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1. Introduction

1.1 A famous proverb---six blind men and an elephant

touched leg --- pillar
touched tail --- rope

touched trunk --- tree branch
touched ear --- hand fan

touched belly --- wall

touched tusk --- solid pipe



All of you are right!

A wise man explains to them:

why are you telling it differently is because each one of you touched
the different part of the elephant.

So, actually the elephant has all those features what you all said.



>>What is the implication of the wise man’s saying?

In philosophy, it just means the limitation of one’s knowledge, or in
another words, one’s knowledge on a thing is unilateral.

>>Question: how to solve the problem of unilateral in one’s knowledge?

What is a thing? Particularly, What is an elephant?



>> What is an elephant?

Actually, the elephant has all those features what the blind men said.
This means that

An elephant
= {leg} U{tail} u{trunk} u{ear} u{belly} U{tusk}
={pillar} u{rope} u{tree branch} u{hand fan}u{wall}u{solid pipe}



The situation for one realizing the behaviors of natural world is analogous

to the blind men determining what an elephant looks like.
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>> \What is a thing in one’s eyes?

Similarly, we can determine what is a thing by
A thing = U .- Where each - is the feature of the thing. Thus a
=1 I

thing is nothing but a Smarandache multi-space.



« A depiction of the world by combinatoricians

How to characterize it by mathematics? Manifold!



>>the universal relation of things in philosophy implies that the underlying
structure in every thing of the universe is nothing but a combinatorial
structure.

Then:

What is the underlying combinatorial structure of an elephant?



Let vertices {trunk}={a}, {ear}={b,,b,}, {tusk}={c}, {belly} = {d},
{leg}={e,.e,.e5.e,}, {tail}={f} and two vertices adjacent if and only if

they touch each other.

@
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[NOTE] It is quite different from an elephant for drawing just by vertices and

edges.



>> How to get a planar elephant from its combinatorial structure?




>> How to get a 3-dimensional elephant from its combinatorial structure?
Blowing up each 2-ball to a 3-ball, we get:




2. Fundamental Groups

Examples of Topological Space:

(1) Real numbers R. Complex numbers C.
(2) Euclidean space R", Spheres S™ for n = 1;
(3) Product of spaces, such as S? x S"=2 for n > 4.

Definition Topological space, Hausdorft space, Open or closed sets, Open neigh-

borhood, Cover, Basis, Compact space, ..., in [1]-[3] following.
[1] John M.Lee, Introduction to Topological Manifolds, Springer-Verlag New York,
Inc., 2000.
[2] W.5.Massey, Algebraic Topology: An Introduction, Springer-Verlag, New York,
etc.(1977).
[3] Munkres J.R., Topelogy (2nd edition), Prentice Hall, Ine, 2000,



Definition Let S be a topological space and I = [0,1] C R. An arca in S is a
continuous mapping a : I — S with initial point a(0) and end point a(l), and S is
called arcwise connected if every two points in S can be joined by an arc in S. An
arc a : I — S is a loop based at p if a(0) = a(l) = p € S. A degenerated loop
e: ] — xS, e, mapping each element in I to a point x, usually called a point
loop.

Example Let G be a planar 2-connected graph on R? and S is a topological space
consisting of points on each e € E(G). Then S is a arcwise connected space by
definition. For a circuit €' in &, we choose any point p on €. Then C'1s a loop e,

in S based at p, such as those shown in the following.




Definition Let a and b be two arcs in a topological space S with a(l) = b(0). A
product mapping a - b of a with b is defined by

and an inverse mapping @ =a(l —t) by a.

Definition Let S be a topological space and a,b: [ — S two arcs with a{0) = b(0)

and a(1) = b(1). If there exists a continuous mapping

H:IxI—S5

such that H(t,0) =al(t), H(t,1) =b(t) for ¥t € I, then a and b are said homotopic,
denoted by a =~ b and H a homotopic mapping from a to b.

a(1)=b(1)

/




Theorem The homotopic =~ is an equivalent relation, i.e, all arcs homotopic to an

arc a is an equivalent arc class, denoted by |a].
Definition For a topological space S and xq € S, let w(S, zq) be a set consisting
of equivalent classes of loops based at xq. Define an operation o in m (S, xq) by

[a] o [b] = [a-b] and [a] ' =[a" 1.

Theorem (S, ) is a group.

Example: (1) m(R"™ xq), 20 € R™ and 7 (S™, yo), Yo € S™ 1s trivial for n = 2;

(2) m(S,y0) = Z and (T2, z9) = 22, 2 € T2



3. Combinatorial Manifolds

An n-dimensional manifold 1s a second countable Hausdorft space such that each
point has an open neighborhood homomorphic to a Euclidean space R™ of dimension

n, abbreviated to n-manifold.

