=y_{2} / 0.3=\left(x_{2}+y_{2}\right) /(0.2+0.3)=0.06 / 0.5=0.12 \longrightarrow\left\{\begin{array}{l}
x_{1}=0.6 \cdot 0.2=0.12 \\
y_{1}=0.3 \cdot 0.2=0.06
\end{array}\right. \\
& \hline \begin{array}{l}
x_{2}=0.2 \cdot 0.12=0.024 \\
y_{2}=0.3 \cdot 0.12=0.036
\end{array}
\end{aligned}
$$

| With PCR5 |
| :---: |
| $m_{P C R 5}(A)=0.44+0.12+0.024=0.584$ |
| $m_{P C R 5}(B)=0.27+0.06+0.036=0.366$ |
| $m_{P C R 5}(A \cup B)=0.05+0=0.05$ |


| With DSmH and Dubois \& Prade's rules |
| :---: |
| $m_{D S m H}(A)=m_{D P}(A)=0.44$ |
| $m_{D S m H}(B)=m_{D P}(B)=0.27$ |
| $m_{D S m H}(A \cup B)=m_{D P}(A \cup B)=0.29$ |

$$
\begin{array}{|c|}
\hline \text { With Dempster's rule } \\
\hline m_{D S}(A) \approx 0.579 \\
m_{D S}(B) \approx 0.355 \\
m_{D S}(A \cup B) \approx 0.066 \\
\hline
\end{array}
$$

The mass put on ignorance with PCR5 is the lowest

## PCR6 versus PCR5

The difference between PCR5 and PCR6 lies in the way the proportional conflict redistribution is done as soon as three or more sources are involved in the fusion (for 2 sources, PCR6=PCR5).

Let's consider $m_{1}(),. m_{2}($.$) and m_{3}(),. A \cap B=\emptyset$ for the model of the frame $\Theta$.

$$
m_{1}(A)=0.6, \quad m_{2}(B)=0.3, \quad m_{3}(B)=0.1
$$

With PCR5:

$$
\begin{gathered}
\frac{x_{A}^{P C R 5}}{m_{1}(A)}=\frac{x_{B}^{P C R 5}}{m_{2}(B) m_{3}(B)}=\frac{m_{1}(A) m_{2}(B) m_{3}(B)}{m_{1}(A)+m_{2}(B) m_{3}(B)} \quad \frac{x_{A}^{P C R 5}}{0.6}=\frac{x_{B}^{P C 1}}{0.0} \\
\text { Therefore, one gets } \quad\left\{\begin{array}{l}
x_{A}^{P C R 5}=0.60 \cdot 0.02857 \approx 0.01714 \\
x_{B}^{P C R 5}=0.03 \cdot 0.02857 \approx 0.00086
\end{array}\right.
\end{gathered}
$$

$$
\frac{x_{A}^{P C R 5}}{0.6}=\frac{x_{B}^{P C R 5}}{0.03}=\frac{0.018}{0.6+0.03} \approx 0.02857
$$

With PCR6:

$$
\frac{x_{A}^{P C R 6}}{m_{1}(A)}=\frac{x_{B, 2}^{P C R 6}}{m_{2}(B)}=\frac{x_{B, 3}^{P C R 6}}{m_{3}(B)}=\frac{m_{1}(A) m_{2}(B) m_{3}(B)}{m_{1}(A)+m_{2}(B)+m_{3}(B)} \quad \frac{x_{A}^{P C R 6}}{0.6}=\frac{x_{B, 2}^{P C R 6}}{0.3}=\frac{x_{B, 3}^{P C R 6}}{0.1}=\frac{0.018}{0.6+0.3+0.1}=0.018
$$

whence $\left\{\begin{array}{l}x_{A}^{P C R 6}=0.6 \cdot 0.018=0.0108 \\ x_{B, 2}^{P C R 6}=0.3 \cdot 0.018=0.0054 \\ x_{B, 3}^{P C R 6}=0.1 \cdot 0.018=0.0018\end{array} \quad\right.$ Therefore, one gets $\quad\left\{\begin{array}{l}x_{A}^{P C R 6}=0.0108 \\ x_{B}^{P C R 6}=x_{B, 2}^{P C R 6}+x_{B, 3}^{P C R 6}=0.0054+0.0018=0.0072\end{array}\right.$

Note: PCR6 is more simple to implement than PCR5 (see MatLab Code)

## Zadeh's Example (1979)

$\Theta=\{A, B, C\}$,
Inputs

Shafer's model

|  | $A$ | $B$ | $C$ |
| :---: | :---: | :---: | :---: |
| $m_{1}()$. | 0.9 | 0 | 0.1 |
| $m_{2}()$. | 0 | 0.9 | 0.1 |
| $m_{12}()$. | 0 | 0 | 0.01 |

Partial conflicts: $\quad m_{12}(A \cap B)=0.81, m_{12}(A \cap C)=m_{12}(B \cap C)=0.09$
Total conflict: $\quad k_{12}=m_{1}(A) m_{2}(B)+m_{1}(A) m_{2}(C)+m_{2}(B) m_{1}(C)=0.81+0.09+0.09=0.99$

## Comparison of Fusion results

(DS)

| $m_{D S}(C)=1$ | $m_{D S m H}(A \cup B)=0.81$ | $m_{\text {PCR } 5}(A)=0.486$ | $m_{Y}(A \cup B \cup C)=0.99$ |
| :---: | :---: | :---: | :---: |
| - | $m_{D S m H}(A \cup C)=0.09$ | $m_{\text {PCR } 5}(B)=0.486$ | $m_{Y}(C)=0.01$ |
|  | $m_{D S m H}(B \cup C)=0.09$ | $m_{P C R 5}(C)=0.028$ | $\pi$ |
|  | $m_{D S m H}(C)=0.01$ |  |  |

What is the most reasonable/trustable result ?
No definitive answer since $\sim 30$ years !!! but simulations can be done based on groundtruth to compare performances of different rules.

