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1. Introduction 

 

Neutrosophy is a branch of philosophy which studies the origin, nature and scope of neutralities, 

as well as their interactions with different ideational spectra (Smarandache 1999). Neutrosophic set 

is a powerful general formal framework which generalizes the concept of the classic set, fuzzy set 

(Zadeh 1965), interval valued fuzzy set (Turksen 1986), intuitionistic fuzzy set (Atanassov 1986), 

interval valued intuitionistic fuzzy set (Atanassov and Gargov 1989), paraconsistent set 

(Smarandache 1999), dialetheist set (Smarandache 1999), paradoxist set (Smarandache 1999), 

tautological set (Smarandache 1999). In neutrosophic set, indeterminacy is quantified explicitly and 

truth-membership, indeterminacy-membership, and false-membership are independent. This 

assumption is very important in many applications such as information fusion in which the data are 

combined from different sensors. Recently, neutrosophic sets had mainly been applied to image 

processing (Cheng and Guo, 2008; Guo and Cheng 2009). 

Intuitionistic fuzzy sets and interval valued intuitionistic fuzzy sets can only handle incomplete 

information but not the indeterminate information and inconsistent information which exist 

commonly in real situations. For example, when we ask the opinion of an expert about certain 

statement, he or she may that the possibility that the statement is true is between 0.5 and 0.7, and the 

statement is false is between 0.2 and 0.4, and the degree that he or she is not sure is between 0.1 and 

0.3. Here is another example, suppose there are 10 voters during a voting process. In time t1, four 

vote “yes”, three vote “no” and three are undecided. For neutrosophic notation, it can be expressed 

as x(0.4,0.3,0.3); in time t2, two vote “yes”, three vote “no”, two give up, and three are undecided, 
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then it can be expressed as x(0.2,0.3,0.3). That is beyond the scope of the intuitionistic fuzzy set. So 

the notion of neutrosophic set is more general and overcomes the aforementioned issues.  

The neutrosophic set generalizes the above mentioned sets from philosophical point of view. 

From scientific or engineering point of view, the neutrosophic set and set-theoretic operators need to 

be specified. Otherwise, it will be difficult to apply in the real applications (Wang et al 2005). 

Therefore, Wang et al (2005) proposed the set-theoretic operators on an instance of neutrosophic set 

called interval neutrosophic set (INS). The interval neutrosophic set can represent uncertain, 

imprecise, incomplete and inconsistent information which exist in real world. However, to the best 

of our knowledge, the existing literature does not deal with similarity measures between INSs and 

the decision-making problems in interval neutrosophic setting. Therefore, the Hamming and 

Euclidean distances between INSs are defined and the distances-based similarity measures for INSs 

are proposed in this paper, which can be used in real scientific and engineering applications. Thus, a 

multicriteria decision-making method is established based on the proposed similarity measures. 

Through the similarity measures between each alternative and the ideal alternative, the ranking order 

of all alternatives can be determined and the best one can be easily identified as well. An illustrative 

example demonstrates the application of the proposed decision-making method. 

The rest of paper is organized as follows. Section 2 introduces the some concepts of 

neutrosophic sets (Smarandache 1999) and INSs (Wang et al 2005). The Hamming and Euclidean 

distances between INSs are defined and a similarity measure based on the Hamming distance and a 

similarity measure based on the Euclidean distance are proposed according to the relationship of 

similarity measures and distances in Section 3. A decision-making method is established in interval 

neutrosophic setting by means of the similarity measure between each alternative and the ideal 
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alternative in Section 4. In Section 5, an illustrative example is presented to illustrate the developed 

approach. Finally, some final remarks of the similarity measures between INSs and the proposed 

decision-making method are given in Section 6. 

 

2. Some concepts of neutrosophic sets  

 

This section gives a brief overview of concepts of neutrosophic sets (Smarandache 1999) and 

interval neutrosophic sets (Wang et al 2005). 

