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Abstract

In 2013 we introduced a new notion of picture fuzzy sets (PFS), which are direct extensions
of the fuzzy sets and the intuitonistic fuzzy sets. Then some operations on PFS with some
properties are considered in [ 9,10 ]. In [15] these sets are considered as standard neutrosophic
sets. Some basic operators of fuzzy logic as negation, t-norms ,t-conorms for picture fuzzy sets
firstly are defined and studied in [13,14]. This paper is devoted to some algebraic properties of
picture fuzzy t-norms and picture fuzzy t-conorms on standard neutrosophic sets.

Key words: Picture fuzzy sets,, Picture fuzzy t-norms, Picture fuzzy t-conorm , Algebraic
property

1. Introduction

Recently, Bui Cong Cuong and Kreinovich (2013) first defined "picture fuzzy sets™ [9,10], which
are a generalization of the Zadeh’ fuzzy sets [1, 2] and the Antanassov’s intuitionistic fuzzy sets
[3,4]. This concept is particularly effective in approaching the practical problems in relation to the
synthesis of ideas, make decisions, such as voting, financial forecasting, estimation of risks in
business. The new concept are supporting to new algorithms in computational intelligence problems
[18].

In this paper we study some algebraic properties of the picture fuzzy t-norms and the picture
fuzzy t-conorms on the standard neutrosophic sets , which are basic operators of the neutrosophic
logics. Some classifications of the representable picture fuzzy t-norms and the representable picture
fuzzy t-conorms will be presented.

We first recall some basic notions of the picture fuzzy sets.

Definition 1.1. [9] A picture fuzzy set A on a universe X is an object of the form

A={(% 224 (), 1,00, v4 (X)) | X € X |,
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where 1, (x),77,(X),v,(X) are respectively called the degree of positive membership, the degree of

neutral membership, the degree of negative membership of x in A, and the following conditions are
satisfied:

0< 14, (X), 7,(X),vo(X) <1 and 1, (X) +77,(X)+v,(X) <L Vxe X.
Then, ¥xe X : 1—(u,(X)+77,(X) +v,(X)) is called the degree of refusal membership of x in A.

Consider the set D" = {x = (X, %y, %) | X €[0,1F, X, + X, + X, gl}. From now on, we will assume that

if xeD":,then X, X, and X, denote, respectively, the first, the second and the third component of
X, e, X=(X, X%, Xs).

We have a lattice  (D",<,) , where <, defined by
X,y e D: (x < y). <:>(X1 <Y X2 y3)V(X1 =YX > ya)V<{X1 =Y X% =YX < yz})1

X=Y S {X =YX = Y3, % =Y,
We define the first, second and third projection mapping pr, , then pr, and pr, on D",

defined as pr(x)=x and pr,(x)=x, and pr(X)=x,,0n all xeD" .

Note that, if for X,y e D" that neither x<, y nor y< x ,then x and y are incomparable

wrt < ,denotedas x|y .

From now on , we denote  u AV =min(u,V), uvv=max(u,v) forall uveR".
Foreach  x,yeD", we define

min(x,y), if X< yorys x

inf , =
i) {(Xi/\yl’l_xi/\yl_xsvy3|X3Vy3), else

max(x,y), if x< yorys< x

sup(x,y) = { (X VY,0,X AY,), else

Proposition 1.2. With these operators (D",<,) is a complete lattice.

Proof. The units of these lattice are 1. =(1,0,0) and 0_. =(0,0,1).

For each nonempty Ac D", we have



inf A= (inf pr A inf pr,Ainf pr,A), where

inf prA=inf{x €[0,1][3x=(x, %, %) € A}, ,
inf pr,A=sup{x, €[0,1]|3x=(x,X,,X;) € A},
Denote B, ={x, : (inf pr,A x,,inf pr,A) € A},

infB,, if B, %0

inf pr,A= i :
1-inf prA—inf pr,A, else

and sup A= (sup pr,A,sup pr,A,sup pr,A),, where
sup prA=sup{x, €[0,1][3x = (X, X,,X;) € A}, ,
sup pr,A=inf {x, [0,1][3x = (X, X,, X;) € A},

Denote B, ={x, €[0,1]: (sup pr,A, x,,sup pr,A) € A},

supB,, if B #J

sup pr,A=
P PL { 0, else

Using this lattice, we easily see that every picture fuzzy set  A={(X, u,(X), nA(x),vA(x))|x e X}

corresponds an D" —fuzzy set [12] mapping, i.e., we have a mapping
A: X = D X {(X 12,(X), 774 (X), V4 (X)) |x € XF.
2. Picture fuzzy t-norms and picture fuzzy t-conorms

Now we consider some basic fuzzy operators of the Picture Fuzzy Logics.