## Smarandache's example (non Bayesian case)

$\Theta=\{A, B, C, D\} \quad$ Shafer's model
Partial conflicts: $\quad m_{12}(A \cap B)=m_{1}(A) m_{2}(B)=0.9801$
Inputs

|  | $A$ | $B$ | $C \cup D$ |
| :---: | :---: | :---: | :---: |
| $m_{1}()$. | 0.99 | 0 | 0.01 |
| $m_{2}()$. | 0 | 0.99 | 0.01 |
| $m_{12}()$. | 0 | 0 | 0.0001 |

$$
\begin{aligned}
& m_{12}(A \cap(C \cup D))=m_{1}(A) m_{2}(C \cup D)=0.0099 \\
& m_{12}(B \cap(C \cup D))=m_{1}(C \cup D) m_{2}(B)=0.0099
\end{aligned}
$$

Total conflict: $\quad k_{12}=m_{1}(A) m_{2}(B)+m_{1}(A) m_{2}(C \cup D)+m_{1}(C \cup D) m_{2}(B)=0.9801+0.0099+0.0099=0.9999$

With (DS) rule, one will get
With (DSmH) rule, one will get

With (PCR5) rule, one will get

$$
m_{D S}(C \cup D)=1
$$

$$
\begin{aligned}
& m_{D S m H}(A \cup B)=0.9801 \\
& m_{D S m H}(A \cup C \cup D)=0.0099 \\
& m_{D S m H}(B \cup C \cup D)=0.0099 \\
& m_{P C R 5}(A)=m_{P C R 5}(B)=0.499851 \\
& m_{P C R 5}(C \cup D)=0.000298
\end{aligned}
$$

$$
m_{D S m H}(C \cup D)=0.0001
$$

With TBM and Smets' rule, one gets $m_{S}(\emptyset)=0.9999 \quad m_{S}(C \cup D)=0.0001$

## Target type tracking with (DS) and (PCR5)

2 targets sequentially observed and classified with $\quad \mathrm{C}_{2}=\left[\begin{array}{ll}0.75 & 0.25 \\ 0.25 & 0.75\end{array}\right]$


Cargo Type Tracking


Fighter Type Tracking

## Example : (PCR5) for Gaussian Bayesian belief distributions

Here we restrict masses to be Bayesian and we extend PCR5 to work on a continuous frame


Case 1: $m_{2}()=.m_{1}($.
Case $2: m_{2}(.) \neq m_{1}($.
Application: Particle Filtering for target tracking [Fusion 2007]

## Fusion of beliefs based on sampling

[Frédéric Dambreville, Chap.6, DSmT Book 3,2009]

## Dempster's rule obtained from sampling approach

The estimate $\widehat{m}_{D S}($.$) of m_{D S}($.$) is obtained by the following sampling process:$

1. Repeat from $n=1$ to $n=N$ :
(a) Generate $Y_{1}$ and $Y_{2}$ by means of $m_{1}($.$) and m_{2}($.$) respectively,$
(b) If $Y_{1} \cap Y_{2}=\emptyset$, then set $X_{n}=$ rejected,
(c) Otherwise, keep $X_{n}=Y_{1} \cap Y_{2}$,
2. Compute the rejection rate $\widehat{z}=\frac{1}{N} \sum_{n=1}^{N} I\left[X_{n}=\right.$ rejected $]$,
3. For any $X \in G^{\Theta}$, compute $\widehat{m}_{D S}(X)$ by:

$$
\widehat{m}_{D S}(X)=\frac{1}{N(1-\widehat{z})} \sum_{n=1}^{N} I\left[X_{n}=X\right]
$$

## Fusion of beliefs based on sampling

## PCR5 rule obtained from sampling approach

The estimate $\widehat{m}_{P C R 5}($.$) of m_{P C R 5}($.$) is obtained by the sampling process:$

1. Repeat from $n=1$ to $n=N$ :
(a) Generate $Y_{1}$ and $Y_{2}$ by means of $m_{1}($.$) and m_{2}$ (.) respectively,
(b) If $Y_{1} \cap Y_{2} \neq \emptyset$, then take $X_{n}=Y_{1} \cap Y_{2}$,
(c) Otherwise, do:
i. Compute $\theta=\frac{m_{1}\left(Y_{1}\right)}{m_{1}\left(Y_{1}\right)+m_{2}\left(Y_{2}\right)}$,
ii. Generate a random number $u$ uniformly distributed on $[0,1]$,
iii. If $u<\theta$, set $X_{n}=Y_{1}$; otherwise, set $X_{n}=Y_{2}$,
2. For any $X \in G^{\Theta}$, compute $\widehat{m}_{P C R 5}(X)$ by:

$$
\widehat{m}_{P C R 5}(X)=\frac{1}{N} \sum_{n=1}^{N} I\left[X_{n}=X\right] .
$$

A general theoretical framework for the fusion based on sampling techniques has been developed by Dambreville [DSmT book 3]

## Simple MatLab Code for PCR5 and PCR6

 (For Shafer's model only)File : PCR5fusion.m

```
unction [mPCR5,TotalConflict] =PCR5fusion(BBA)
% Author and copyrights: Jean Dezer
Input: BBA matrix
Output:mPCR5 = resulting bba after fusion with PCR5
Mosalconflict = level of total conflict between sourc
NbrSources=size(BBA, 2); ;
CaraTheta=log2(sit
mPCR5=BBA (: ; 1);TotalConflict=0; return
mPCR5=
Card2PowerTheta=2^(Crambalm
All possible combinations
vec=[1:Card2PowerTheta]
Combinations=vec;
for s=1:NbrSources-1
Combinations=Combinations
MPCR5=zeros(Card2PowerTheta, 1)
TotalConflict=0;
Nombomb=size(CO
PC=Combinations (c,
Conj=zeros(1, NbrSources);
for s=1:NbrSources
mConj (s)=BBA(PC(s),s)
emd
massConj=prod(mConj, 2);
f(massConj>0)
% Check if this is
Intersections=PC(1)
for s=2:NbrSources
X=P(s)
end
end (Intersections }\mp@subsup{}{}{~}=0)%\mathrm{ the intersection is not empty
else% the intersection is empty
TotalConflict=TotalConflict+massConj;
% Let's apply PCR5 rule principle
Proportions=0*!
DenPCR5=0;
#PCR5=0;
MassProd=prod(mConj(SamePropositions),
Proportions(u)= MassProd*massConj;
DenPCR5=DenPCR5+MassProd;
end
Proportions=Proportions/DenPCR5;
% PCR5 redistribution
for u=1:size(UQ, 2)
mPCR5(UQ(u))=mPCR5(UQ(u))+Proportions(u)
end, end, end, end, return
```

Sophisticated toolboxes for DSmT are available for research purpose:
By A. Martin - See DSmT Book 3 and upon request to this author
By F. Dambreville - http://refereefunction.fredericdambreville.com

## On the associativity of DSm rules

## General case : Hybrid DSm model

DSmH and PCR5 rules are commutative and quasi-associative, i.e. in order to preserve the associativity we keep the result of the conjunctive rule and, when new evidence comes in, this result is combined with the new evidence and then one applies the redistribution of the confliciting mass using (DSmH).

$$
\underbrace{\left[m_{1} \oplus m_{2} \oplus m_{3}\right](.)}_{\text {Optimal Fusion }} \neq \underbrace{\left[\left(m_{1} \oplus m_{2}\right) \oplus m_{3}\right](.)}_{\text {Suboptimal fusion }} \neq \underbrace{\left[m_{1} \oplus\left(m_{2} \oplus m_{3}\right)\right](.)}_{\text {Suboptimal fusion }} \neq \underbrace{\left[m_{2} \oplus\left(m_{1} \oplus m_{3}\right)\right](.)}_{\text {Suboptimal fusion }}
$$

To preserve optimality and coherence of the fusion result, all the sources have to be combined altogether at same fusion level (centralized fusion), not sequentially.

