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|.Introduction

* Fuzzy set (L. Zadeh, 1965): a useful method study in the
problems of imprecision and uncertainty.

We denote (4, u4(x)) is a fuzzy set A on universe set U.
u:U - [0,1]
u e py(u)

* Intuitionistic set (Atanassov, 1986): (A4, us(u),y4(u))
where 1, is a membership, v, is a non-membership of A
and

us(uw) +y,(u) <1,vu € U



|. Introduction

 Neutrosophic set (NS) (F. Smarandache, 1999):

(A, ua(u),na(w), ya(u)) where uy(u) is a degree of
truth (T), n,(u) is a degree of indeterminacy (l) and

va(u) is a degree of falsity (F) statisfy
0< pua(u),na(u),ya(u) < 1.

A tandard neutrosophic set (SNS) (Picture fuzzy set)
(B.C. Cuong, 2013): (A,us(u),na(u),y2(u)) in which
0< pa(u) +na(u) +ya(uw) <1

The family of all standard neutrosophic set in U is

denoted by PFS(U)

* Neutrosophic set and standard neutrosophic set have
many application, see [7],[8],...



|. Introduction

* An information system (IS) is any organized system
for the collection, organization, storage and
communication of information.

Rough set (Z. Pawlak, 1980s): a usefully
mathematical tool for data mining, especially for
information systems.

A standard neutrosophic information system (SNIS) is
an information system in which have using standard
neutrosophic values, such as voting information
systemes,...

Rough standard neutrosophic set (RSNS) is a usefully
mathematical tool for SNIS,...



Il. Basic notions of standard neutrosophic

and rough set

Deflnltlon 2. (Lattice (D", <p-+)). Let

= {(xq,X3,x3) €[0,1]%:x; + x, + x5 < 1}.
We define a relation <p on D* as follows:
V(X4,X5,X3), (X1,X5,X3) € D* then
(X1,X2,X3) <p+ (X1,X2,X3)iff (or (x; <xj,X3
X:3) or (X; = X1,X3 > x3) or(X; = X1,X3 = X3,X>
X2)) and (X1,X2,X3) =p (X1,X3,X3) &
(X1 = X1, X = X3,X3 = X3).
We putx, =1 — (X1 + X, + X3)

IA IV



Previous surveys of voters in the US presidential
election of 2017. Many people believe that Mrs
Clinton will win. But, when the election results were
announced, Mr Trumpt win. Those who carried out
the survey has no statistical omission to those who
have not been surveyed or comments about the
survey. These people in the elections could actually
participate very strong decision to actually vote
results. It is x,=1-—(x;y +x,+x3), wWhere
(Xl'XZ'XB) €D’




Il. Basic notions of standard neutrosophic

and rough set

e Standard neutrosophic set (SNS)
(A, pra(w), na(u), ya(u)) in which
0< us(u) +na(u) +y,(u) <1.

* Level set of SNS: (a, 5, 0) —level of a SNS A defined
by

A%Y = {x € U|(na(x),n a(%), ya(®))
2 (O(, B) e)}



e Let U be a nonempty universe of discourse. A
subset R € P(U X U) is referred to as a (crisp)
binary relation on U.

* Denote R((x) ={y € U|(x,y) € R},x € U.

* Rough set: Let (U,R) be a crisp approximation
space. For each crisp set A € U, we define the
upper and lower approximations of A (w.r.t)
(U,R) denoted by R(A) and R(A), respectively,
are defined as follows

RA) ={x€eURENA+0]}

R(A) = {x € U: Ri(x) € A}




I1l. Rough standard neutrosophic set

« RSNS: Let (U,R) be a crisp approximation space. For A €
PFS(U), the upper and lower approximations of A (w.r.t) (U,R)
denoted by RP(A) and RP(A), respectively, are defined as

follows:
RP(A) = {(% trp(a) ), MRP(A) X)) YRE(A) X)) X € U}
RP(A) = {(X, urp(a)(X), Mrp(a) (X), YRP(4) (X)) [X € U}
Where
HRP(A) (%) = Vyer ) a(Y), YRP(A)(X) = Ayer,x) Ya(y),
"IRP(A) (x) = /\yeRS x) A (),
and
Hrp(a)(X) = Nyerg(x) Ha(y), Yrea)(X) = Vyer,x) Ya(y),
NRP(A) (x) = Nyery(x) na(y)
 Some properties of RSNS are studied in full paper.