Picture fuzzy negations form an extension of the fuzzy negations [5] and the intuitionistic fuzzy
negations [4]. They are defined as follows.

Definition 2.1. Amapping N:D" — D" satisfying conditions N(0_.)=1. and

N(,)=0, and N is nonincreasing is called a picture fuzzy negation.

If N(N(x))=x forall xeD", then N iscalled aninvolutive negation .



Let x=(X,X,,X)eD" . The mapping N, defined by N,(x)=(X,,0,%) ,foreach xeD",is
a picture fuzzy negation.

Denote x, =1—(X +X, + X;).

The mapping N, defined by N (X) =(x,,X,,%) , foreach xeD’, isan involutive negation
and is called the picture fuzzy standard negation.

Some picture fuzzy negations were given and studied in [13, 14].
Fuzzy t-norms on [0,1] and fuzzy t-conorms on [0,1] were defined and considered in [5,6].

In 2004 , G.Deschrijver et al.[11 ] introduced the notion of intuitionistic fuzzy t-norms and t-
conorms and investigated under which conditions a similar representation theorem could be
obtained.

For further usage, we define L' ={x e D" |x, =0}.
We can considerthe set L defined by L ={u= (ul,u3)‘u e[0,1)%,u, +u, <1} .

Consider the order relation u<v on L, defined by
usve (U <v) AU, >v,)) , forall uvel .

We define the first, and second projection mapping pr, and pr, on L , defined as
pr,(u)=u, and pr,(u)=u,,0n all ueL . The units of L are 1.=@0)and 0.=(01).

Definition 2.2. [12]. An intuitionistic fuzzy t-norm is a commutative, associative, increasing
(L) - L'mapping T satisfying T(1.,u)=u ,forall uel.

Definition 2.3. [12]. An intuitionistic fuzzy t-conorm is a commutative, associative, increasing
(L) - L'mapping S satisfying S(v,0.)=v ,forall vel.

Definition 2.4.[12]. An intuitionistic fuzzy t-norm T is called t-representable iff there exist a
fuzzy t-norm t, on [0,1] and a fuzzy t-conorm s, on [0,1] satisfying for all u,vel,

T(U,V) = (ti(ul’vl)!s3(u3'v3)) .

Definition 2.5. [12]. An intuitionistic fuzzy t-conorm S is called t-representable iff there exist
a fuzzy t-norm t, on [0,1] and a fuzzy t-conorm s, on [0,1] satisfying forall u,vel



S(U,V) = (SB(ul’vl)’tl(US’VS)) .

Now we define picture fuzzy t-norms and picture fuzzy t-conorms . It means that we will give
some classes of conjunction operators and and some classes of disjunction operators ,which are
basic operators of the neutrosophic logics .

Picture fuzzy t-norms are direct extensions of the fuzzy t-norms in [2, 5, 6] and of the
intuitionistic fuzzy t-norms in [4].

Let x=(x,X,,X)eD". Denote 1) ={yeD 1y =(X,¥,,%).0< ¥, <, %} .

Definition 2.6. Amapping T:D"xD"— D" is a picture fuzzy t-norm if the mapping T
satisfies the following conditions:

1. T(xyY)=T(y,x), Vx,yeD" (commutative),
2. TXT(Y,2)=T(T(x,y),2), Vxy,zeD" (associativity)
3. T(xY)<,T(x2), VX Yy,zeD’',y< z (monotonicity)
4. T, ) el(x), Vxe D" (boundary condition).

Fisrt we give a special picture fuzzy t-norm on picture fuzzy sets

Forall x,yeD":

(X AYLI=X A Y =XV Yy, X v Y,) f Xy
min{x,y}, else

T (X y)=inf{x, y} :{
Let T,:D'xD"—»D’, T,:D'xD —»D’
Definition 2.7.. We saythat T, isweakerthan T,if T,(X,y)< T,(%Y), VXx,yeD
then we write T, <T,, We write T, <T,, if T, <T,, and T, =T,
Proposition 2.8.. For any picture fuzzy t-norm T(X,y)< T (X, Y), VX,yeD
It means that for any picture fuzzy t-norm we have T <T.

inf

Proof. Let T be a picture fuzzy t-norm, we have  T(X,y) <, T(x1,.)< X VX, ye D



and T(xY)ST(y1,.)<y, WxyeD
It implies for any picture fuzzy t-norm T we have T (x, y) < T(x,1..) <inf(x,y),VX,y e D

ltmeans T <T,

Definition 2.9. A picture fuzzy t-norm T is called representable iff there exist two fuzzy t-norms
t,, t, on [0,1] and a fuzzy t-conorm s, on [0,1] satisfy:

T(X’ y):(tl(xl’ yl)’tz (Xz’ yz),s3(x3, ys)),VX, yeD".

