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Several Trigonometric Hamming Similarity Measures of Rough 

Neutrosophic Sets and their Applications in Decision Making 

Abstract 
In 2014, Broumi et al. (S. Broumi, F. Smarandache, M. Dhar, Rough neutrosophic sets, Italian 

Journal of Pure and Applied Mathematics, 32 (2014), 493-502.) introduced the notion of rough 
neutrosophic set by combining neutrosophic sets and rough sets, which has been a mathematical 
tool to deal with problems involving indeterminacy and incompleteness. The real world is full of 
indeterminacy. Naturally, real world decision making problem involves indeterminacy. Rough 
neutrosophic set is capable of describing and handling imprecise, indeterminate and inconsistent 
and incomplete information. This paper is devoted to propose several new similarity measures 
based on trigonometric hamming similarity operators of rough neutrosophic sets and their 
applications in decision making. We prove the required properties of the proposed similarity 
measures. To illustrate the applicability of the proposed similarity measures in decision making, 
an illustrative problem is solved. 

Keywords 
Neutrosophic set, rough set, rough neutrosophic set, Hamming distance, similarity measure. 
 

1. Introduction 
L. A. Zadeh [1] introduced the degree of membership in 1965 and defined the concept of fuzzy 

set to deal with uncertainty. K. T. Atanassov [2] introduced the degree of non-membership as 
independent component in 1986 and defined the intuitionistic fuzzy set. F. Smarandache [3, 4] 
introduced the degree of indeterminacy as independent component and defined the neutrosophic 
set in 1998. 

To use the concept of neutrosophic set in practical fields such as real scientific and engineering 
applications, Wang et al. [5] presented an instance of neutrosophic set, called single valued 
neutrosophic set (SVNS). 
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In many applications, due to lack of knowledge or data about the problem domains, the decision 
information may be provided with intervals, instead of real numbers. To deal with the situation 
Wang et al. [6] introduced interval valued neutrosophic sets (IVNS), which is characterized by a 
membership function, non-membership function and an indeterminacy function, whose values are 
intervals rather than real numbers. Also, the interval valued neutrosophic set can represent 
uncertain, imprecise, incomplete and inconsistent information which exist in the real world.  

In 2014, Broumi et al. [7, 8] introduced the concept of rough neutrosophic set (RNS). It is 
derived by hybridizing the concepts of rough set proposed by Pawlak [9] and neutrosophic set 
originated by F. Smarandache [3, 4]. Neutrosophic sets and rough sets are both capable of dealing 
with uncertainty and partial information. Rough neutrosophic set [7, 8] is the generalization of 
rough fuzzy sets [10], [11] and rough intuitionistic fuzzy sets [12]. 

Mondal and Pramanik [13] applied the concept of rough neutrosophic set in multi-attribute 
decision making based on grey relational analysis in 2015. S. Pramanik and K. Mondal [14] also 
studied cosine similarity measure of rough neutrosophic sets and its application in medical 
diagnosis in 2015. Mondal and Pramanik [15] proposed multi attribute decision making using 
rough accuracy score function. Pramanik and Mondal [16] proposed cotangent similarity measure 
under rough neutrosophic environment.  Pramanik and Mondal [17] further proposed some 
similarity measures namely Dice similarity measure and Jaccard similarity measure in rough 
neutrosophic environment. Mondal et al. [18] proposed rough neutrosophic variational coefficient 
similarity measure and presented its application in multi attribute decision making.  Mondal et al. 
[19] presented rough neutrosophic TOPSIS for multi-attribute group decision making problem. 
Mondal and Pramanik [20] studied tri-complex rough neutrosophic similarity measure and its 
application in multi-attribute decision making. Mondal et al. [21] further proposed rough 
neutrosophic hyper-complex set and its application to multi-attribute decision making.     

Literature review reflects that no studies have been made on multi-attribute decision making 
using trigonometric Hamming similarity measures under rough neutrosophic environment. In this 
paper, we propose cosine, sine and cotangent Hamming similarity measures under rough 
neutrosophic environment. We also present a numerical example to show the effectiveness and 
applicability of the proposed similarity measures. 