Definition A combinatorial Fuclidean space is a combinatorial system %o of Eu-

clidean spaces R™, R"2, .., R"™ wunderlying a connected graph G defined by
1"[8] — {Rﬂl?Rﬂz! L. ?Rﬂm}!
E(G)={(R" R%) | R"NR" £, 1<ij<m},

denoted by Eq(ny, - -, My, ) and abbreviated to &ql(r) if ny = -+ = n,, = r, which

enables us to view an Fuclidean space R™ forn = 4.



Definition A combinatorial fan-space f{[-n.l, o My ) 18 the combinatorial Euclidean
space &g, (1, -+ Ty ) of R™, R", .. R™ such that

m

R™(R™ = (| R"™.

k=1

for any mtegers 1,7, 1 <1+ 7 < m.



Definition For a given integer sequence 0 < ny < ng < -+ < Ny, o m = 1, a
combinatorial manifold M is a Hausdorff space such that for any point p € ﬁ
there is a local chart (U, wp) of p. t.e., an open neighborhood U, of p in M and a

homoeomorphism gy : Uy — Rini(p), n2(p), -, ngp(p)), a combinatorial fan-space

with

{ﬂlu-:':l! ﬂ'?(p]! T ns(p](p)} ; {ﬂ'lv Tig, - !'n'm}v
U {nl(p)?nﬂ[p)? e !'n's(pj(p)} = {?11??12? e !'n'm}:

peM
denoted by ﬁ?[-n.l, Mo, Ty ) OF M on the context and

.f.i.: {':Ujlh ';r'?P)|p e M(ny,ng, - !ﬂm])}

an atlas on '_-ﬁ(nl? Mg, =y Ty ).
A combinatorial manifold M is finite if it is just combined by finite manifolds
with an underlying combinatorial structure G without one manifold contained in the

union of others.

[4] Linfan Mao, Geometrical theory on combinatorial manifolds, JP J.Geometry
and Topology, Vol.7, N0.1(2007),65-114.



4. Classical Seifert-Van Kampen Theorem with Applications

Theorem 4.1(Seifert and Van-Kampen) Let X = U UV with U, V open subsets
and let X, U, V, UNV be non-empty arcwise-connected with xro € UNV and H a
group. If there are homeomorphisms

b T U, xg) — H and ¢q :m(V,xg) — H

ard

(U MV, xg) —m (X, 2g)----- ~H

TV, 20)

e,
b3
&

.ig

with ¢y -1y = @y - ig, where iy @ m (U MV, 2q) — m (U, x2q), io : m(U NV, 2q) —
TV @), J1 0 MU, xq) — m(X,x0) and jo 1 m(V,2g) — (X, 20) are homomor-
phisms induced by inclusion mappings, then there erists a unique homomorphism

O (X, zg) — H such that ® - jy = ¢y and @ - jo = ¢s.



Theorem 4.2(Seifert and Van-Kampen theorem, classical version) Let spaces X, U, V'
and xq be in Theorem 2.1. If

Jrm(Usag) #m(V,2g) — (X, 20)
15 an extension homomorphism of jy and jo, then j is an epimorphism with kernel
Kerj generated by i1 (g)ia(g), g € 7 (U NV, xp), i.e.,

T (U, zg) % m(V, 2g)

— : W
{i7'(g) - ia(g)] g € m (U NV, zp))

ﬂ-l[-Y! ID] =

Corollary 4.1 Let spaces X, U.V and xq be in Theorem 2.1. If U NV is simply
connected, then

T (X)) =m (U, zg) # m(V, 20).



Application: Let B, = |JS! be a bouquet shown in Fig.2.1 with v; € S},

i=1
W; =58 —{v;} for 1 <i < n and

Uv=si{JwlJ---Uwn and v=wi{ sl sn

Fig.2.1

Then UV = 51,, an arcwise-connected star. Whence,
T1(By, 0) = (U, 0) # m(V,0) = my(Bn1. 0) % (7).
Bv induction, we easily get that

m(Bn.O) = (S}, 1<i<n).



5. Dimensional Graphs

Definition 5.1 A topological graph Z[G] is a pair (X, X%) of a Hausdorff space X
with its a subset XY such that

(1) X° is discrete, closed subspaces of X ;

(2) X — X" is a disjoint union of open subsets ey.eq, -+, ey, cach of which is
homeomorphic to an open interval (0,1);

(3) the boundary €; — e; of e; consists of one or two points. Ife; — e; consists of
two points, then (€, e;) is homeomorphic to the pair ([0,1],(0,1)); if & — e; consists
of one point, then (;,e;) is homeomorphic to the pair (S, S* — {1});

(4) a subset A C F[G] is open if and only if ANe; is open for 1 < i < m.
Theorem 5.1([2]) Any tree is contractible.