Sequential/decentralized fusion is only suboptimal since part of information is lost during intermediate fusion steps.

## Special case : Free DSm model (no constraint)

DSmH reduces to DSmC (i.e. the conjunctive consensus over hyper-power set).
DSmC is commutative and associative on free DSm models whatever values bba's take.
DS rule is commutative and associative but provides counter-intuitive results when the conflict between sources becomes high.

## On the refinement of the frame

How to refine?
Why?

$$
\Theta=\left\{\theta_{1}=\text { Small, } \theta_{2}=\text { Tall }\right\}
$$

$$
\begin{array}{ccc}
m_{1}\left(\theta_{1}\right)=0.4 & m_{1}\left(\theta_{2}\right)=0.5 & m_{1}\left(\theta_{1} \cup \theta_{2}\right)=0.1 \\
m_{2}\left(\theta_{1}\right)=0.6 & m_{2}\left(\theta_{2}\right)=0.2 & m_{2}\left(\theta_{1} \cup \theta_{2}\right)=0.2 \\
k_{12}=m_{1}\left(\theta_{1}\right) m_{2}\left(\theta_{2}\right)+m_{2}\left(\theta_{1}\right) m_{1}\left(\theta_{2}\right)=0.38
\end{array}
$$

## Case 1: Assume Shafer's model holds

$$
\begin{equation*}
m(\emptyset)=0 \quad m\left(\theta_{1}\right)=\frac{0.38}{1-0.38}=0.613 \quad m\left(\theta_{2}\right)=\frac{0.22}{1-0.38}=0.355 \quad m\left(\theta_{1} \cup \theta_{2}\right)=\frac{0.02}{1-0.38}=0.032 \tag{DS}
\end{equation*}
$$

(DSmH) $\quad m(\emptyset)=0 \quad m\left(\theta_{1}\right)=0.38 \quad m\left(\theta_{2}\right)=0.22 \quad m\left(\theta_{1} \cup \theta_{2}\right)=0.02+0.38=0.40$
DSmH is not equivalent to Dempster's rule (DS)
For this simple 2D static fusion problem, DSmH coincides with Yager's and Dubois \& Prade's rules.

## Case 2: Assume Shafer's model doesn't hold

because of the continuity and vagueness of elements and their relative interpretation Possible appraoches: 1) use DSmC with free model, or 2) use DS on a refined frame

## On the refinement of the frame (cont'd)

Case 2: Assume Shafer's model doesn't hold
Approach 1: work directly on DSm free model with DSmC
(DSmC)

$$
m(\emptyset)=0 \quad m\left(\theta_{1} \cap \theta_{2}\right)=0.38 \quad m\left(\theta_{1}\right)=0.38 \quad m\left(\theta_{2}\right)=0.22 \quad m\left(\theta_{1} \cup \theta_{2}\right)=0.02
$$

Approach 2: refine the frame and see what DS provides


$$
\begin{aligned}
& \theta_{1} \cap \theta_{2}=\theta_{2}^{\prime} \\
& \theta_{2}=\theta_{2}^{\prime} \cup \theta_{3}^{\prime} \\
& \theta_{1}=\theta_{1}^{\prime} \cup \theta_{2}^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& \Theta_{r e f} \triangleq\left\{\theta_{1}^{\prime}=\text { Small', } \theta_{2}^{\prime} \triangleq \text { Medium, } \theta_{3}^{\prime}=\text { Tall' }\right\} \\
& m_{1}^{\prime}\left(\theta_{1}^{\prime} \cup \theta_{2}^{\prime}\right)=0.4 \quad m_{1}^{\prime}\left(\theta_{2}^{\prime} \cup \theta_{3}^{\prime}\right)=0.5 \quad m_{1}^{\prime}\left(\theta_{1}^{\prime} \cup \theta_{2}^{\prime} \cup \theta_{3}^{\prime}\right)=0.1 \\
& m_{2}^{\prime}\left(\theta_{1}^{\prime} \cup \theta_{2}^{\prime}\right)=0.6 \quad m_{2}^{\prime}\left(\theta_{2}^{\prime} \cup \theta_{3}^{\prime}\right)=0.2 \quad m_{2}^{\prime}\left(\theta_{1}^{\prime} \cup \theta_{2}^{\prime} \cup \theta_{3}^{\prime}\right)=0.2
\end{aligned}
$$

Applying DS rule (there is NO conflict now)
(DS)

$$
\begin{aligned}
m(\emptyset) & =0 \\
m\left(\theta_{2}^{\prime}\right) & =m_{1}^{\prime}\left(\theta_{1}^{\prime} \cup \theta_{2}^{\prime}\right) m_{2}^{\prime}\left(\theta_{2}^{\prime} \cup \theta_{3}^{\prime}\right)+m_{2}^{\prime}\left(\theta_{1}^{\prime} \cup \theta_{2}^{\prime}\right) m_{1}^{\prime}\left(\theta_{2}^{\prime} \cup \theta_{3}^{\prime}\right)=0.38 \\
m\left(\theta_{1}^{\prime} \cup \theta_{2}^{\prime}\right) & =m_{1}^{\prime}\left(\theta_{1}^{\prime} \cup \theta_{2}^{\prime}\right) m_{2}^{\prime}\left(\theta_{1}^{\prime} \cup \theta_{2}^{\prime}\right)+m_{1}^{\prime}\left(\theta_{1}^{\prime} \cup \theta_{2}^{\prime} \cup \theta_{3}^{\prime}\right) m_{2}^{\prime}\left(\theta_{1}^{\prime} \cup \theta_{2}^{\prime}\right)+m_{2}^{\prime}\left(\theta_{1}^{\prime} \cup \theta_{2}^{\prime} \cup \theta_{3}^{\prime}\right) m_{1}^{\prime}\left(\theta_{1}^{\prime} \cup \theta_{2}^{\prime}\right)=0.38 \\
m\left(\theta_{2}^{\prime} \cup \theta_{3}^{\prime}\right. & =m_{1}^{\prime}\left(\theta_{2}^{\prime} \cup \theta_{3}^{\prime}\right) m_{2}^{\prime}\left(\theta_{2}^{\prime} \cup \theta_{3}^{\prime}\right)+m_{1}^{\prime}\left(\theta_{1}^{\prime} \cup \theta_{2}^{\prime} \cup \theta_{3}^{\prime}\right) m_{2}^{\prime}\left(\theta_{2}^{\prime} \cup \theta_{3}^{\prime}\right)+m_{2}^{\prime}\left(\theta_{1}^{\prime} \cup \theta_{2}^{\prime} \cup \theta_{3}^{\prime}\right) m_{1}^{\prime}\left(\theta_{2}^{\prime} \cup \theta_{3}^{\prime}\right)=0.22 \\
m\left(\theta_{1}^{\prime} \cup \theta_{2}^{\prime} \cup \theta_{3}^{\prime}\right) & =m_{1}^{\prime}\left(\theta_{1}^{\prime} \cup \theta_{2}^{\prime} \cup \theta_{3}^{\prime}\right) m_{2}^{\prime}\left(\theta_{1}^{\prime} \cup \theta_{2}^{\prime} \cup \theta_{3}^{\prime}\right)=0.02
\end{aligned}
$$