2. Mathematical Preliminaries 

2.1 Neutrosophic set [3, 4]  
Let U be a universe of discourse. Then the neutrosophic set A is presented in the form: 
A = {< x: TA(x), IA(x), FA(x)>, x  U}, where the functions T, I, F: U→]−0,1+[ represent 

respectively the degree of  membership, the degree of indeterminacy, and the degree of non-
membership of the element xU to the set P satisfying the following the condition.  

−0≤ supTA(x)+ supIA(x)+ supFA(x) ≤ 3+                                                                   
2.2 Single valued neutrosophic sets [6] 

Definition 2.2 [6]  
Wang et al. [6] mentioned that the neutrosophic set assumes the value from real standard or 

non-standard subsets of ]−0, 1+[. So instead of ]−0, 1+[  Wang et al. [6] consider the interval  [0, 1] 
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for technical applications, because ]−0, 1+[ is difficult to apply in the real applications such as 
scientific and engineering problems.  

Assume that X be a space of points (objects) with generic elements in X denoted by x. A SVNS 
A in X is characterized by a truth-membership function TA(x), an indeterminacy-membership 
function IA(x), and a falsity membership function FA(x), for each point x in X, TA(x),  IA(x), FA(x)
[0, 1]. When X is continuous, a SVNS A can be written as follows: 

Xx
x

xFxIxTA
x

AAA ∈:)(),(),(



  

 When X is discrete, a SVNS A can be written as follows: 

 Xx
x

xFxIxTA i
n
i

i

iAiAiA ∈:∑ )(),(),(
1


 . 

For two SVNSs, ASVNS = {<x: TA(x), IA(x), FA(x)> | x X} and BSVNS = {<x, TB(x), IB(x), FB(x)> | 
xX },  ASVNSBSVNS  and ASVNS = BSVNS are defined as follows: 

(1) ASVNS BSVNS if and only if TA(x)  TB(x), IA(x)  IB(x), FA(x )  FB( x) 
(2) ASVNS = BSVNS if and only if TA(x) = TB(x), IA(x) = IB(x), FA(x) = FB(x) for any xX  

2.3 Hamming distance [17] 
Hamming distance [17] between two neutrosophic sets  )(),(),( xFxIxTA AAA and 
 )(),(),( xFxIxTB BBB  is defined as  

  ))x(F)x(F)x(I)x(I)x(T)x(T(
2
1B,AH BA

n
1i BABA                                                                 

 1
 

2.4 Rough neutrosophic set (RNS) 
Definition 2.2.1 [1], [2]: Let Z be a non-null set and R be an equivalence relation on Z. Let A 

be a neutrosophic set in Z with the membership function ,AT indeterminacy function AI  and non-
membership function AF . The lower and the upper approximations of A in the approximation (Z, 

R) denoted by  AN  and  AN  are respectively defined as follows: 
    ZxxzxFxIxTxAN RANANAN ∈,∈/)(),(),(, )()()( 

                                                                                                                           
    ZxxzxFxIxTxAN RANANAN ∈,∈/)(),(),(, )()()( 

                                                            
)2(
                                                      

where,    zTxxT ARzAN ∈∧)()(  ,    zIxxI ARzAN ∈∧)()(  ,    zFxxF ARzAN  ∈∧)()(  ,  
   zTxxT ARzAN ∈∨)()(  ,    zTxxI ARzAN ∈∨)()(  ,    zIxxF ARzAN ∈∨)()(  . 

So, 3≤)()()(≤0 )()()( xFxIxT ANANAN   and 3≤)()()(≤0 )()()( xFxIxT ANANAN  hold. Here 
and   denote “max” and “min’’ operators respectively.   zT A ,  zI A  and  zF A are the 

membership, indeterminacy and non-membership degrees of z with respect to A.  AN  and  AN
are two neutrosophic sets in Z. 

Thus, NS mappings ,N N : N(Z)  N(Z) denote respectively the lower  and  upper  rough  NS  
approximation  operators,  and the pair ))(),(( ANAN is called the rough neutrosophic set in (Z, R). 