2.1. Neutrosophic sets 

Neutrosophic set is a part of neutrosophy, which studies the origin, nature, and scope of 

neutralities, as well as their interactions with different ideational spectra (Smarandache 1999), and is 

a powerful general formal framework, which generalizes the above mentioned sets from 

philosophical point of view. The relationship of neutrosophic set and other sets is illustrated in Fig. 1 

(Wang et al 2005). 

Smarandache (1999) gave the following definition of a neutrosophic set. 

Definition 1 (Smarandache 1999) Let X be a space of points (objects), with a generic element in X 

denoted by x. A neutrosophic set A in X is characterized by a truth-membership function TA(x), a 

indeterminacy-membership function IA(x) and a falsity-membership function FA(x). TA(x), IA(x) and 

FA(x) are real standard or nonstandard subsets of ]0
−
, 1

+
[. That is TA(x): X → ]0

−
, 1

+
[, IA(x): X → ]0

−
, 

1
+
[, and FA(x): X → ]0

−
, 1

+
[. 

There is no restriction on the sum of TA(x), IA(x) and FA(x), so 0
−
 ≤ sup TA(x) + sup IA(x) + 

sup FA(x) ≤ 3
+
. 
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Definition 2 (Smarandache 1999) The complement of a neutrosophic set A is denoted by A
c
 and is 

defined as TA
c
(x) = {1

+
} ⊖ TA(x), IA

c
(x) = {1+} ⊖ IA(x), and FA

c
(x) = {1+} ⊖ FA(x) for every x in X. 

Definition 3 (Smarandache 1999) A neutrosophic set A is contained in the other neutrosophic set B, 

A ⊆ B if and only if inf TA(x) ≤ inf TB(x), sup TA(x) ≤ sup TB(x), inf IA(x) ≥ inf IB(x), sup IA(x) ≥ sup 

IB(x), inf FA(x) ≥ inf FB(x) , and sup FA(x) ≥ sup FB(x) for every x in X. 

 

 

 

Fig. 1. Relationship of neutrosophic set and other sets 

 

2.2. Interval neutrosophic sets 

Neutrosophic set 

Interval neutrosophic set 

Interval valued intuitionistic 

fuzzy set 

Interval valued 
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(Intuitionistic fuzzy set) 
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Paraconsistent set 

Fuzzy set 
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An INS is an instance of a neutrosophic set, which can be used in real scientific and engineering 

applications. In the following, we introduce the definition of an INS (Wang et al. 2005). 

Definition 4 (Wang et al 2005) Let X be a space of points (objects) with generic elements in X 

denoted by x. An INS A in X is characterized by a truth-membership function TA(x), an 

indeterminacy-membership function IA(x), and a falsity-membership function FA(x). For each point x 

in X, we have that TA(x), IA(x), FA(x)  [0, 1]. 

We call it “interval” because it is the subclass of a neutrosophic set, that is, we only consider the 

subunitary interval of [0, 1]. Therefore, All INSs are clearly neutrosophic sets. 

An INS in R
1
 is illustrated in Fig. 2 (Wang et al 2005). 

 

Fig. 2. Illustration of an INS in R
1
 

 

Definition 5 (Wang et al 2005) An INS A is empty if and only if its inf TA(x) = sup TA(x) = 0, inf IA(x) 

T(x) 

I(x) 

F(x) 

1 

X 0 

sup F(x) 

 

inf F(x) 

 

sup T(x) 

  

inf T(x) 

 

sup I(x) 

 

inf I(x) 
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= sup IA(x) = 1, and inf FA(x) = sup FA(x) = 0 for any x in X. 

Definition 6 (Wang et al 2005) The complement of an INS A is denoted by A
c
 and is defined as TA

c
(x) 

= FA(x), inf IA
c
(x) = 1 − sup IA(x), sup IA

c
 (x) = 1 − inf IA(x), FA

c
(x) = TA(x) for any x in X. 

Let 0 = <0, 1, 1> and 1 = <1, 0, 0>. Then, 0
c
 = <1, 0, 0> and 1

c
 = <0, 1, 1>. 