Theorem 5.2([2]) Let Tipan be a spanning tree in the topological graph TG, {ey :
A€ A} the set of edges of T[G]| not in Topan and oy = AyeryBy € ©(T[G),v0) a
loop associated with ey = ayby for YA € A, where vy € F[G] and Ay, By are unique

paths from vg to ay or from by to vg in Tipan. Then

(TG, vo) = {an|A € A)



Definition 5.2 An n-dimensional graph ﬁ“[G] 15 a combinatorial Euclidean space
éa(n) of Ry, p € A underlying a combinatorial structure G such that

(1) V(@) is discrete consisting of B", i.e., Yv € V(G) is an open ball B};

(2) ﬁ”[G] \ I(ﬁ”[(}*]] is a disjoint union of open subsets ey, eq, -+, e, each
of which is homeomorphic to an open ball B™;

(3) the boundary & — e; of e; consists of one or two B™ and each pair (€;,¢;) is
homeomorphic to the pair (Eﬂ, B™);

(4) a subset A C ﬁ”[G] is open if and only if ANE; s open for 1 <i < m,

" ity
M

. — —_—
(H

C V)
N



Theorem 5.3 For any integer n = 1, F|G] is a deformation retract of ;L}“[G]

Sketch of Proof If n =1, then M" [G] = F|G] is itself a topological graph. So
we assume 1n = 2.

For n = 2, letf(z,t) = (1 — )T + T be a mapping [ : ﬁ”[G] x I — ﬁ”[G]
for ¥T ;ﬁﬁ[G]l,t € I, where Tp = O, if T € B, and Ty = p(T) f T € ¢;, where

Piuv — €y, a projection for 1 < ¢ < m, such as those shown i Fig.2.3.

B" uv

Fig.2.3

Then f is such a deformation retract. [



6. Generalized Seifert-Van Kampen Theorem

[5] LinfanMao, Graph structure of manifolds with listing, International J.Contemp.

Math. Sciences, Vol.5, 2011, No.2,71-85.
[6] Linfan Mao, A generalization of Seifert-Van Kampen theorem for fundamental
groups, Far East Journal of Mathematical Sciences Vol.61 No.2 (2012), 141-160.

Definition 6.1 A fopological space X attached with a graph G is a space X & G

such that

and there are semi-edges et € (X[G)\ G, et € G\ X.

An example for X © G can be found in Fig.4.1.

U 9




Theorem 6.1 Let X be arc-connected space, G a graph and H the subgraph X NG
in X @G, Then for g € X MG,
Wl[};! :EE]:I * WI[G! Iﬂ]

m {-Y G! ID} = 1 . ~ o N
(111 [LTEA]?'Z[&IEAH Ex = E[Hj i'x Tspcm.]}

where iy @ m(H, ) — X, iz @ m(H,20) — G are homomorphisms induced by
inclusion mappings, Tepan 15 a spanning tree in H, ay = Ayey By is a loop associated
with an edge ey = axby € H\ Typan. ©0 € G and Ay, By are unique paths from xq to

ay or from by to xg in Tpan.
Sketeh of Proof Let U = X and V' = (. Applying the Seifert-Van Kampen
theorem, we get that

Wl[};!l‘ﬂ] * WI[G!IG]
{ifl(gj'iz(gﬂ gem(XNG, Io]>

Applving Theorem 3.2, We finally get the following conclusion,

(X © G, zp) =

F

TN, zg) * T (G, 20)

(il_l[&'e;s. )'ig{ffeﬂ| ex € E[H} 1'\. TSP'-'mjl)N

Il¢

Wl':-Y (o) G! IG]




Corollary 6.1 Let X be arc-connected space, G a graph. I[f X G in X © G 15 a

tree, then

3

Fig.4.2
and X NG = Ky,,, Then
(X Bﬂ,;z:@] =y (X, zg) * (Li|1 <& < m),
where Ly is the loop of parallel edges (xq, z;) in BL for1<i<m —1 and

e T 4 -
ﬂ-l[-Y . ‘—m!IG] = WI[A!IU]-



Theorem 6.2 Let 2, G be a topological space consisting of m arcwise-connected
spaces X1, X, -+, X, Xi N X; =0 for 1 < 4,j < m attached with a graph G,
VIG) = {zo, 21, ai_1}, m < 1 such that X; NG ={z;} for0<i<1—1. Then

T Em 0 Goxg) = (H?Tl(xé*aifo]) + T (G 7o)

II?
o
— s
j?l
=
E
~—
*
';‘-?I
iy
H
=

where X' = X;|J(zp, ;) with X; M (zg,2;) = {23} for (zo,2;) € E(G), integers
1 <1< m.