* |Information systems (IS)

Let (U,A,F,D,G) be a information system. Here U is the
(nonempty) set of objects, i.e., U= {uqu,, .., u,},
A ={aq,ay,...,a,, } is the conditional attribute set, and F is
the relation set of U and 4, ie, F={f;:U->V,j=
1,2,...,m} where Vi is the domain of the attribute g;
(j=12,...,m);D = {dl, d,, ..., d } is the decision attribute
set; G is the relation set of U and D.

* The (U, A, F)is called a classical information system.

 Relation Ry = IND(B)(where B c A), as follows,
Vx,y € U:

x IND(B)y & fij(x) = f;(y) forallj € {j:a; € B}.



* SNIS: Let (U,AF,D,G) be the information
system. If D = {D, |k = 1,2, ...,q} where D;, is a
standard neutrosophic subset of U and G is the
relation set of U and D, then (U,A,F,D,G) is
called a standard neutrosophic information
system.

Example: A SNIS (see Tabble 1)
U={uq,u,,..,up}, condition attribute set is
A = {aq,a,, a3} and the decision attribute set is
D = {Dll Dz, D3 } , Where Dk(k — 1,2,3) IS 3
standarf neutrosophic subset of U.
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IV. The standard neutrosophic

information systems (SNIS

Table 1: A standard neutrosophic information system

|
=
H
N
H
w

(0.2,0.5,0.3)
(0.3,0.5,0.1)
(0.6,0.4,0)
(0.15,0.7,0.1)
(0.05,0.7,0.2)
(0.1,0.5,0.3)
(0.25,0.4,0.3)
(0.1,0.2,0.6)

(0.45,0.45,0.1)
(0.05,0.9,0.05)

(0.15,0.2,0.6)
(0.3,0.3,0.3)
(0.3,0.6,0.05)
(0.1,0.8,0.05)
(0.2,0.3,0.4)
(0.2,0.4,0.3)
(1,0,0)
(0.25,0.4,0.3)
(0.25,0.3,0.4)
(0.4,0.3,0.2)

(0.4,0.5,0.05)
(0.35,0.4,0.1)
(0.1,0.4,0.45)
(0.2,0.3,0.4)
(0.05,0.5,0.4)
(1,0,0)
(0.3,0.4,0.3)
(0.4,0.6,0)
(0.2,0.3,0.5)
(0.05,0.2,0.7)



V. The knowledge discovery in SNIS

 Let (U,AF,D,G) be the NSIS and B € A, we denote
@B(Dj) is the lower rough SN approximation of
D; € PES(U) on approximation space (U, Rg).

* Theorem 5: Let (U,A,F,D,G) be the SNISand B C A. If
for any x € U:
(p, (), mp, (), ¥p, () = (a(x), 0(x), B(x)) =

RPz(D;)(x) > RPz(D;)(x) (i # J),
then [x]gN (~ Dj)ggg’oi ® and

[X]gC (Di)ggg,e(x) where (a(x), H(x),ﬁ(x)) € D*.



V. The knowledge discovery in SNIS

* Let (U,A,F,D,G) beaSNIS, R, = IND(A). The universe is
divided by R, as following: U/R, = {X1, X5 ..., X} }. Then
the approximation of the SN decision denoted as, for all
i =12, ..,k ,
RPy(D(X;)) =

(RP4(D1(X:)), RP4(D2(Xy)), .., RP4(Dg (X))
 Example 3. The SNIS in Table 1. The equivalent classes
U/Ry = {X1 = {uq, us, g}, X = {uy, uz, uy0},
X3 = {us}, X4 = {us, ugh Xs = {ue}}
The approximation of the standard neutrosophic decision is
in Table 2.



V. The knowledge discovery in SNIS

(0.2,0.5,0) (0.15,0.6,0,05) (0.1,0.5,0.05)
(0.05,0.9,0.05) (0.3,0.3,0.1) (0.05,0.4,0.1)
(0.15,0.7,0.1) (0.1,0.8,0.05) (0.2,0.3,0.4)
(0.05,0.7,0.2) (0.2,0.4,0.3)  (0.05,0.6,0)

(0.1,0.5,0.3) (0.2,0.4,0.3) (1,0,0)