Definition 7 (Wang et al 2005) An interval neutrosophic set A is contained in the other INS B, A ⊆ 

B, if and only if inf TA(x) ≤ inf TB(x) , sup TA(x) ≤ sup TB(x), inf IA(x) ≥ inf IB(x) , sup IA(x) ≥ sup IB(x), 

inf FA(x) ≥ inf FB(x) , and sup FA(x) ≥ sup FB(x) for any x in X. 

Definition 8 (Wang et al 2005) Two INSs A and B are equal, written as A = B, if and only if A ⊆ B 

and B ⊆ A. 

 

3. Similarity measures between INSs 

 

In this section, we present the definitions of the Hamming and Euclidean distances between 

INSs and the similarity measures between INSs based on the distances, which can be used in real 

scientific and engineering applications. 

For convenience, two INSs A and B in X = {x1, x2,…, xn} are denoted by 

 XxxFxIxTxA iiAiAiAi  |)(),(),(,  and  XxxFxIxTxB iiBiBiBi  |)(),(),(, , where TA(xi), IA(xi), 

FA(xi)  [0, 1] for every xiX. Then we define the following distances for A and B. 

(i) The Hamming distance: 



)(sup)(sup)(inf)(inf)(sup)(sup

)(inf)(inf)(sup)(sup)(inf)(inf
6

1
),(

1

1

iBiAiBiAiBiA

n

i

iBiAiBiAiBiA

xFxFxFxFxIxI

xIxIxTxTxTxTBAd



 
 ,     (1) 

(ii) The normalized Hamming distance: 
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

)(sup)(sup)(inf)(inf)(sup)(sup

)(inf)(inf)(sup)(sup)(inf)(inf
6

1
),(

1

2

iBiAiBiAiBiA

n

i

iBiAiBiAiBiA

xFxFxFxFxIxI

xIxIxTxTxTxT
n

BAd



 
 .    (2) 

(iii) The Euclidean distance: 

     

       2/1222

1

222

3

)(sup)(sup)(inf)(inf)(sup)(sup

)(inf)(inf)(sup)(sup)(inf)(inf
6

1
),(

iBiAiBiAiBiA

n

i

iBiAiBiAiBiA

xFxFxFxFxIxI

xIxIxTxTxTxTBAd







 
 , (3) 

(IV) The normalized Euclidean distance: 

     

       2/1222

1

222

4

)(sup)(sup)(inf)(inf)(sup)(sup

)(inf)(inf)(sup)(sup)(inf)(inf
6

1
),(

iBiAiBiAiBiA

n

i

iBiAiBiAiBiA

xFxFxFxFxIxI

xIxIxTxTxTxT
n

BAd







 
 .(4) 

Proposition 1 The above defined distance dk(A, B) (k = 1, 2, 3,4) between INSs A and B satisfies the 

following properties (D1-D4): 

(D1) dk(A, B) ≥ 0;  

(D2) dk(A, B) = 0 if and only if A = B;  

(D3) dk(A, B) = dk(B, A);  

(D4) If A  B  C, C is an INS in X, then dk(A, C) ≥ dk(A, B ) and dk(A, C) ≥ dk(B, C). 

Proof It is easy to see that dk(A, B) (k = 1, 2, 3,4) satisfies the properties (D1)–(D3). Therefore, we 

only prove (D4). Let A  B  C, then, inf TA(xi)  inf TB(xi)  inf TC(xi), sup TA(xi)  sup TB(xi)  sup 

TC(xi), inf IA(xi)  inf IB(xi)  inf IC(xi), sup IA(xi)  sup IB(xi)  sup IC(xi), inf FA(xi)  inf FB(xi)  inf 