Sketch of Proof The proof is by induction on m with Theorem 4.1 and the

Seifert-Van Kampen theorem. [l



Corollary 6.2 Let G be the graph BL or a star ST, Then

(% @ BL 2g) = (Hﬂl(xfhfuj')*ﬂ*l[BnTpIa]

i=1

II?

(H *:rll:Xi,;ré_ljl) # (Lill <i<my,

i=1
where Ly is the loop of parallel edges (xq, z;) in BL for integers 1 <i < m and

m

mi( & @ Spowo) = [ [ (X ).

i=1

Corollary 6.3 Let X = 2, © G be a topological space with a simply-connected

space X; for any integer i, 1 < i < m and xg € X M G. Then we know that

Wl[--r{! ID] = ﬂ-l[G! IG]-



Theorem 6.3 Let X = U UV, UV C X be open subsets and X, U, V arcwise-
connected and let Cy, Cy, ---, C, be arcwise-connected components in U MV for an
integerm > 1, x;_y € Cy, bz, x;_1) C V anare: I — X with b(0) = zq,b(1) = z;_4
and b(zg, 7y ) U = {0, 2,1}, CF = C;|b(xo, zi_1) for any integeri, 1 <i < m,

H a group and there are homomorphisms
‘?i - Wl[{-’rUb(ID,Ii—ﬂ,In) — H, 95 cm(V.xeg) — H

such that

e T (U U b(xg, 251, 70)) a
| Ja }
E - P
m(CE,2)) —— m(X,z0) oo -~ H
‘ B ‘
iﬂ - ﬂ-l(L :I:-ID) {:J%
with @& - iy = @b - ig, where i : *;rll:tf-'f,-_rg) — m (U U b{xg, x5-1), 7)), i

m(CE, o) — m(V.z0) and jiy : w1 (UUb(zg, zi_1, 7o) — m1(X, 20), Jaz : (V. 20)) —
TN, xg) are homomorphisms induced by inclusion mappings, then there erists a
unique homomorphism © © m (X, x9) — H such that ©- j; = o’i and © - jio = @3

for integers 1 < i < m.



Sketch of Proof Define UF = Ul blzg, ;) | 1 <@ < m—1}. Then we get that
X=UEUV,UEV ¢ X are still opened with an arcwise-connected intersection
UENV =2, BT where bT is a graph formed by arcs b{xg, 7;_1). 1 < i < m.

Notice that 2, @ Sm’ = U CE and CFN Cf = {zg}. Therefore, we get that

T Zn 0S5 ®“Tl ", o).

This fact enables us knowing that there is a unique m-tuple (hy, ha, - -+, hy), hi €

ﬂl(Cf,;rz-_lL 1 < i < m such that

F = ﬁ hi
i=1

for V.7 € m (%, = ST, rg) and inclusion maps

¥ D ~ o ) TE
q fl[._“%ﬂm . Sm_,ID] — ”ﬂ'l{L _,ID}?

?f : ?rl(;ﬁ"m o ;SrT?T-D) — “FT1|1V3 -TDIIJ

m

ge e m(UE 2p) — m(X, 20), 45 m(V,2o) — m(X, 20)

EVRTY B o B _
with 75 |1T1|{CE o) = Fits Iy |1rr1_ E oy = tiz, J1 | (UUb(z0,25_1,20)) = Jit AN 35 |z (Veg) = Jiz

for llltE':’E“I‘E J.“ i < 1.



Define q!')lE and %E by

or () = [ [ i tialhe), oF(F) =[] ehlialh)).

E B
i &
- Wl(l-’rE. ED} .
Jr
— E — T ——'iI)—h
r|.1|:[ r_]-[«,'ﬂu] .'I.]_[Y., I-'n:l H
s
m1(V, 20)
iy 03

i1s commutative. Applving Theorem 2.1, we get the conclusion,



Theorem 6.4 Let X, U, V, C,_;E, b(xg, xi_1) be arcwise-connected spaces for any
integer i, 1 < i < m as in Theorem 3.1, U¥ = UJ! blzg.z5) | 1 <i < m — 1} and
BEE a graph formed by arcs alxg, xi_1), blxg, xi_1), 1 <1 < m, where alxg, x;_q) C U
is an arc : I — X with a(0) = zq,a(l) = z;_y and a(ze,zi—1) NV = {zg,zi_1}.
Then

(U, o) * m1(V, o) * 71 (BL, z0)

m N
<U"-1E)‘1(§)-f-z(§)| g ]:Ilﬂl(cf.-;rn) >

where i‘f : ?Tl(UE N V,zg) — ?rl(UE,j:g] arnd ?'.ZE - (U N Vixeg) — m(V,xq) are

Il?