Based on the above mentioned definition, it is observed that )(AN and )(AN  have constant 
membership on the equivalence class of R, if );()( ANAN   i.e. ),()( )()( xTxT ANAN 

 
),()( )()( xIxI ANAN 

 
  xF AN )()( )()( xF AN .
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For any x belongs to Z, P is said to be a definable neutrosophic set in the approximation (Z, R). 
Obviously, zero neutrosophic set (0N) and unit neutrosophic sets (1N) are definable neutrosophic 
sets. 

Definition 2.2.2 [1], [2]:  Let N(A) = ( )(),( ANAN ) is a rough neutrosophic set in (Z, R). The 
rough complement of N(A) is denoted by ),)(,)(()(~ cc ANANAN  where cc ANAN )(,)( are the 
complements of neutrosophic sets of )(),( ANAN respectively.  

  ,∈,/)(),(1),(, )()()( ZxxTxI-xFxAN ANANAN
c  and  

  ZxxTxI-xFxAN ANANAN
c ∈,/)(),(1),(, )()()( 

     
                                                            (3)                                               

 Definition 2.2.3 [1], [2]:  Let  )(AN  and )(BN are two rough neutrosophic sets respectively in 
Z, then the following definitions hold good: 

)()(∧)()(⇔)()( BNANBNANBNAN   
)(⊆)(∧)(⊆)(⇔)(⊆)( BNANBNANBNAN  
 )()(,)()()()( BNANBNANBNAN   
 )()(,)()()()( BNANBNANBNAN   
 )()(,)()()()( BNANBNANBNAN  

 )(.)(,)(.)()(.)( BNANBNANBNAN  
If A, B, C are the rough neutrosophic sets in (Z, R), then the following propositions can be stated 

from definitions. 
Proposition 1 [1], [2]: 

AAA )(~~.1  
ABBAABBA  ,.2   

)()(,)()(.3 CBACBACBACBA    
)()()(,)()()(.4 CABACBACABACBA     

Proposition 2 [1], [2]: 
De Morgan‘s Laws are satisfied for rough neutrosophic sets N(A) and N(B) 

))((~))(~())()((~.1 BNANBNAN    
))((~))((~))()((~.2 BNANBNAN    

For the proofs of the propositions, see [1, 2]  
Proposition 3[1], [2]: 
If A and B are two neutrosophic sets in U such that thenBA ,  ⊆ )(⊆)( BNAN  

)()(⊆)(.1 BNANBAN   
)()(⊇)(.2 BNANBAN   

For the proofs of the propositions, see [1, 2]  
Proposition 4 [1], [2]: 

)(~~)(.1 ANAN   
)(~~)(.2 ANAN   

 )(⊆)(.3 ANAN  
For the proofs of the propositions, see [1, 2]  

3. Cosine Hamming Similarity Measures of RNS 
Assume that    )(),(),(,)(),(),( iAiAiAiAiAiA xFxIxTxFxIxTA  and 

   )(),(),(,)(),(),( iBiBiBiBiBiB xFxIxTxFxIxTB   in X = {x1, x2, …, xn} be any two rough 
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neutrosophic sets. A cosine Hamming similarity operator between rough neutrosophic sets A and 
B is defined as follows:  

CCHSO(A, B)= 

  













n

i
iBiAiBiAiBiA xFxFxIxIxTxT

n 1
)()()()()()(

6
cos1                                     (4)                                                                

Here,  )( iA xT 











 

2
)()( iAiA xTxT

,  )( iB xT 











 

2
)()( iBiB xTxT

,  

 )( iA xI 











 

2
)()( iAiA xIxI

,  )( iB xI 











 

2
)()( iBiB xIxI

,  

 )x(F iA 











 

2
)()( iAiA xFxF

,  )x(F iB 











 

2
)()( iBiB xFxF

. 
Also, [ )(xT A , )(xI A , )(xF A ]  [0, 0, 0] and [ )(xT B , )(xI B , )(xF B ]  [0, 0, 0],  i = 1, 2, …, 

n. 
Proposition 3.1 

The defined rough neutrosophic cosine hamming similarity operator CCHSO(A, B) between 
RNSs A and B satisfies the following properties: 

1. 0   CRCHSO (A, B)  1 
2. CCHSO(A, B) = 1 if and only if  A = B 
3. CCHSO(A, B) = CCHSO(B, A) 

Proof of the property 1. 