Thus (DS) reduces to (DSmC) with the necessity and justification (?) of the existence of a possible refinement. It introduces useless complexity w.r.t the direct DSmT formalism. Just work directly on hyper power set !!!

## Example of refinement with hybrid model


$\Theta_{\mathrm{ref}}=\{\alpha, \beta, \gamma, \delta\}$

$$
\begin{align*}
& m_{D S}\left(\alpha \cup \beta=\theta_{1}\right)=0.24 /\left(1-k_{12}\right)=0.324324 \\
& m_{D S}\left(\beta=\theta_{1} \cap \theta_{2}\right)=0.36 /\left(1-k_{12}\right)=0.486486  \tag{DS}\\
& m_{D S}\left(\beta \cup \gamma=\theta_{2}\right)=0.12 /\left(1-k_{12}\right)=0.162162 \\
& m_{D S}\left(\delta=\theta_{3}\right)=0.02 /\left(1-k_{12}\right)=0.027028
\end{align*}
$$

$$
\begin{array}{cc}
m_{D S m H}\left(\alpha \cup \beta=\theta_{1}\right)=0.24 & m_{D S m H}\left(\delta=\theta_{3}\right)=0.02 \\
m_{D S m H}\left(\beta=\theta_{1} \cap \theta_{2}\right)=0.36 & m_{D S m H}\left(\theta_{1} \cup \theta_{3}\right)=0.16 \\
m_{D S m H}\left(\beta \cup \gamma=\theta_{2}\right)=0.12 & m_{D S m H}\left(\theta_{2} \cup \theta_{3}\right)=0.10
\end{array}
$$

$$
\begin{gathered}
m_{P C R 5}\left(\alpha \cup \beta=\theta_{1}\right)=0.362 \\
m_{P C R 5}\left(\beta=\theta_{1} \cap \theta_{2}\right)=0.360 \\
m_{P C R 5}\left(\beta \cup \gamma=\theta_{2}\right)=0.188 \\
m_{P C R 5}\left(\delta=\theta_{3}\right)=0.090
\end{gathered}
$$

Conclusion: when working on hybrid models, Dempster's rule applied on refined frame is different from DSmT rules (DSmH and PCR5).

## Problem with Smets rule (TBM framework)

$$
\Theta=\{A, B, C\}
$$

Shafer's model

| del |  | $A$ | $B$ | C | $\emptyset$ | $A \cup B$ | $A \cup C$ | $B \cup C$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $m_{1}($. | 0.4 | 0 | 0.6 |  |  |  |  |
|  | $m_{2}($. | 0.7 | 0.3 | 0 |  |  |  |  |
| TBM modell | $m_{T B M}^{12}($. | 0.28 | 0 | 0 | 0.72 |  |  |  |
|  | $m_{D S}^{12}($. | 1 |  |  |  |  |  |  |
| Shafer's model | $m_{D S m H}^{12}($. | 0.28 | 0 | 0 | 0 | 0.12 | 0.42 | 0.18 |
|  | $m_{\text {PCR } 5}($. | 0.574725 | 0.111429 | 0.313846 |  |  |  |  |

Sequential Fusion of 2 sources

In the dynamic fusion suppose that a new source $m_{3}($.$) provides the information below. Then one sequentially combines the$ results obtained by $m_{T B M}^{12}(),. m_{D S}^{12}(),. m_{D S m H}^{12}($.$) and m_{P C R 5}^{12}($.$) with m_{3}($.$) and one gets:$


If again a fourth, fifth, etc. source provide information and we need to sequentially combine each such source with the previous result one gets for TBM:

$$
m_{T B M}(\emptyset)=m_{T B M}^{1234}(\emptyset)=1 \quad m_{T B M}(\emptyset)=m_{T B M}^{12345}(\emptyset)=1 \quad \ldots \quad m_{T B M}(\emptyset)=m_{T B M}^{12 \ldots n}(\emptyset)=1
$$

TBM approach does not respond to new information while DSm rules (DSmH and/or PCR5) respond to new information to combine. (DS) is not working at all.
The only ad-hoc solution to overcome this behavior is to introduce some temporal discounting factors and/or avoid to fall into such pathological cases ....

## Dynamic versus static fusion of three sources

The masses $\mathrm{m} 1(),. \mathrm{m} 2(),. \mathrm{m} 3($.$) are those used in the previous example$

## Dynamic/temporal Fusion The three sources are combined sequentially

| TBM modell |  | $A$ | $B$ | C | $\emptyset$ | $A \cup B$ | $A \cup C$ | $B \cup C$ | $A \cup B \cup C$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $m_{3}($. | 0 | 0.8 | 0.2 |  |  |  |  |  |
|  | $m_{T B M}^{123}($. | 0 | 0 | 0 | 1 | TBM | respo | and th | cificity is lost |
| Shafer'smodel | $m_{D S}^{123}($. | (DS) not working |  |  | (division by 0 ) |  |  |  |  |
|  | $m_{D S m H}^{123}($. | 0 | 0.240 | 0.120 | 0 | 0.224 | 0.056 | 0 | 0.360 |
|  | $m_{P C R 5}^{123}($. | 0.277490 | 0.545010 | 0.177500 |  |  |  |  |  |

$$
\text { Dynamic Fusion } \rightarrow\left[\left(m_{1} \oplus m_{2}\right) \oplus m_{3}\right](.)
$$

## Static Fusion

The three sources are combined alltogether

|  |  | $A$ | $B$ | C | $\emptyset$ | $A \cup B$ | $A \cup C$ | $B \cup C$ | $A \cup B \cup C$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $m_{1}($. | 0.4 | 0 | 0.6 |  |  |  |  |  |
|  | $m_{2}($. | 0.7 | 0.3 | 0 |  |  |  |  |  |
|  | $m_{3}($. | 0 | 0.8 | 0.2 |  |  |  |  |  |
| TBM model | $\overline{\prime \prime m_{T B M}^{123}(.)}$ | 0 | 0 | 0 | 1 | TBM | t respon | g and th | ecificity is lost |
| $\begin{gathered} \text { Shafer's } \\ \text { model } \end{gathered}$ | $m_{D S}^{123}($. | (DS) not working |  |  | (division by 0) |  |  |  |  |
|  | $m_{D S m H}^{123}(.)$ | 0 | 0 | 0 | 0 | 0.32 | 0.14 | 0.18 | 0.36 |
|  | $m_{P C R 5}^{123}($. | 0.345115 | 0.404783 | 0.250102 |  |  |  |  |  |

Static Fusion $\rightarrow\left[m_{1} \oplus m_{2} \oplus m_{3}\right]($.