Table 2:  The approximation of the Standard neutrosophic decision



VI. The knowledge reduction and

extension of SNIS

Definition 7. Let (U, A, F) be the classical IS and B € A.
(i) B is called the SN reduction of (U, A, F), if B is the minimum set
which satisfies the following relations: VX € PFS(U),x € U,
RPy(X) = RPs(X),  RP,(X) = RPp(X)
(ii) B is called the SN lower approximation reduction of (U, A, F), if B is

the minimum set which satisfies the following relations:
vX € PFS(U),x € U:

RP,(X) = RPg(X)
(iii) B is called the SN upper approximation reduction of (U, A, F), if B is
the minimum set which satisfies the following relations:
vX € PFS(U),x € U RP,(X) = RP5(X)
Where RP,(X),RPz(X), RP4(X),RP5(X) are SN lower and SN upper
approximation sets of SN set X € PFS(U) based on R4, Rg, respectively



VI. The knowledge reduction and

extension of SNIS

* Definition 8. Let (U, A, F, D, G) be the SNIS
D;;

_{aed i) = A(X)E 9x, (D) # gx,(Di)
R A ) gXi(Dk) = ng(Dk)
is called the discernibility matrix of
(U,AF,D,G) (where gx. (D) is the maximum
of EA(D(X )) obtained at Dy, i.e., gx,(Dy) =

RP,(Dy(X;)) =
max{&’A(Dt(Xi)), t=1,2, ..., q}.



Definition 9. Let (U,A4,F,D, G) be the standard
neutrosophic information system, for any B €
A, if the following relations holds, for any x € U:

RPg(D))(x) > RPz(D;)(x) & RP4(Dy)(x)
> RP,(D;)(x) (@ # J)
then B is called the consistent set of A.

Theorem 6. Let (U,A,F,D,G) be the standard
neutrosophic information system. If there exists

a subset B © A such that BN D;; # 0, then B is
the consistent set of A.




Definition 11. Let (U, 4, F) be the classical ISand A € B.
(i) B is called the SN extension of (U, A4, F), if B satisfies the following
relations: VX € PFS(U),x € U
RPy(X) = RPy(X),  RP,(X) = RPp(X)

(ii) B is called the SN lower approximation extension of (U,A,F), if B
satisfies the following relations: VX € PFS(U),x € U,

RP,(X) = RPg(X),
(iii) B is called the SN upper approximation extension of (U, A, F), if B
satisfies the following relations: forany X € PFS(U),x € U

RP4(X) = RP5(X)
Theorem 8. Let (U, A, F) be the classical IS, for any hyper set B, such

that A € B, if A is the SN reduction of the classical IS (U, B, F), then
(U, B, F) is the SN extension of (U, 4, F), but not conversely necessary.



Example 4. In the approximation of the SN decision in
Table 1, Table 2. Let B = {a4, a,}, then we obtained the
family of all equivalent classes of U based on the
equivalent relation Ry = IND (B) as follows

(X1 = {uy, U3, Ug}, Xy = {uz,u7,u10},}
\X3 — {ull-}) X4- — {u5,u8}, XS — {u6}

We can get the approximation value given in Table 3. It is
samed to the approximation value given in Table 2. It mean

B ={a4,a,}is a reduction of (U, A4, F)

The discernibility matrix of the standard neutrosophic
information system (U, A, F, D, G) will be presented in Table 4.

l]/l?B=<




VI. The knowledge reduction and
extension of SNIS

RP,(D;(X) | RP4(D2(X) | RP4(D3(X))

(0.2,0.5,0) (0.15,0.6,0,05)  (0.1,0.5,0.05)
(0.05,0.9,0.05)  (0.3,0.3,0.1) (0.05,0.4,0.1)
(0.15,0.7,0.1) (0.1,0.8,0.05) (0.2,0.3,0.4)
(0.05,0.7,0.2) (0.2,0.4,0.3) (0.05,0.6,0)

(0.1,0.5,0.3)  (0.2,0.4,0.3) (1,0,0)

Table 3:  The approximation of the standard neutrosophic decision



VI. The knowledge reduction and
extension of SNIS

I I

A A
X3 {a} {a1, a3} A
% {a1,a3} A A A
X {a1, a3} A A {az} A

Table 4:  The discernibility matrix of the standard neutrosophic information system



Conclusion

* We introduce the concept of standard
neutrosophic information system

* We study the knowledge discovery of
standard neutrosophic information system
based on rough standard neutrosophic sets

* knowledge reduction and extension of the
standard neutrosophic information system
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