T I:‘X-! Iy :l

IHI-I

homomorphisms induced by inelusion mappings.

Theorem 6.5 Let X, U, V', C,C5, -- -, C,, be arcwise-connected spaces, b{xg, r;_4)
arcs for any integer i, 1 < i < m as in Theorem 3.1, UE = Ul blrg,zq) | 1 =

i< m} and BnT% a graph formed by arcs a(xg, x;_1), blxg. 1), 1 < i< m. Then
m (U, zg) # w1 (V, 2g) # w1 (BL, o)

- N
<HE)‘1(§) i5(g)| g€ T1 m(fff?za)>
i=1

12

T I:-Y! L )

where f.‘f (U NV, xg) — m(UE, 2q) and ?TzE - (UF MV, zg) — m(V,xg) are

homomorphisms induced by inclusion mappings.



Corollary 6.4 Let X =U UV, U,V C X be open subsets and X, U, V and UMV
arcunse-connected. Then
(U, 2o )+ m(V, 2p)

— . - - N
(i7'(9) - ia(9)| g € m(U NV, 20))

where iy : m (U NV,xg) — m(U,2q) and io : m (U N V,2zg) — m(V,2q) are homo-

112

T [-Y! Tp :I

morphisms induced by inclusion mappings.

Corollary 6.5 Let X, U, V', C}, alzq, x;), blxg, x;) for integers i, 1 < i < m be as

in Theorem 3.1, If each C; is simply-connected, then
(X, 20) = m (U, 20) # m(V, 20) # m (Bl ).

Corollary 6.6 Let X, U, V', C, alxg, z;), blxg, x;) for integers i, 1 < i < m be as

in Theorem 3.1, If V' is simply-connected, then

T (U, xp) * ﬂl(Bgz! o)

m N2
<(iF}‘1(9} -iF(g)] g € l:ll?rl(CF,;rn} >

II¢

1 [};! ;EG]

where i‘f cm(UF NV, zg) — m(UE, x0) and ?'.EE (U NV, o) — m(V,z0) are

homomorphisms induced by inclusion mappings.



7. Fundamental Groups of Spaces

Definition 7.1 Let M be a combinatorial manifold underlying a graph G[ﬁ] An
edge-induced graph Gg[ﬁ'] 15 defined by
V(GP[M]) = {@ar, 2y, w1, %2, - - auuny| for Y(M, M) € B(G[M))},
E(GP[M)) = {(zar, 2a)s (a0, 20), (age, )| 1< i < (M, M)},
where p( M, M) is called the edge-index of (M, M") with p(M, M") + 1 equal to the

number of arcwise-connected components in M M M’.

By definition, G‘g[ﬁ] of a combinatorial manifold M is gotten by replacing
each edge (M, M') in G[ﬁ] by a subgraph TBE(M,M*) shown in the following with

ry = M and xpp = M.

T

Ty M M)

LM



Theorem 7.1 Let M be a finitely combinatorial manifold. Then

( I ﬂﬂkﬂ)#ﬂﬂ@%ﬁh

MeV (G[M])

N
<('if]‘1[93 -i5(g)| g € I1 ’rrl(ﬂ-flﬂ.-"l-fz]>

(M, M3z)e E(G[M])

where i¥ and if are homomorphisms induced by inclusion mappings iy = (M
MYy — (M), iy - (M OO MYy — 7 (M) such as those shown in the following

diagraim:

LM . ﬁ-l[-"‘l*'f] JM

’ '(I) iMAfs :"
7(M N M) MM - (M)

: - (M) .

10 JM

for ¥(M, M’y = E(G[M]).



Corollary 7.1 Let M be a finitely combinatorial manifold. If for ¥(My, Ms) £
E(GE [ﬁ']) My 1 My s simply connected, then

(M) = R m(M) | R m(GIM).

MeV(G[M])

Theorem 7.2 Let M be a compact n-manifold with charts {{Ux, 0| wa 0 Uy —
R™*, A e A)}. Then

m(G°[M])

(M) = o
<(i¥1—1th-i§th|gE I1 m(tf;rwm>

(U U )EE(GIM])
where -if and -igE are homomorphisms induced by inclusion mappings iy, : (U, M
Uy) — m(Us), i, s m (U, MU ) — m(U), v € AL
Corollary 7.2 Let M be a simply connected manifold with charts {{(Uy,@a)| @a -
Uy — R™ A€ A)}. Then G°[M] = G[M] is a tree.