## Belief conditioning and Non-Bayesian Reasoning

Approach I: Following Shafer's idea based on fusion
I) Shafer's "conditioning" rule (SCR) subjective certainty committed
I) Shafer's "conditioning" rule (SCR)
o A by source \# 2

$$
\mathrm{m}_{1}(. \mid A)=\left[m_{1} \oplus m_{2}\right](.) \quad \text { with } \quad\left\{\begin{array}{l}
m_{2}(A)=1 \\
\oplus=\text { Dempster's rule }
\end{array}\right.
$$

SCR = Bayesian reasoning with plausibilities
2) PCR5 conditioning rule (PCR5CR) [Smarandache Dezert, Brest 20।0]

We replace Dempster rule by PCR5 fusion rule
PCR5CR = Non Bayesian reasoning (NBR)

## Approach 2: Direct Belief Conditioning Rules (BCR)

## Approach 1 (based on fusion)

1) Extension of Bayesian Reasoning (Shafer's cond.)

$$
m(X \mid Y)=m_{D S}(X)=\left[m_{1} \oplus m_{2}\right](X) \quad \text { with } \quad m_{2}(Y)=1
$$

$$
\begin{array}{cl}
\operatorname{Bel}(X \mid Y)=\sum_{\substack{Z \in \in^{\ominus} \\
Z \in X}} m_{D S}(Z \mid Y)=\frac{B e l_{1}(X \cup \bar{Y})-\operatorname{Bel}_{1}(\bar{Y})}{1-\operatorname{Bel_{1}(\overline {Y})}} \begin{array}{ll}
\operatorname{Bel}(X \mid Y) \leq P(X \mid Y) \leq P l(X \mid Y) &
\end{array} \begin{array}{l}
\text { Consistency with } \\
\text { Bayes formula usin } \\
\text { Bayesian bba's: }
\end{array} \\
\left.P l(X \mid Y)=\sum_{\substack{Z \in e^{\ominus} \\
Z \cap X \neq \emptyset}} m_{D S}(Z \mid Y)=\frac{P l_{1}(X \cap Y)}{P l_{1}(Y)} \longrightarrow X\right)=\frac{P(X \cap Y)}{P(Y)}
\end{array}
$$

Bayesian When $Y=X$ and as soon as $\operatorname{Bel}(\bar{X})<1$, one gets $\operatorname{Bel}(X \mid X)=1$ because principle: $B e l_{1}(X \cup \bar{Y})=\operatorname{Bel}_{1}(X \cup \bar{X})=\operatorname{Bel}_{1}(\Theta)=1$. For Bayesian belief, this implies $P(X \mid X)=1$ for any $X$ such that $P_{1}(X)>0$.

Property of DS rule: Bayesian $\oplus$ Non-Bayesian $=$ Bayesian

## Approach 1 (based on fusion)

## 2) Non Bayesian Reasoning (NBR or PCR5CR)

Principle: $\quad \mathrm{m}_{1}(. \mid A)=\left[m_{1} \oplus m_{2}\right]($.$) \quad with \quad\left\{\begin{array}{l}m_{2}(A)=1 \\ \oplus=\operatorname{PCR} 5 \text { Fusion rule }\end{array}\right.$

Result: $\quad m(X \| Y)=\sum_{\substack{X_{1} \in 2^{\ominus} \\ X_{1} \cap Y=X}} m_{1}\left(X_{1}\right)+\delta(X \cap Y=\emptyset) \cdot \frac{m_{1}(X)^{2}}{1+m_{1}(X)}+\delta(X=Y) \cdot \sum_{\substack{X_{2} \in 2^{\ominus} \\ X_{2} \cap Y=\emptyset}} \frac{m_{1}\left(X_{2}\right)}{1+m_{1}\left(X_{2}\right)}$

$$
\begin{gathered}
\operatorname{Bel}(X \| Y)=\sum_{\substack{Z \in 2^{\ominus} \\
Z \subseteq X}} m(Z \| Y) \\
\operatorname{Bel}(X \| Y) \leq P(X \| Y) \leq P l(X \| Y) \\
\operatorname{Pl}(X \| Y)=\sum_{\substack{Z \in \ominus^{\ominus} \\
Z \cap X \neq \emptyset}} m(Z \| Y)
\end{gathered}
$$

> This conditioning is truly Non-Bayesian since $\operatorname{Bel}(\mathrm{Y} \| \mathrm{Y}) \leq \mathrm{I}$

## Property of PCR5 rule: Bayesian $\oplus$ Non-Bayesian $=$ Non-Bayesian (in general)

Deconditioning: It is the inverse (dual) problem of conditioning. It consists to retrieve the prior belief function from a given posterior/ conditional belief function. Useful for revising/reconditioning knowledge w.r.t. other conditional hypothesis. More simply stated, we want to see if for any given conditional bba $\mathrm{m}(.| | \mathrm{Y})$, we can compute $\mathrm{m}_{1}($.$) such that \mathrm{m}(.| | \mathrm{Y})=\operatorname{PCR5}\left(\mathrm{m}_{1}(),. \mathrm{m}_{2}(\right.$.$) with \mathrm{m}_{2}(\mathrm{Y})=1$.