FC(xi), and sup FA(xi)  sup FB(xi)  sup FC(xi) for every xi  X. For p = 1, 2, we have 

p

iCiA

p

iBiA xTxTxTxT )(inf)(inf)(inf)(inf  , 
p

iCiA

p

iBiA xTxTxTxT )(sup)(sup)(sup)(sup  , 

p

iCiA

p

iCiB xTxTxTxT )(inf)(inf)(inf)(inf  , 
p

iCiA

p

iCiB xTxTxTxT )(sup)(sup)(sup)(sup  , 

p

iCiA

p

iBiA xIxIxIxI )(inf)(inf)(inf)(inf  , 
p

iCiA

p

iBiA xIxIxIxI )(sup)(sup)(sup)(sup  , 

p

iCiA

p

iCiB xIxIxIxI )(inf)(inf)(inf)(inf  , 
p

iCiA

p

iCiB xIxIxIxI )(sup)(sup)(sup)(sup  , 

p

iCiA

p

iBiA xFxFxFxF )(inf)(inf)(inf)(inf  , 
p

iCiA

p

iBiA xFxFxFxF )(sup)(sup)(sup)(sup  , 
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p

iCiA

p

iCiB xFxFxFxF )(inf)(inf)(inf)(inf  , 
p

iCiA

p

iCiB xFxFxFxF )(sup)(sup)(sup)(sup  . 

Hence 

p

iCiA

p

iCiA

p

iCiA

p

iCiA

p

iCiA

p

iCiA

p

iBiA

p

iBiA

p

iBiA

p

iBiA

p

iBiA

p

iBiA

xFxFxFxFxIxIxIxI

xTxTxTxTxFxFxFxF

xIxIxIxIxTxTxTxT

)(sup)(sup)(inf)(inf)(sup)(sup)(inf)(inf

)(sup)(sup)(inf)(inf)(sup)(sup)(inf)(inf

)(sup)(sup)(inf)(inf)(sup)(sup)(inf)(inf







, 

p

iCiA

p

iCiA

p

iCiA

p

iCiA

p

iCiA

p

iCiA

p

iCiB

p

iCiB

p

iCiB

p

iCiB

p

iCiB

p

iCiB

xFxFxFxFxIxIxIxI

xTxTxTxTxFxFxFxF

xIxIxIxIxTxTxTxT

)(sup)(sup)(inf)(inf)(sup)(sup)(inf)(inf

)(sup)(sup)(inf)(inf)(sup)(sup)(inf)(inf

)(sup)(sup)(inf)(inf)(sup)(sup)(inf)(inf







. 

Combining the above inequalities with the above defined distance formulas (1)-(4), we can 

obtain that 

),(),( CAdBAd kk   and ),(),( CAdCBd kk   for k = 1, 2, 3, 4. 

Thus the property (D4) is obtained.  

However, the differences of importance are considered in the elements in the universe. 

Therefore, we need to take the weights of the elements xi (i = 1, 2,…, n) into account. In the 

following, we develop some weighted distance measures between INSs. 

Let w = {w1 , w2,…, wn} is the weight vector of the elements xi (i = 1, 2,…, n), then we have the 

following the weighted Hamming distance and the weighted Euclidean distance: 



)(sup)(sup)(inf)(inf)(sup)(sup

)(inf)(inf)(sup)(sup)(inf)(inf
6

1
),(

1

5

iBiAiBiAiBiA

n

i

iBiAiBiAiBiAi

xFxFxFxFxIxI

xIxIxTxTxTxTwBAd



 
 ,      (5) 

     

       2/1222

1

222

6

)(sup)(sup)(inf)(inf)(sup)(sup

)(inf)(inf)(sup)(sup)(inf)(inf
6

1
),(

iBiAiBiAiBiA

n

i

iBiAiBiAiBiAi

xFxFxFxFxIxI

xIxIxTxTxTxTwBAd







 
 . (6) 

If w = {1/n, 1/n,…, 1/n}, then Eqs. (5) and (6) are reduced to the normalized Hamming distance 

Eq. (2) and the normalized Euclidean distance Eq. (4), respectively. 