Since the functions )(xT A , )(xI A , )(xF A , )(xT B , )(xI B , and )(xF B , and the value of  the 
cosine function are within [0,1], the similarity measure  based  on rough neutrosophic cosine 
hamming similarity function  also lies within [ 0,1]. 

Hence 0   CCHSO (A, B)  1. 
This completes thee proved. 

Proof of the property 2.  

For any two RNSs A and B, if A = B, then the following relations hold )()( iBiA xTxT  , 
)()( iBiA xIxI  , )()( iBiA xFxF  . Hence  

0)()(  iBiA xTxT , 0)()(  iBiA xIxI , 0)()(  iBiA xFxF .  

Thus CCHSO(A, B) = 1  

Conversely,  

If CCHSO(A, B) = 1, then 0)()(  iBiA xTxT , 0)()(  iBiA xIxI , .0)()(  iBiA xFxF
since cos(0) = 1. So we can write )()( iBiA xTxT  , )()( iBiA xIxI  , )()( iBiA xFxF   

Hence A = B. 
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4. Sine Hamming Similarity Measures of RNS 
Assume that    )(),(),(,)(),(),( iAiAiAiAiAiA xFxIxTxFxIxTA  and 

   )(),(),(,)(),(),( iBiBiBiBiBiB xFxIxTxFxIxTB   in X = {x1, x2, …, xn} be any two rough 

neutrosophic sets. A sine Hamming similarity operator between two rough neutrosophic sets A and 
B is defined as follows:  

SCHSO(A, B)= 

  







 















n

i
iBiAiBiAiBiA xFxFxIxIxTxT

n 1
)()()()()()(

6
sin11                               (4)                             

Also, [ )(xT A , )(xI A , )(xF A ]  [0, 0, 0] and [ )(xT B , )(xI B , )(xF B ]  [0, 0, 0],  i = 1, 2, …, 
n. 

Proposition 4.1 
The defined rough neutrosophic sine Hamming similarity operator SCHSO(A, B) between RNSs 

A and B satisfies the properties 4, 5, 6 as follows. 

1.     0   SCHSO (A, B)  1 
1. SCHSO(A, B) = 1 if and only if  A = B 
2. SCHSO(A, B) = SCHSO(B, A) 

Proof of the property 1. 

Since the functions )(xT A , )(xI A , )(xF A , )(xT B , )(xI B , and )(xFB , and the value of  
the sine function are within [0 ,1], the similarity measure  based  on rough neutrosophic sine 
hamming similarity function  also lies within [ 0,1]. 

Hence 0   SCHSO (A, B)  1. 

Proof of the property 2. 

For any two RNSs A and B if A = B, then the following relations hold )()( iBiA xTxT  , 
)()( iBiA xIxI  , )()( iBiA xFxF  . Hence  

0)()(  iBiA xTxT , 0)()(  iBiA xIxI , 0)()(  iBiA xFxF . Thus SCHSO(A, B) = 1  

Conversely,  

If SCHSO(A, B) = 1, then 0)()(  iBiA xTxT , 0)x(I)x(I iBiA  , .0)()(  iBiA xFxF
since sin(0) = 0. So we can write )()( iBiA xTxT  , )()( iBiA xIxI  , )()( iBiA xFxF   

Hence A = B. 
 

Proof of the property 3. 

This proof is obvious.
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5. Cotangent Hamming Similarity Measures of RNS 
Assume that    )(),(),(,)(),(),( iAiAiAiAiAiA xFxIxTxFxIxTA  and 

   )(),(),(,)(),(),( iBiBiBiBiBiB xFxIxTxFxIxTB   in X = {x1, x2, …, xn} be any two rough 

neutrosophic sets. A cotangent Hamming similarity operator between two rough neutrosophic sets 
A and B can be defined as follows:  

COTCHSO(A, B)=   
















n

i
iBiAiBiAiBiA xFxFxIxIxTxT

n 1
)()()()()()(

124
cot1   

(5)                                                         

Also, [ )x(TA , )x(IA , )x(FA ]  [0, 0, 0] and [ )x(TB , )x(IB , )x(FB ]  [0, 0, 0],  i = 
1, 2, …, n. 