We give some representable picture fuzzy t-norms, for all x,yeD":

1T, (% ):( in(x,y,), min(xz,yz),max(x3,y3)).
2. T (xy)=(min(x,y,), %Y, max(x,y;))-
3. T (% Y)=(XY1: X, Y, max(X,, y;)).
4 T04(X’ y)=(x1yl,x2y2,x3+y3—x3y3).

X AY, Fx vy =1 [X,AY,if X,vy,=1 [Xvy, if ,Ay,=0
3. Tos(xi y): 0 : ' ; d ; '

if x, vy <10 if x,vy,<1 |1 if X, Ay, #0
6. To (X y)=(max(0,x +y, —1),max(0,x, +y, ~1), min (L x, +, ).
7. Ty (% y)=(max(0,% +y, —1),max(0,X, + Y, =1), X, + Y, = X;Y; ).
1
8 TOS(X’ Y):(max{a(xfi'y1_1+x1y1)10}’max{5(xz+Y2 _1+X2y2)’0}’xs+Y3_X3y3J'
9. Tog( ’y)z(X1Y1-maX(O!X2+yz_1)!X3+y3_X3y3)-
y

X
10. T010(X’ ):( ax(O,x1+yl—1),x2y2,x3+y3—x3y3).

Definition 2.10. A mapping S:D xD — D" is a picture fuzzy t-conorm if S satisfies all
folowing conditions:

,X), VX, yeD".
=S(S(x,y),z),vx,y,zeD".
X,2),Vx,y,2eD",y< 7
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Now we give a new special picture fuzzy t-conorm. For all X,yeD’

,0, X , i x|
Ssup(x, y)zsup{x’ y}:{(xl\/yl 3/\y3) ||_1 y
max{x,y}, else

Proposition 2.11 . For any picture fuzzy t-conorm S(X,y)> S, (X,y), VX ye D’
It means that for any picture fuzzy t-conorm S wehave S>S
Proof. Let S be a picture fuzzy t-conorm, we have  S(X,y) >, S(X,0..) 2, X, VX, ye D
and  S(x,y)> S(y,0.)> Yy, VxyeD

It implies for any S be a picture fuzzy t-norm, ~ S(X,y) 2, S(X,1..) =, sup(x, y), Vx,y € D

Itmeans S>S

sup

Definition 2.12. A picture fuzzy t-conorm S is called representable iff there exist two fuzzy t-

norms t, t, on[0,1] and a fuzzy t-conorm s, on [0,1] satisfy:

S(%Y)=(S5 (% V1) oty (X ¥, )t (X, ), WX, y € D

Some examples of representable picture fuzzy t-conorms, for all x,ye D" :

1. Smax(x,y)=(max(x1,yl),min(xz,yz),min(xs,y3)).
2. Soz(x,y)=(max(x1,yl),xzyz,min(xs,y?,)).
3. Se (X y)=(max(x,¥,), XY, XY )-
4. 804(x,y):(x1+yl—x1y1,xzy2,x3y3).
X, AY, 1f X, vy, =1
5. S, (XYy)= <2 , :
05(X y) [X1VY1 {O if x, vy, <1 Xs/\Y?,j
vy, if x, Ay, =0 X AY, I X vy, =1
6. Soe(xvy): :1 1 ) XA Yy X A Y, 3 3_ 3 3 .
if x, Ay, #0 0 if x,vy, <1

Proposition 2.13. For any representable picture fuzzy t-norm T we have:
TOS (X’ y) S1 T (X’ y) S1 Tmin (X’ y), VX, y € D*'

Proposition 2.14. For any representable picture fuzzy t-conorm S we have:



Ses (X, ¥) <, S(XY)<; Ss(X,Y), VX, ye D"
Proposition 2.15. Assume T (u,v) Is a t- representable intuitionistic fuzzy t-norm:
T (u,v) = (t (U ), 85 (U, V), VU = (U, Ug ) V= (v, v ) e L
where, t, isa fuzzy t-normon [0,1], s, is a fuzzy t-conorm on [0,1]. Assume t, is a t-norm
on [0,1] satisfies: 0<t,(x,,¥;)+t,(%X,, ¥,)+S; (X, ¥5) <L VX, ye D then:
T(%Y)=(t (% ¥2) it (%0 ¥2)185 (%, Vs ), VX, y € D
is a representable picture fuzzy t-norm.
Proposition 2.16. Assume S(u,v) is a t-representable intuitionistic fuzzy t-conorm:
S(uv)=(5;(Uv) i (UyV5)), VU= (Uy,Ug),v=(v, ;) el
where, t, isa fuzzy t-normon [0,1], s, is a fuzzy t-conorm on [0,1]. Assume t, is
at-norm on [0,1] satisfies: 0<t, (X, Y, )+t,(X,, ¥, )+S;(Xs, ¥5) <L, VX, ye D" then:
S(%Y)=(5 (% Y1)t (%0 Y2 )t (X5, ¥5)), VX, y € D
is a representable picture fuzzy t-conorm.

Now we define some new concepts for the neutrosophic logics.

Definition 2.17. A picture fuzzy t-norm T is called Achimerdean iff:
vxeD’ \{OD*,lD*},T(x, X) <, X,
Definition 2.18. A picture fuzzy t-norm T s called:
e nilpotent iff: 3x, ye D’ \{OD*},T (x,y)=0_..

e strictiff: ¥x,yeD’ \{OD*},T (X, y)#0,..

With these defitions we have the following proposition:

Proposition 2.19. Let
T" ={nilpotent picture fuzzy t—norms},



T ={strict picturet—norms}. Then T NT =
Definition 2.20. A picture fuzzy t-conorm S is called Achimerdean iff:
vxeD’ \{OD*,lD*},S(x,x) > X.
Definition 2.21. A picture fuzzy t-conorm S s called:
e nilpotent iff: 3x,y e D*\{lD*}, S(xy)=1..
o strict iff: Vx,ye D \{L.},S(xy)#1,.

Proposition 2.22. Let
S ={nilpotent picture fuzzy t—conorms},

S™ ={strict picturet—conorms}. ThenS NS~ =
Proposition 2.23. Assume T is a representable picture fuzzy t-norm:
T(xY) =(t1(x1, Y1)t (%0 s ) S5 (%, Ye,))'VX, yeD’,
and t,,t,, s, are Archimedean on [0,1] [5], then T is Archimedean.

Proof. Forall xe D*\{OD* ’10*} . we have:

T (%) = (t, (% %) 1 (%%, )85 (X3, X5))-

Since t,t,, s, are Archimedean on [0,1] . It follows that t (X.,X%)<X, S;(X3X%)>X;, SO

T (X x)<, x. Thus T is Archimedean.
Proposition 2.24. Assume S is a representable picture fuzzy t-conorm:

S(% Y)=(S5 (% V1 )ots (X Y2 )t (X, ), WX, y € D
and t,,t,, s, are Archimedean on [0,1], then S is Archimedean.

3. A classification of representable picture fuzzy t-norms

We can give a classification of representable picture fuzzy t-norms to subclasses as follows:

3.1. Strict-strict-strict t-norms subclass, denoted by A

SSS

Definition 3.1. A picture fuzzy t-norm T is called strict-strict-strict iff



T(X’ y)=(t1(x1, yl)’tz(xz’ yz)’ss(xs1y3))1vx1 yeD’,

where t, t, are strict fuzzy t-norms on [0,1] and s, is a strict fuzzy t-conorm on [0,1].

Example 3.1. TL(X, Y) = (X Y1, X2 Y2, X3 + Y3 — X3Y3)

T (X, y) — ( lel , X2 y2 ’
’ I+ A= 2) (% + Y1 = %) A + (L= 25) (% + Y = Xp¥,)

1
(X +Y5—X3¥5)2), A A ac[l+o0),
3.2.Nipoltent-nipoltent-nipoltent t-norms subclass, denoted by A, :

Definition 3.2. A picture fuzzy t-norm T is called nipoltent-nipoltent-nipoltent iff
T(%Y)=(t (%0 Y1) it (X%, ¥, )85 (%, ¥5)), VX, y € D',

where t;, t, are nipoltent fuzzy t-norms on [0,1] and s, is a nipoltent fuzzy t-conorm on [0,1].

Example 3.2.