It is easy to check that the weighted distance dk(A, B) (k = 5, 6) between INSs A and B also 

satisfy the above properties (D1-D4). 
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It is well known that similarity measures can be generated from distance measures. Therefore, 

we may use the proposed distance measures to define similarity measures. Based on the relationship 

of similarity measures and distance measures, we can define some similarity measures between INSs 

A and B as follows: 



)(sup)(sup)(inf)(inf)(sup)(sup

)(inf)(inf)(sup)(sup)(inf)(inf
6

1
1),(

1

1

iBiAiBiAiBiA

n

i

iBiAiBiAiBiAi

xFxFxFxFxIxI

xIxIxTxTxTxTwBAS



 
     (7) 

     

       2/1222

1

222

2

)(sup)(sup)(inf)(inf)(sup)(sup

)(inf)(inf)(sup)(sup)(inf)(inf
6

1
1),(

iBiAiBiAiBiA

n

i

iBiAiBiAiBiAi

xFxFxFxFxIxI

xIxIxTxTxTxTwBAS







 
 (8) 

According to the above distance properties (D1-D4), it is easy to check that the similarity 

measure Sk(A, B) (k = 1, 2) has the following properties (P1-P4): 

(P1) 0 ≤ Sk(A, B) ≤ 1;  

(P2) Sk(A, B) = 1 if and only if A = B;  

(P3) Sk(A, B) = Sk(B, A);  

(P4) If A  B  C, C is an INS in X, then Sk(A, C) ≤ Sk(A, B) and Sk(A, C) ≤ Sk(B, C). 

It is clear that the larger the value of Sk(A, B) ( k = 1, 2), the more the similarity between INSs A 

and B. 

 

4. Decision-making method based on the similarity measures 

 

In this section, we present a handling method for the multicriteria decision-making problem in 

interval neutrosophic setting by means of the similarity measures between INSs. 

Let A = {A1, A2,…, Am} be a set of alternatives and let C = {C1, C2,…, Cn} be a set of criteria. 

Assume that the weight of the criterion Cj (j = 1, 2,…, n), entered by the decision-maker, is wj, wj  
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[0, 1] and 1
1

 

n

j jx . In this case, the characteristic of the alternative Ai (i = 1, 2,…, m) is 

represented by the following INS: 

}|)](sup),([inf)],(sup),([inf)],(sup),([inf,{

}|)(),(),(,{

CCCFCFCICICTCTC

CCCFCICTCA

jjAjAjAjAjAjAj

jjAjAjAji

iiiiii

iii




, 

where 

)](sup),([inf)( jAjAjA CTCTCT
iii

 , )](sup),([inf)( jAjAjA CICICI
iii

 , )](sup),([inf)( jAjAjA CFCFCF
iii

 ⊆ 

[0, 1], 3)(sup)(sup)(sup0  jAjAjA CFCICT
iii

, j = 1, 2, …, n, and i = 1, 2, …, m. An INS, which 

is the pair of intervals )](sup),([inf)( jAjAjA CTCTCT
iii

 , )](sup),([inf)( jAjAjA CICICI
iii

 , 

)](sup),([inf)( jAjAjA CFCFCF
iii

  for Cj  C, is denoted by ij = ([aij, bij], [cij, dij], [eij, fij]) for 

convenience. Here, an INS is usually derived from the evaluation of an alternative Ai with respect to 

a criterion Cj by means of a score law and data processing in practice. Therefore, we can elicit a 

interval neutrosophic decision matrix D = (ij)mn. 

In multicriteria decision making environments, the concept of ideal point has been used to help 

identify the best alternative in the decision set. Although the ideal alternative does not exist in real 

world, it does provide a useful theoretical construct against which to evaluate alternatives.  

Generally, the evaluation criteria can be categorized into two kinds, benefit criteria and cost 

criteria. Let H be a collection of benefit criteria and L be a collection of cost criteria. Then we define 

an ideal INS for a benefit criterion in the ideal alternative A
*
 as 

             0,0,0,0,1,1,,,,, *******  jjjjjjj fedcba  for j  H; while for a cost criterion, we define an ideal 

INS in the ideal alternative A
*
 as              1,1,1,1,0,0,,,,, *******  jjjjjjj fedcba  for j  L. 