Corollary 7.3 Let M be a compact n-manifold with charts {(Uy, on)| @n @ Uy —
R™. A e N)}. If U, nU, is simply connected for Yp,v € A, then

(M) = m (G[M]).



Theorem 7.2 Let M be a compact n-manifold with charts {{Ux,ea)| wa : Uy —
R™ A€ A)}. Then

(M) = m(G*[M)

(U U )eE(G[M])

N
<(i¥1—1[g3-i§tgl|ge I1 ?rl(b;m;:l>

vhere iE and iE . i P i e (T O
where iy and iy are homomorphisms induced by inclusion mappings iy, : w (U, N

Uy) — m(Us), ig, - m (U, MU ) — m(U), pov € AL

Corollary 7.2 Let M be a simply connected manifold with charts {(Uy,@n)| @
Uy — R" ) A)}. Then G°[M] = G[M] is a tree.

Corollary 7.3 Let M be a compact n-manifold with charts {{(Uy, pr)| wx : Uy —
R" A e A)}. If U, NU, is simply connected for Y, v € A, then

m(M) = m (G[M)).



8. Combinatorially Differential Theory

® Differential n-manifolds

An differential n-manifold (M™, A) is an n-manifold M™, M"™ = _L___J‘ir [/;. endowed
with a O differential structure A = {(U,. ¢, )|a € 1} on M™ for ;111’T11T(~g{~1' r with
following conditions hold.

(1) {U,:a € I} is an open covering of M™;

(2) For Vo, 3 € [, atlases (U, @, ) and (Us, ©z) are equivalent, i.e., U, N Uz =0

or U, MUz # U but the overlap maps

| N A AT R T o I
. T'-J'I‘.("'uﬂf'ﬁ;l — p(Us) and ¥E¥a - T'-"Iu.!"'nmﬂ"l-d;l — Pa(Ua)

T/"fl‘-?‘:;
are '
(3) A is maximal, i.e., if (U, ) is an atlas of M™ equivalent with one atlas in
A, then (U, p) € A.



® Differential n-manifolds

An differential n-manaifold (M™, A) is an n-manifold A™, M™ = U; [7;. endowed
P
with a C" differential structure A = {(U,, @, )|a € I} on M" for an integer r with
following conditions hold.
(1) {U,; a0 € I} is an open covering of M™;
(2) ForVa. 3 € I, atlases (U, 0, ) and (Ug. 05 are equivalent, i.e., U, N Uz =1

or U, Uz £ W but the overlap maps

—1 -

- a1 T N oa ATT cm A1
bl s B ?’-'ﬁ(.{"tlﬂi-rﬁ.jl - T’ft{fj &1[]{1 Y

. Tf.j(l‘_rz'rﬂr“l{."ﬁ :I — ‘.?L;crlj:{"lrtljl

are O
(3) A is maximal, i.e.. it (U, ) is an atlas of M" equivalent with one atlas in

A. then (U, ) € A.



® Differentiable Combinatorial Manifold

Definition 3.1 For a given integer sequence 1 < ny < ng < --- < Ny, @ COM-
binatorial C"-differential manifold (;ﬁ(nl,ng, . -:nm};}lﬁ) 15 a finitely combinato-
rial manifold :":f.(ni, T2, "~ * y m ), ;ﬁ(nl, TG, <~y Thm ) = L{Ui, endowed with a atlas
A = {(Uas; pu)|la € I} on ﬁ?(nl: na,---,N;m) for an -éntcgeer h,h > 1 with conditions
following hold.

(1) {Us;x € I} is an open covering of ;ﬁ(nl?ng, e T ).

(2) For Va,B8 € I, local charts (Uy;pa) and (Ug; ) are equivalent, i.e.,
UasUsg =0 or Ua (Up # U but the overlap maps

’Pa—'iP_El : 'PB(LTQHUS} - PG[US) and CP,SLPG-;_EI : [fgr:x(Ua mbrjj — Cpr::{{"ra)

are C"-mappings.

(3) A is mazximal, i.e., if (U; @) is a local chart of ﬂ}(nl Mo,y Ny ) equivalent
with one of local charts in A, then (U; ) € A.



Explains for condition (2)

Lo, /Al _ --Hﬂ-"- ] T-'—
| ) | 1 wEl(Cia () Lz
17 wel(Uia 1 Ts)

o~ B S - R g
< ___/_:{,-a [ A FIFE o
-[/'1__.3 " . { J " ., -I

Extence Theorem et i}( N, Na, -+, M) be a finitely combinatorial manifold and
d,1 < d < ny an integer. If VM € 1"’(CJEE[;-:{-TJ:(311, Mo, -, Ny )] ) 18 Ch-differential and
V(My, My) € E(GUM(ny, nag, -+, nm)]) there exist atlas

.,41 — {(Irfm {7{91) |"-;r'_1rg = :U'l} AZ‘ — {{H:Yy ?.A".f'yj

vy € Ms}

such that .|y, nw, = Yy lv, nw, for vx € M,y € My, then there is a differential

structures
A = {(Up; [wp))|¥p € M(n1,ma,- -, 12)}

suech that (;ﬁ(_nl, Mo, -y Mym ) Aj is a combinatorial C"-differential manifold.