## Example of NBR with Bayesian prior

## Example 1: with Bayesian prior $\Theta=\{A, B, C\} \quad Y=A \cup B$



$$
\Delta(. \mid Y)=[\operatorname{Bel}(. \mid Y), \operatorname{Pl}(. \mid Y)]
$$

see Smarandache-Dezert, Brest 2010 paper for details

## Example of NBR with NON-Bayesian prior

Example 2: with Non-Bayesian prior
$\Theta=\{A, B, C\} \quad Y=A \cup B$

| Prior bba's |  |  | Shafer conditioning |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Focal Elem. | ${ }^{m_{1}}$ | $m_{1}^{\prime}$ (.) | Focal Elem. | $m(. \mid Y)$ | $m^{\prime}(. \mid Y)$ |
| ${ }_{B}^{A}$ | ${ }_{\text {one }}^{\substack{0.20 \\ 0.30}}$ |  | ${ }_{B}^{A}$ | ${ }_{\substack{0.222 \\ 0.333}}^{0.2}$ | ${ }_{\substack{0.222 \\ 0.333}}^{0.2}$ |
|  | (in0.10 <br> 0.25 <br> 0.15 | 0.10 <br> 0.15 <br> 0.25 <br> 2.0 |  | ( | ( $\begin{aligned} & 0 \\ & 0.445\end{aligned}$ |
| $A \cup B \cup C$ |  |  | $\operatorname{Bel}(Y \mid Y)=1 \quad \operatorname{Bel} l^{\prime}(Y \mid Y)=1$ |  |  |
|  |  |  |  |  |  |


| $2^{\Theta}$ | $\Delta(. \mid Y)=\Delta^{\prime}(. \mid Y)$ | $\Delta(.\| \| Y)=\Delta^{\prime}(.\| \| Y)$ |
| :---: | :---: | :---: |
| $\emptyset$ | $[0,0]$ | $[0,0]$ |
| $A$ | $[0.2220,0.6670]$ | $[0.2000,0.6900]$ |
| $B$ | $[0.3330,0.7780]$ | $[0.3000,0.7900]$ |
| $C$ | $[0,0]$ | $[0.0100,0.0100]$ |
| $Y=A \cup B$ | $[1,1]$ | $[0.9900,0.9900]$ |
| $A \cup C$ | $[0.2220,0.6670]$ | $[0.2100,0.7000]$ |
| $B \cup C$ | $[0.3330,0.7780]$ | $[0.3100,0.8000]$ |
| $A \cup B \cup C$ | $[1,1]$ | $[1,1]$ |


| Non Bayesian conditioning |  |  |
| :---: | :---: | :---: |
| Focal Elen | $m(. \\| Y)$ | $m^{\prime}(. \\|$ |
|  |  |  |
| B | 0.30 | 0.30 |
| $A \cup B$ | O.01 0.49 | - |
| $\operatorname{Bel}(Y \\| Y)=\operatorname{Bel}^{\prime}(Y \\| Y)=0.99<1$ |  |  |
| Unique deconditioning of PCR5 conditioning is not possible in general with non Bayesian prior bba, unless additional constraints are introduced. |  |  |

$$
\Delta(. \mid Y)=[\operatorname{Bel}(. \mid Y), \operatorname{Pl}(. \mid Y)]
$$

## Approach 2 : Direct Belief Conditioning Rules (BCR)

Justification : One makes a clear and fundamental distinction between fusion of a prior bba $m_{l}($.$) with a source focused on a given$ set A (Shafer's approach) and belief revision conditioned by the fact that absolute truth is in A (BCRs approach).

To compute $m_{1}(. \mid A)$, and because the conditioning event $A$ contains the absolute truth, one proposes to revise the prior bba $\mathrm{m}_{1}($.$) based$ on NEW mass transfer, but NOT based on the fusion of $m_{1}($.$) with$ specialized bba $m_{2}(A)=I$. Many BCRs (BCRI-3I) have been recently developed.

BCRI2 and BCRI7 seems to be the most appealing so far (see justification in next slides).

## Example: visual perception and subjective certainty



Question: Is the color of squares $A$ and $B$ the same or different?

## Let's check



Conclusion:

Subjective certainty $\neq$ Objective (i.e. absolute) certainty

## Hyper-power set decomposition (HPSD)

BCRs are based on a particular hyper-power set decomposition imposed by the conditioning event, say A .

$$
D^{\Theta} \backslash\{\emptyset\}=D_{1} \cup D_{2} \cup D_{3}
$$

- $D_{1} \triangleq \mathcal{P}_{\mathcal{D}}(A)=2^{A} \cap D^{\Theta} \backslash\{\emptyset\}=$ all non-empty parts of $D^{\Theta}$ which are included in $A ;$
- $D_{2} \triangleq\{(\Theta \backslash s(A)), \cup, \cap\} \backslash\{\emptyset\}=$ the sub-hyper-power set generated by $\Theta \backslash s(A)$ under $\cup$ and $\cap$, without the empty set.
- $D_{3} \triangleq\left(D^{\Theta} \backslash\{\emptyset\}\right) \backslash\left(D_{1} \cup D_{2}\right)$.
where $\quad s(A)=\left\{\theta_{i_{1}}, \theta_{i_{2}}, \ldots, \theta_{i_{p}}\right\}, 1 \leq p \leq n$, be the singletons/atoms that compose $A$.

Example: if $A=\theta_{1} \cup\left(\theta_{3} \cap \theta_{4}\right)$ then $s(A)=\left\{\theta_{1}, \theta_{3}, \theta_{4}\right\}$.
The masses of $D_{2}$ and $D_{3}$ elements are redistributed to $D_{1}$ non-empty elements according to many ways (i.e.BCRI-BCR3I)

## Examples of HPSD

Let's consider $\Theta=\{A, B, C\}$ and the free DSm model.

Example I: If the truth is in $A$
$D_{1}=\{A, A \cap B, A \cap C, A \cap B \cap C\} \equiv \mathcal{P}(A) \cap\left(D^{\Theta} \backslash \emptyset\right)$
$D_{2}=(\{B, C\}, \cup, \cap)=D^{\{B, C\}}=\{B, C, B \cup C, B \cap C\}$
$D_{3}=\{A \cup B, A \cup C, A \cup B \cup C, A \cup(B \cap C)\}$

Example 2: If the truth is in $A \cap B$
$D_{2}=\{C\}$
$D 1=\{A \cap B, A \cap B \cap C\}$
$D_{3}=\{A, B, A \cup B, A \cap C, B \cap C, \ldots\}=\left(D^{\Theta} \backslash\{\emptyset\}\right) \backslash\left(D_{1} \cup D_{2}\right)$

## Example 3: If the truth is in $A \cup B$

$$
D_{1}=\{A, B, A \cap B, A \cup B, \ldots\} \quad D_{2}=\{C\}
$$

all $\overrightarrow{\text { other sets included in these four ones, i.e. }}$

$$
D_{3}=\{A \cup C, B \cup C, A \cup B \cup C, C \cup(A \cap B)\}
$$

$A \cap C, B \cap C, A \cap B \cap C, A \cup(B \cap C), B \cup(A \cap C)$, etc.

Example 4 : If the truth is in $A \cup B \cup C \quad D_{1}=D^{\Theta} \backslash\{\emptyset\} \quad D_{2}$ and $D_{3}$ do not exist.