Thus, by applying Eqs. (7) and (8) two similarity measures between an alternative Ai and the 

ideal alternative A
*
 represented by the INSs are defined as follows: 
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 ijjijjijj

n

j

ijjijjijjji ffeeddccbbaawAAS  


***

1

****

1
6

1
1),( ,        (9) 

            
2/1

1

2*2*2*2*2*2**

2
6

1
1),(









 


n

j

ijjijjijjijjijjijjji ffeeddccbbaawAAS . (10) 

Through the similarity measure S1(A
*
, Ai) or S2(A

*
, Ai) (i = 1, 2,…, m) between each alternative 

and the ideal alternative, the ranking order of all alternatives can be determined and the best one can 

be easily identified as well. 

 

5. Illustrative example 

 

In this section, an example for the multicriteria decision-making problem of alternatives is used 

as the demonstration of the application of the proposed decision-making method, as well as the 

effectiveness of the proposed method. 

Let us consider the decision-making problem adapted from (Ye 2009). There is an investment 

company, which wants to invest a sum of money in the best option. There is a panel with four 

possible alternatives to invest the money: (1) A1 is a car company; (2) A2 is a food company; (3) A3 is 

a computer company; (4) A4 is an arms company. The investment company must take a decision 

according to the following three criteria: (1) C1 is the risk analysis; (2) C2 is the growth analysis; (3) 

C3 is the environmental impact analysis, where C1 and C2
 
are benefit criteria, and C3 is a cost 

criterion. The weight vector of the criteria is given by w = (0.35, 0.25, 0.40). The four possible 

alternatives are to be evaluated under the above three criteria by corresponding to the INSs, as 

shown in the following interval neutrosophic decision matrix D: 
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



















])9.0,8.0[],4.0,3.0[],7.0,6.0([])3.0,1.0[],2.0,1.0[],7.0,6.0([])2.0,1.0[],1.0,0.0[],8.0,7.0([

])9.0,7.0[],4.0,2.0[],5.0,4.0([])4.0,3.0[],3.0,2.0[],6.0,5.0([])4.0,3.0][3.0,2.0[],6.0,3.0([

])9.0,8.0[],5.0,3.0[],6.0,3.0([])3.0,2.0[],2.0,1.0[],7.0,6.0([])3.0,2.0[],2.0,1.0[],7.0,6.0([

])5.0,4.0[],3.0,2.0[],9.0,7.0([])4.0,2.0[],3.0,1.0[],6.0,4.0([])4.0,3.0[],3.0,2.0[],5.0,4.0([

D . 

Then, we utilize the developed approach to obtain the most desirable alternative(s). 

By using Eq. (9) we can obtain the following similarity measures of S1
*
(A

*
, Ai) (i =1, 2, 3, 4): 

S1
*
(A

*
, A1) = 0.5025, S1

*
(A

*
, A2) = 0.6900, S1

*
(A

*
, A3) = 0.5983, and S1

*
(A

*
, A4) = 0.6958. 

Therefore, the ranking order of the four alternatives is A4, A2, A3, and A1. Obviously, amongst 

them A4 is the best alternative. 

Or by applying Eq. (10) we can give the similarity measures of S2
*
(A

*
, Ai) (i =1, 2, 3, 4) as 

follows:  

S2
*
(A

*
, A1) = 0.4572, S2

*
(A

*
, A2) = 0.6455, S2

*
(A

*
, A3) = 0.5599, and S2

*
(A

*
, A4) = 0.6200. 

Thus, the ranking order of the four alternatives is A2, A4, A3, and A1, obviously, amongst them A2 

is the best alternative. 

 

6. Conclusion 

 

In this paper, we defined the Hamming and Euclidean distances and proposed the similarity 

measures between INSs based on the relationship between similarity measures and distances. Then a 

multicriteria decision-making method has been established in interval neutrosophic setting by means 

of the similarity measure between each alternative and the ideal alternative. Through the similarity 

measures, the ranking order of all alternatives can be determined and the best alternative can be 

easily identified as well. Finally, an illustrative example illustrated the application of the developed 

approach. The proposed similarity measures between INSs are more suitable for real scientific and 
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engineering applications. Then the techniques proposed in this paper extend existing 

decision-making methods and can provide a useful way for decision-makers. In the future, we shall 

continue working in the application of the similarity measures between INSs to other domains. 
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