® Local Properties of Combinatorial Manifolds

Denote by 2, all these C"™-functions at a point p < M (121,702, - - =, Tl ).

Definition 3.2 Let (Ef(nl, 19, -y Tlam ), .,i) be a smoothly combinatorial manifold
and p < Tf{nl no,---,Mm). A tangent vector v at p is a mapping v : 2, — R with

conditions following hold.
(1) Vg,h € Z,, VA € R, ©(h + Ah) =9(g) + Av(h);
(2) Vg,h € Z,,0(gh) =7(g)h(p) + g(p)v(h).

Theorem 3.2 For any point p € 1‘:}'{711 Mg, - - -, My) with a local chart (Uy; [wp]),

the dimension of Tpﬁ[nl, 7, RN I

e s(p)
dim7,M(ni,ne,---,nm) = s(p) + >_(n: — 5(p))
i—1
with a basis matrix [i] =
' ' Gz 15 P) X nap) —
P S A <N S AU . 0 ]
s(p) Bz 11 s(p) Dz =@ Srlislpi+1) Szl
1 8 T ) o 3 o 0
s(p) 8x21 s(p) 8x2=(r) A2 (=lr)+1) BxZn2
r e 1 <) 2] .. ... 2] ]
s(p) Ax=ir)l s(p) Bxr=(PIE(P) Bx=(p)(F(p)+1) a2 PN (py—1) ar PIna(p)

— g Jor 1l < 4,9 < 5(p),I <1 < s(p).



® Tensor Field

Definition 3.3 Let ;-'_lr-?{:-'zl,nm e 1im ) be a smoothly combinatorial manifold and
P E ;'l.-;’{ﬂ.l, ng, -, Nym). A tensor of type (r,s) at the point p on ;'l;':{nl. g, "=, My )
1s an (r + s)-multihinear function 7,
T T M X - XTyMXT,M x ---xT,M — R,
. - S— —

&

»
where TPEE = Tpéﬁ[nl y M2, "y Ny ) and T M = I, ;ﬁ.{n.l. 19, " Ty, ).

Theorem 3.3 Let ;i}-{'nlw'ni-} o Ty, ) be a smoothly combinatorial manifold and
L= j-"l_r-|::'-"?-:l1 Mg, My ). 1hen
Tr(p, M) =T, M@ --@T,MRT;M®---@T; M,

where TP*{} = Tp;{}.[nl. Mo, Ny ) and T, 1-,:' =T, ;{}.{n]. 19, +, My ), particularly,
s(p)

dimT] (p, M) = (S(p) + ¥ _ (ns — S(p)))"*™.

i=1



® Curvature Tensor

Definition 3.4 Let M be a smoothly combinatorial manifold. A connection on
tensors of M is a mapping D : 2 (M) x TTM — TTM with DxT = D(X, 1) such
that for VX, Y € 2 M, 7,m € Tr(M),A € R and f € C*=(M),

(1) DxysyT = Dx7 + fDy7; and Dx (T + Aw) = Dx7 + ADx;

(2) Dx(r @) = Dx7 @7+ 0 ® Dxm;

(3) for any contraction C' on T;"(ﬂ), Dx(C(7)) = C(Dx71).

A combinatorial connection space 1s a 2-tuple (ff, ﬁ) consisting of a smoothly
combinatorial manifold M with a connection D on its tensors.

For VXY € U‘J?"{iﬁ) a combinatorial curvature operator

R(X,Y): 2 (M) — 2 (M)
is defined by
R(X,Y)Z = DxDyZ — DyDxZ — Dixv\Z

forVZ € 2 (M).



Definition 3.5 Let M be a smoothly combinatorial manifold and g < Ag(iﬁ) e

U 72(p, ﬂ) If g is symmetrical and positive, then M is called a combinatorial
}Je_-ﬁ

Riemannian manifold, denoted by {fﬁg) In this case, if there is a connection D

on {ﬁi g) with equality following hold

Z(9(X,Y)) = g(Dz,Y) + g(X, DzY)
then M is called a combinatorial Riemannian geometry, denoted by (Ef},g E’)

In this case, R — ﬁ'(gq}ma)mm{ﬁ)‘}dmgc ® dz™ @ dz" ® dx*™ with

1 Pguyee) | Paenm 9w 9gunee

R(JC}(?FH}{F‘V}(”A} = E A Hnd Orhvy Gopos IrEAHpos kY Hpné )
1, R P T B P
() (o) (kX)(n8) I (£0) (D) () (n8) L (rA)(o5)? 9(£o0) (D)1

a a
where g (xa) = Q’{m1 W)



9. Application to Gravitational Field Theory

[7] LinfanMao, Relativity in combinatorial gravitational fields, Progress in
Physics,Vol.3(2010), 39-50.