Proposition 5.1   
The defined rough neutrosophic cotangent Hamming similarity operator COTCHSO(A, B) 

between RNSs A and B satisfies the properties 7, 8, 9. 

1. 0   COTCHSO (A, B)  1 
2. COTCHSO(A, B) = 1 if and only if  A = B 
3. COTCHSO(A, B) = COTCHSO(B, A) 

Proof of the property 1: 

Proof: Since the functions )(xT A , )(xI A , )(xF A , )(xT B , )(xI B , and )(xF B , and the value 
of  the cotangent function are within [0 ,1], the similarity measure  based  on rough neutrosophic 
cotangentHamming similarity function  also lies within [ 0,1]. 

Hence 0   COTCHSO (A, B)  1 

Proof of the property 2: 
For any two RNSs A and B if A = B, we have  

)()( iBiA xTxT  , )()( iBiA xIxI  , )()( iBiA xFxF  .  

Hence  

0)x(T)x(T iBiA  , 0)x(I)x(I iBiA  , 0)x(F)x(F iBiA  . Thus COTCHSO(A, B) = 1  

Conversely,  

If COTCHSO(A, B) = 1, then 0)x(T)x(T iBiA  , 0)x(I)x(I iBiA  , .0)x(F)x(F iBiA   

Since cot(
4
 ) = 1, we can write )()( iBiA xTxT  , )()( iBiA xIxI  , )()( iBiA xFxF   

Hence A = B. 
 

Proof of the property 3: 

This proof is obvious.    
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6. Decision making under trigonometric rough neutrosophic Hamming similarity 
measures 

In this section, we apply rough cosine, sine and cotangent Hamming similarity measures 
between RNSs to the multi-criteria decision making problem. Assume that S = {S1, S2, … , Sm }be 
a set of alternatives and A ={ A1, A2, … , A𝑛 }be a set of  attributes. 

The proposed decision making method is described using the following steps. 
Step 1: Construction of the decision matrix with rough neutrosophic number  
Decision maker considers the decision matrix with respect to m alternatives and n attributes in 

terms of rough neutrosophic numbers as follows. 
 
Table1: Rough neutrosophic decision matrix 

 nmijij ddD ,  

mnmnmmmmm

nn

nn

n

ddddddS

ddddddS

ddddddS
AAA

,...,,
.............
.............
,...,,

,...,,

2211

22222221212

11121211111

21 

                                                                       (6) 

Here ijij dd , is the rough neutrosophic number according to the i-th alternative and the j-th 

attribute.  
Step 2: Determination of the weights of attribute  
Assume that the weight of the attributes Aj (𝑗 = 1, 2, … , 𝑛) considered by the decision-maker 

be wj ((𝑗 = 1, 2, … , 𝑛)) such that   ∀ wj ∈  [0, 1] (j = 1, 2, …, n) and 1wn
1j j   .  

Step 3: Determination of the benefit type attribute and cost type attribute  
Generally, the evaluation attribute can be categorized into two types: benefit type attribute and 

cost type attribute. Let K be a set of benefit type attributes and M be a set of cost type attributes. 
In the proposed decision-making method, an ideal alternative can be identified by using a 
maximum operator for the benefit type attribute and a minimum operator for the cost type attribute 
to determine the best value of each criterion among all alternatives. We define an ideal alternative 
S* as follows: 

S* = {S1*, S2*, … , Sm*}, where benefit attribute is presented as  
 )()()(* min,min,max Si

A ji
Si

A ji
Si

A ji
j FITS   

and cost type attribute is presented as 
 )()()(* max,max,min Si

A ji

Si
A ji

Si
A ji

j FITS  .
 

Step 4: Determination of the overall weighted rough trigonometric neutrosophic 
Hamming similarity function (WRTNHSF) of the alternatives 

 We define weighted rough trigonometric neutrosophic similarity function as follows. 
CWCHSO(A, B) =   B) (A,Cw CHSO

n
j j 1                                                                                               (7) 

SWCHSO(A, B) =   B) (A,Sw CHSO
n
j j 1                                                                                                (8) 

COTWCHSO(A, B) =   B) (A,COTw CHSO
n
j j 1                                                                                     (9) 
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where  wn
j j 11   , j = 1, 2, …, n. 