T3(%Y)=(0v (g +Y; —=1),0v (X + Y, =1),1A (X3 + Y3)),
T,06Y) = (04 + Y1 DA+ 4) = Ax Y1) v 0,((% + Y, DL+ 4) — 4% ¥,) v O,

1

IAOC+y2)2), A, A, €[0,+0),a>1,
1 1 1
Ts (X, ¥) = (0v O +yf 1), (0v (x5 +y5 —D)b . LA (X§ +y5)¢), ab,c>1,

To(x Y) = (5 (4 + 41 -1+ @-DX) v 0), (% + Y, ~L+ (0-D),y,) v O),
In(xg + y§)‘1>), a,be(0,1];c>1,

Ty = ( 0 ¥ -1+ @-DX )V O) (0% + Yo ~D(L+ 1)~ D) VO,
1A+ yg);), ae(0,1,4>0,b>1,

Ty Y) = (0% + YDA+ 2) = ) v 0, (5 (6 + Y, ~1+ (3 -1, ¥) v O)

1
IA(E+Yy2)P), ae(0,1],b>1,1>0,



1
1 -
To(6y) = (C (a+ Y =1+ (@-1pay2) v 0),0v (g +y2 -1,

1
IA(X5+Y5)¢), ae(0,1],b,c>1,
1
-1
Tio (%, y) =0V (x +y; =12, (B(XZ +Y, =1+(b-1)%;Y,) v 0),
1
In(X5s+Y3)¢), be(0,1],a,c>1.
1
Ty (% Y) = (% + Y1 = D@+ 2) = A% Y1) v 0,0 v (x5 +y; —1)2,
1
IA(S +y5)P), A>0,a,b>1,
1
T (% Y) =0V (g +yy =12, (X + Y, ~D(L+ 1) — A%, Y,) v O,
1
IA(S +Yy5)P), A>0,ab>1.

3.3. Nipoltent-nipoltent-strict t-norms subclass, denoted by A

Definition 3.3. A picture fuzzy t-norm T is called nipoltent-nipoltent-strict iff

T(X’ y)=(t1(x1,y1),t2(x2, yz),S3(X3,y3)),VX, yeD’,

where t, t, are nipoltent fuzzy t-norms on [0,1] and s, is a strict fuzzy t-conorm on [0,1].

Examples 3.3

Ti3(X,Y) =(0v (g +Yy;—1),0v (X + Y, —1), X3 + Y3 — X3Y3).
1
_ 1 . E . a a_ ya,aya >
T14(X’Y)—(2(X1+y1 1+X1Y1)V0|2(X2+Y2 1+%Y2) v 0,(X5 + Y5 —X3¥3)?),a=1,

Tis (% ) = (4 + Y1 DA+ 24) = A X Y1) v O, (% + Y, = DA+ 4,) — 4%, ¥,) v O,

1
(X3 +Y3 —%3¥3)?), 4,4 €[0,+0),a>1,
1 1 1
Tis (%, Y) = OV OF + ¥ 12,05 +y5 —1)P v0,(X5 + Y5 —x§¥5)°), ab,c>1
1
l -
Tz (% y) = (g (q+y1—-1+(@a-1)xy,)v0,0v (Xg + yg -1)°b,

1
(X5 +Y5—X%5¥5)¢), ae(0,1;b,c>1,



1 1
Tig(x,y) = (g (X +y —1+(@-Dxy) v O,B(Xz +Y, =1+(b-1)x,y,) v 0,

1
(X5 +Ys —%3¥3)¢), a,be(0,1;c>1,

1
To(x,y) = (g (X +y =1+ (@-DxYy;) vO,((X + Yy, =1)(L+b) —bx,y,) v 0,
1
(X5 +Ys —%¥35)¢), ae(0,1];b>0;c>1,
1
-1
To(%Y)=0v (X +yr —1)3,B(X2 +Y, =1+ (b-1)x,y,) v 0,

1
(X5 +Yy5—X3¥5)¢), be(0,1];a,c>1,

T (% y)=«(x1+yl—l)(1+a>—axly1>vo,%<x2 4y, ~14 (0-1)%,y,) v O,

1
(X5 +Ys —X3¥5)¢), a=0;be(0,1];c>1,
1
Ty (% Y) = (4 + Y1 = D@+ A) = Axy;) v 0,0v (x5 +y5 —1)2,
1
(X2 +y2 —x2yP)b), 1>0,a,b>1,
1
To3(X, ) =(0v O + Y1 =13, ((Xp + Yo =D)AL+ A) = A%,¥,) v O,
1
(x2 +y2 —xBy2)P), A=0,ab>1.
3.4. Strict-nipoltent-strict t-norms subclass, denoted by A
Definition 3.4. A picture fuzzy t-norm T is called strict -nipoltent-strict iff
T(6Y)=(t 04 %)t (% ¥2),85 (%1 ¥5)), WX, y € D,

where t, is a strict fuzzy t-norm on [0,1], t, is a nipoltent fuzzy t-norm on [0,1] and s, is a strict

fuzzy t-conorm on [0,1].