Principle 3.1 These gravitational forces and inertial forces
acting on a particle in a gravitational field are equivalent and
indistinguishable from each other.

Principle 3.2 An equation describing a law of physics should

have the same form in all reference frame.

Principle 3.3 A physics law in a combinatorial field is in-
variant under a projection on its a field.



Projective Principle Let (M. g?) be a combinatorial Rie-
mannian manifold and % € TT(M) with a local form

ﬁ(ﬁf: ;illjj{.--'é:fllj}ljleklel @ PRI @ EK}-,L. {L}HlVl @ .. @ (L).'usy.‘-:

n (Up. [¢p]). If

¢ (k1 dy) (e dy) _

ﬁﬂﬂl"l}"'(ﬂs}'ﬂ =0
forintegers 1 < iy < s(p).l < vi < my, withl <i < s and
Il < k5 < s(p),1 < A; <n, withl < j <, then for any
integer i, 1 < u < s(p), there must be

(n)-(udy) _

L ryeuvyy =0

Jorintegers vi, 1 <v; <n,withl <i<s.



Let Z 5 be the Lagrange density of a combmatorial
spacetime (%65|7). Then we know equations of the combinato-
rial gravitational field (%5[7) to be

( H o o - :
A0 ub 54 P 51

=0, 3-1)

by the Euler-Lagrange equation, where ¢ ;; 1s the wave func-
tion of (¢5[7). Choose its Lagrange density % (in to be

where x = —87G and £ the Lagrange density for all other

fields with

o DD n _ pU§
R=g Rumywdy» Rty = Ropnoorwn)”
Applying the Euler-Lagrange equation we get the equation of
combinatorial gravitational field following

P L=
Row) — ER{J@V)(KJ) = K. (3 —2)

where &(,,)«.) 1s the energy-momentum tensor.



Let (4|f) be a gravitational field. We know 1ts Schwarzschild
metric, 1.e., a spherically symmetric solution of Einstemn’s
gravitational equations i vacuum 1s

ds* = (1—E)d _

I

—r*d6* — 1 sm” 6de* (3 - 4)

where 7, = 2Gm/c*. Now we generalize it to combinatorial
gravitational fields to find the solutions of equations
1
R[ﬂ}j(ﬂrr} — EU(H})(JT}R = —8HG£{}1V](£TT)

1n vacuul, 1.e., &) = 0. Notice that the underlying graph
of combmatorial field consisting of m gravitational fields 1s
a complete graph K,,. For such a objective, we only con-
sider the homogenous combinatorial Euclidean spaces M =
o, R, 1.e., for any pomt p € M,



i 11 In 1 . (:] -

X ‘o X
S
B I“l L IEHE . 0
[‘:ﬂp] =
I L AL |

i in

with m = dim(( R™) a constant for Vp € () R" and x” = %
i=1 i=1

forl <i<m1<I<m.

Let (45|f) be a combinatorial field of gravitational fields
M, -- -, M, with masses my, - --,m,, respectively. For usu-
ally undergoing, we consider the case ofn, = 4forl < u < m
since line elements have been found concretely 1n classical
gravitational field in these cases. Now establish m spherical
coordinate subframe (7,;7,.6,, ¢,) with 1ts origmality at the
center of such a mass space. Then we have known 1ts a spher-
ically symmetric solution by (3 — 4) to be



ds

=

r r ,
= (1-5yde - -Lyldr -
'y Ty
2 2 - 2 2
—r,(d6, + sm” 6,d¢;,).

for 1 < u < mwith rys = 2Gmy,/ e’ By Theorem 3.1, we
know that

ijz — ]_dSE + zdé'z + e + j”dlszn.
where ,ds* = a'sﬁ by the projective principle on combina-
torial fields. Notice that 1 < m < 4. We therefore get the

geometrical of (¢5|7) dependent on m following.



For example, if m =1,ie,t, =tfor1 <u<m, then the combinatorial
metric ds is

(s m m
. 2G'm,, 5 2G'm,, 5 5 L .
ds® = E (1 - —= | dt* - E (1-— =) tdr? — E r2(de; + sin® 6,de?).
[ [ _ f }"Iu —
=1 =1
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