## BCR \#17

## BCRI7 does the most refined/precise redistribution among all possible BCR, i.e.

- the mass $m(W)$ of each element $W$ in $D_{2} U D_{3}$ is transferred to the elements $X$ in $D_{1}$ which are included in W (if any) proportionally with respect to their non-empty masses;
- if no such $X$ exists, the mass $m(W)$ is transferred in a pessimistic/prudent way to the $k$ largest elements from $D_{\text {I }}$ which are included in $W$ (in equal parts) if any;
- if neither this way is possible, then $m(W)$ is indiscriminately distributed to all $X$ in $D_{\text {। }}$ proportionally with respect to their nonzero masses.

$$
\begin{gathered}
m_{B C R 17}(X \mid A)=m(X) \cdot\left[\left[\sum_{\substack{Z \in D_{1}, \\
\text { or } Z \in D_{2} \mid \nexists Y \in D_{1} \text { with } Y \subset Z}} m(Z)\right] / \sum_{Y \in D_{1}} m(Y)+\sum_{\substack{W \in D_{2} \cup D_{3} \\
X \subset W \\
S(W) \neq 0}} \frac{m(W)}{S(W)}\right] \\
+\sum_{\substack{W \in D_{2} \cup D_{3} \\
X \subset W, X \operatorname{is~} k \text {-largest } \\
S(W)=0}} m(W) / k
\end{gathered}
$$

## Example \#1 for BCR17

## $\Theta=\{A, B, C\} \quad$ free $\mathbf{D S m}$ model with non-Bayesian bba

$$
\begin{aligned}
& m(A)=0.2 \quad m(B)=0.1 \quad m(C)=0.2 \\
& m(A \cap B)=0.1 \quad m(A \cup B)=0.1 \quad m(B \cup C)=0.1 \\
& m(A \cup(B \cap C))=0.1 \quad m(A \cup B \cup C)=0.1
\end{aligned}
$$

Let's assume that the truth is in $B \cup C$, i.e. the conditioning term is $B \cup C$

## HPSD:

$$
\begin{aligned}
& D_{1}=\{A \cap B \cap C, B \cap C A \cap B, A \cap C,(A \cap B) \cup(B \cap C),(B \cap C) \cup(A \cap C),(A \cap B) \cup(A \cap C) \\
& \\
& \quad(A \cap B) \cup(A \cap C) \cup(B \cap C), B, C,(A \cap C) \cup B,(A \cap B) \cup C, B \cup C\} \\
& D_{2}=\{A\} \quad D_{3}=\{A \cup(B \cap C), A \cup B, A \cup C, A \cup B \cup C\}
\end{aligned}
$$

## BCR17 conditioning:

For $D_{2}: \quad m(A)=0.2$, where $A \in D_{2}$, is transferred to $B \cap A$ since $B \cap A \subset A$ and $m(B \cap A)>0$.
For $D_{3}: \quad m(A \cup B)=0.1$ is transferred to $B$ and $B \cap A$ since these are the only $D_{1}$ elements included in $A \cup B$ whose masses are non-zero, proportionally to their corresponding masses, i.e.
$\frac{x_{B}}{0.1}=\frac{w_{B \cap A}}{0.1}=\frac{0.1}{0.2}=0.5 \quad$ whence $x_{B}=0.05$ and $w_{B \cap A}=0.05$.
$m(A \cup B \cup C)=0.1$ is transferred to $B, C, B \cap A, B \cup C$, i.e. $\frac{x_{B}}{0.1}=\frac{y_{C}}{0.2}=\frac{z_{B \cup C}}{0.1}=\frac{w_{B \cap A}}{0.1}=\frac{0.1}{0.5}=0.2$
whence $x_{B}=0.02, y_{C}=0.04, z_{B \cup C}=0.02$ and $w_{B \cap A}=0.02$.
$m(A \cup(B \cap C))=0.1$ is transferred to $B \cap A$ only since no other $D_{1}$ element with non-zero mass is included in $A \cup(B \cap C)$.

## BCR17 result:

$m_{B C R 17}(B \mid B \cup C)=0.10+0.05+0.02=0.17 \quad m_{B C R 17}(B \cup C \mid B \cup C)=0.10+0.02=0.12$
$m_{B C R 17}(C \mid B \cup C)=0.20+0.04=0.24 \quad m_{B C R 17}(B \cap A \mid B \cup C)=0.1+0.2+0.05+0.02+0.1=0.47$

## Example \#2 for BCR17

$\Theta=\{A, B, C\}$ Shafer's model with non-Bayesian bba

$$
\begin{array}{lc}
m(A)=0.2 & m(B)=0.1 \quad m(C)=0.2 \\
m(A \cup B)=0.1 & m(B \cup C)=0.1 \quad m(A \cup B \cup C)=0.3
\end{array}
$$

Let's assume as conditioning constraint that the truth is in $B \cup C$.

HPSD:

$$
D_{1}=\{B, C, B \cup C\} \quad D_{2}=\{A\} \quad D_{3}=\{A \cup(B \cap C), A \cup B, A \cup C, A \cup B \cup C\}
$$

## BCR17 conditioning:

For $D_{2}, m(A)=0.2$ is transferred proportionally to all elements of $D_{1}$, i.e. $\quad \frac{x_{B}}{0.1}=\frac{y_{C}}{0.2}=\frac{z_{B \cup C}}{0.1}=\frac{0.2}{0.4}=0.5$ whence $x_{B}=0.05, y_{C}=0.10$, and $z_{B \cup C}=0.05$.

For $D_{3}, m(A \cup B)=0.1$ is transferred to $B$ (no case of $k$-elements herein); $m(A \cup B \cup C)=0.3$ is transferred to $B, C, B \cup C$ proportionally to their corresponding masses:

$$
\frac{x_{B}}{0.1}=\frac{y_{C}}{0.2}=\frac{z_{B \cup C}}{0.1}=\frac{0.3}{0.4}=0.75 \quad \text { whence } x_{B}=0.075, y_{C}=0.15, \text { and } z_{B \cup C}=0.075
$$

```
Result with BCRI7
m}\mp@subsup{\mp@code{BCR17}}{}{(B|B\cupC)=0.10+0.05+0.10+0.075 = 0.325
m}\mp@subsup{m}{BCR17}{}(C|B\cupC)=0.2+0.10+0.15=0.45
m}\mp@subsup{m}{BCR17}{}(B\cupC|B\cupC)=0.10+0.05+0.075=0.22
```

$$
\begin{aligned}
& \text { Result with SCR } \\
& m_{S C R}(B \mid B \cup C)=0.25 \\
& m_{S C R}(C \mid B \cup C)=0.25 \\
& m_{S C R}(B \cup C \mid B \cup C)=0.50
\end{aligned}
$$

## Belief Conditioning Rule \#12

$$
m_{B C R 12}(X \mid A)=\left[m(X) \cdot \sum_{\substack{Z \in D_{1}, \\ \text { or } Z \in D_{2} \mid \nexists Y \in D_{1} \text { with } Y \subset Z}} m(Z)\right] / \sum_{Y \in D_{1}} m(Y)
$$

## BCRI2 does the most pessimistic/prudent redistribution among all possible BCR:

- the mass $m(W)$ of each $W$ in $D_{2} U D_{3}$ is transferred in a pessimistic/prudent way to the k-largest elements $X$ from $D_{\text {I }}$ which are included in $W$ (in equal parts) if any;
- if this way is not possible, then $m(W)$ is indiscriminately distributed to all $X$ from $D_{1}$ proportionally with respect their nonzero masses.