Step 5: Ranking the alternatives 
Using the weighted rough trigonometric neutrosophic similarity measure between each 

alternative and the ideal alternative, the ranking order of all alternatives can be determined and the 
best alternative can be selected with the highest similarity value. 
Step 6: End 

7. Numerical Example 
Assume that a decision maker intends to select the most suitable smart phone for rough use 

from the three initially chosen smart phones (S1, S2, S3) by considering four attributes namely: 
features A1, reasonable price A2, customer care A3, risk factor A4. Based on the proposed approach 
discussed in section 5, the considered problem is solved using the following steps: 

Step 1: Construction of the decision matrix with rough neutrosophic numbers  
The decision maker forms a decision matrix with respect to three alternatives and four attributes 

in terms of rough neutrosophic numbers (see the Table 2). 
 
Table 2. Decision matrix with rough neutrosophic number 

 43)(),( PNPNd S  

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 2.0,1.0,8.0

,2.0,3.0,6.0
4.0,2.0,9.0

,6.0,4.0,7.0
1.0,1.0,9.0

,3.0,3.0,7.0
2.0,0.0,8.0

,2.0,2.0,6.0
3.0,3.0,9.0

,3.0,3.0,7.0
2.0,4.0,8.0

,2.0,2.0,6.0
3.0,3.0,8.0

,3.0,3.0,6.0
3.0,1.0,9.0

,3.0,3.0,7.0
2.0,2.0,9.0

,4.0,4.0,7.0
2.0,2.0,8.0

,4.0,4.0,6.0
2.0,2.0,8.0

,4.0,4.0,6.0
1.0,1.0,8.0

,3.0,3.0,6.0

3

2

1

4321

S

S

S

AAAA

                                 (10) 

 
Step 2: Determination of the weights of the attributes  
The weight vectors considered by the decision maker are 0.32, 0.28, 0.28 and 0.12 respectively.  
Step 3: Determination of the benefit attribute and cost attribute  
Here three benefit types attributes A1, A2, A3 and one cost type attribute A4. 
S* = [(0.8, 0.1, 0.2), (0.8, 0.2, 0.2), (0.8, 0.3, 0.3), (0.0.7, 0.3, 0.3)] 
Step 4: Determination of the overall weighted rough trigonometric neutrosophic 

Hamming similarity function (WRHNHSF) of the alternatives 
We calculate weighted rough trigonometric neutrosophic Hamming similarity values as follows. 
CWCHSO(S1, S*) = 0.99554, CWCHSO(S2, S*) = 0.99253, CWCHSO(S3, S*) = 0.99799 
SWCHSO(S1, S*) = 0.89455, SWCHSO(S2, S*) = 0.89233, SWCHSO(S3, S*) = 0.91729 
COTWCHSO(S1, S*) = 0.92114, COTWCHSO(S2, S*) = 0.90322, COTWCHSO(S3, S*) = 0.93009 

Step 5: Ranking the alternatives 
Ranking the alternatives is prepared based on the descending order of similarity measures. Highest 
value reflects the best alternative. 

Here,  
CWCHSO(S3, S*)   CWCHSO(S1, S*)   CWCHSO(S2, S*)  
SWCHSO(S3, S*)   SWCHSO(S1, S*)   SWCHSO(S2, S*)  
COTWCHSO(S3, S*)   COTWCHSO(S1, S*)   COTWCHSO(S2, S*)  

Hence, the smartphone S3 is the best alternative for rough use. 
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Step 6: End 
7.1 Comparison 
All the three similarity measures provided the same ranking order.  

8. Conclusion 
In this paper, we propose rough trigonometric Hamming similarity measures based multi-attribute 
decision making of rough neutrosophic environment and prove some of their basic properties. We 
provide an application, namely selection of the most suitable smart phone for rough use. We also 
present comparison with the three rough neutrosophic similarity measures. The concept presented 
in this paper can be applied other multiple attribute decision making problems in rough 
neutrosophic environment.  
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