BCRI2 can be regarded as a generalization of SCR from the power set to the hyperpower set in the free DSm free model (all intersections non-empty). In this case the result of $B C R I 2$ is equal to that of $m_{l}($.$) combined with m_{2}(A)=I$, when the truth is in $A$, using (DSmC).

## Example \#1 for BCR12



$$
\begin{aligned}
& \Theta=\{A, B, C\} \quad \text { free DSm model with non-Bayesian bba } \\
& m(A)=0.2 \quad m(B)=0.1 \quad m(C)=0.2 \\
& m(A \cap B)=0.1 \quad m(A \cup B)=0.1 \quad m(B \cup C)=0.1 \\
& m(A \cup(B \cap C))=0.1 \quad m(A \cup B \cup C)=0.1
\end{aligned}
$$

Let's assume that the truth is in $B \cup C$, i.e. the conditioning term is $B \cup C$

HPSD:

$$
\begin{aligned}
& D_{1}=\{A \cap B \cap C, B \cap C A \cap B, A \cap C,(A \cap B) \cup(B \cap C),(B \cap C) \cup(A \cap C),(A \cap B) \cup(A \cap C) \\
& \\
& \\
& \quad(A \cap B) \cup(A \cap C) \cup(B \cap C), B, C,(A \cap C) \cup B,(A \cap B) \cup C, B \cup C\} \\
& D_{2}=\{A\} \quad D_{3}=\{A \cup(B \cap C), A \cup B, A \cup C, A \cup B \cup C\}
\end{aligned}
$$

## BCR12 conditioning:

$$
m(A \cup C)=0
$$

$m(A)=0.2$ is transferred to $(A \cap B) \cup(A \cap C)$ since it is the 1-largest element of $D_{1}$ included in $A$. $m(A \cup(B \cap C))=0.1$ is transferred to $(A \cap B) \cup(A \cap C) \cup(B \cap C)$ since it is the 1-largest element of $D_{1}$ included in $A \cup(B \cap C)$.
$m(A \cup B)=0.1$ is transferred to $(A \cap C) \cup B$ since it is the 1-largest element of $D_{1}$ included in $A \cup B$.
$m(A \cup B \cup C)=0.1$ is transferred to $B \cup C$ since it is the 1-largest element of $D_{1}$ included in $A \cup B \cup C$.

## BCR12 result:

```
m}\mp@subsup{m}{BCR12}{}((A\capB)\cup(A\capC)|B\cupC)=0.
```

$m_{B C R 12}((A \cap B) \cup(A \cap C) \cup(B \cap C) \mid B \cup C)=0.1$
$m_{B C R 12}((A \cap C) \cup B \mid B \cup C)=0.1$

```
m}\mp@subsup{m}{BCR12}{}(B\cupC|B\cupC)=0.1+0.1=0.
m}\mp@subsup{m}{BCR12}{}(B|B\cupC)=0.
m}\mp@subsup{m}{BCR12}{}(C|B\cupC)=0.
m}\mp@subsup{m}{BCR12}{}(A\capB|B\cupC)=0.
```


## Example \#2 for BCR12

$$
\begin{array}{lll}
\Theta=\{A, B, C\} & \text { Shafer's model with non-Bayesian bba } \\
& m(A)=0.2 \quad m(B)=0.1 \quad m(C)=0.2 \\
& m(A \cup B)=0.1 \quad m(B \cup C)=0.1 \quad m(A \cup B \cup C)=0.3
\end{array}
$$

Let's assume as conditioning constraint that the truth is in $B \cup C$.

HPSD:

$$
D_{1}=\{B, C, B \cup C\} \quad D_{2}=\{A\} \quad D_{3}=\{A \cup(B \cap C), A \cup B, A \cup C, A \cup B \cup C\}
$$

## BCR12 conditioning:

$m(A)=0.2$ is distributed to $B, C$ and $B \cup C$ proportionally to their corresponding masses, i.e.

$$
\frac{x_{B}}{0.1}=\frac{y_{C}}{0.2}=\frac{z_{B U C}}{0.1}=\frac{0.2 \swarrow^{m(A)}}{0.1+0.2+0.1}=0.5
$$

whence $x_{B}=0.05, y_{C}=0.10$ and $z_{B \cup C}=0.05$.
$m(A \cup B)=0.1$ is transferred to $B$, i.e. the 1-largest element of $D_{1}$ included in $A \cup B$. $m(A \cup B \cup C)=0.3$ is transferred to $B \cup C$, i.e. the 1-largest element of $D_{1}$ included in $A \cup B \cup C$.

```
            Result with BCRI2
m}\mp@subsup{m}{BCR12}{}(B|B\cupC)=0.1+0.1+0.05=0.2
m}\mp@subsup{mCR12}{}{(C|B\cupC)=0.20+0.10=0.30
m}\mp@subsup{m}{BCR12}{}(B\cupC|B\cupC)=0.1+0.05+0.3=0.4
```

$\mathcal{F}$| Result with SCR |
| :--- |
| $m_{S C R}(B \mid B \cup C)=0.25$ |
| $m_{S C R}(C \mid B \cup C)=0.25$ |
| $m_{S C R}(B \cup C \mid B \cup C)=0.50$ |

## Example \#3 for BCR12

$\Theta=\{A, B, C, D\}$ Shafer's model with Bayesian bba

$$
m_{1}(A)=0.4 \quad m_{1}(B)=0.1 \quad m_{1}(C)=0.2 \quad m_{1}(D)=0.3
$$

Let's assume that one finds out that the truth is in $C \cup D$.

Actually we get same Result with all BCR


## Open questions

SCR and Dempster's combination rules commute because SCR is based on Dempster's rule and Dempster's rule is associative, but SCR is a special case of fusion, not a real conditioning dealing with absolute truth.

In general (but in Shafer's model with Bayesian bba's), BCRs do not commute with fusion operators, i.e.


Q1: How to compute $m(. \mid A)$ from $m_{1}($.$) and m_{2}($.$) ?$
Q2: How to justify if $m(. \mid A)=m_{\mathrm{Fc}}(. \mid A)$ or if $m(. \mid A)=m_{c F}(. \mid A)$ ?