Example 3.4.

Toa (X%, Y) = (%Y1, 0V (X5 + Y, 1), X3 + Y3 — X3Y3).



_ Y1 _ _
s 000 = Gy gy (e # e D0 22) ) v
1

O +y2 —xqy2)a), A >14,>0a>1
1

— X1 Y1 v (x2 a_1\a
T T I

1
(xéJ +y§ —xgyg)b), A >Lab>1,

X 1
To7 (X, y) =( 11 —

A+ (=A% + YV —XY,) a (X, + Y, =1+ (a-1)%,Y,) v O,

(8 +32-y%), Ab2lac(0]
3.5. Nipoltent-strict-strict t-norms subclass, denoted by A
Definition 3.5. A picture fuzzy t-norm T is called nipoltent-strict-strict iff
T(xY)=(t (% %) b (%1 Y,).8 (%, ¥5)), WX y € D,
where t, is a nipoltent fuzzy t-normon [0,1], t, is a strict fuzzy t-norm on [0,1] and S, is

a strict fuzzy t-conorm on [0,1].

Example 3.5.

Tog (X, ¥) =0V (X + Y1 —1), X5 Y5, X3 + Y3 — X33),

1 X,y
To(X,¥) =(=(q +y, -1+ (@a-1)x 0, 272 ,
200 V) = G bt Y @ O 00 vz me72)

1
(%5 +Y3 = %3¥5)°). a(01:b, 221,
1

Tao (X, ¥) = (Ov (¢ + y2 ~1)2, XaY2 ,
30 (% Y) =00V (x +yr 1) A=) % + Y5 —%0y,)

1
(xg +y§ —xgyg)b), a,b,A>1,

B ~ B X2 Yo
To (X Y) = (% + Y, ~ DA+ 4) ﬂixlyliﬂﬁ(l_ﬂz)(xﬁyz_xzyz)’
1

O +y2 —x2ya), a1, =14 (0,1].



Proposition 3.6. There doesn’t exist t-representable picture fuzzy t-norm T :
T(%Y)=(t (% %)t (% ¥2): 85 (%, ¥5)), WX, y € D',
where t, or t, is astrict fuzzy t-normon [0,1], and s, is a nipoltent fuzzy t-conorm on [0,1].

Proof. Assume T (X, y)=(t,(X,¥,):t, (%, ¥,):55 (% ¥5)), VX, y € D", with t, is a strict t-norm and
exist X;,y; €(0,1) such that S,(x,,y,)=1. Let X, % #0|X +X,+X% <Ly, Yy, #0]y, +y, +Yy, <1,

and since t, is strict t-norm then: t,(x,y,)>0.
Let X=(X, %, %), Y =(¥1, Y, ¥s), We have a contradition: t,(x,, Y, )+t, (X, ¥,)+5;(Xs, ¥5) > 1.
Similarly, if t, is strict t-normand s, is nipoltent t-conorm then we have a contraddition.

Proposition 3.7. If T belongs to one of four classes A, A, .., A

Sss ! nns !

A then T isstrict.

sns !

Proof. Assume for all x,yeD’, s, is a strict fuzzy t-conorm on [0,1], T is representable picture

fuzzy t-norm: T (%, y) =(t, (%, ¥;):t, (X,: ¥, ):S5(X:, ¥5)) @nd T is nipoltent.

Then 3x,ye D \{0,.},T(x,y)=0,, and it implies t,(x,¥)=0, t,(X.Y,)=0, 8;(%;y;)=1.

Since s, is a strict fuzzy t-conorm on [0,1],then X; =1 or y, =1, which is a contradition.

Proposition 3.8. If T belongs to the class A, then T is a nipoltent picture fuzzy t-norm.

Proof. Assume TeA_,Vx,yeD : T(xY) =(t1(x1, ARACHARNCHS y3))
Since t,t, are nipoltent fuzzy t-norms on [0,1], we have

3% Y1 %, Y |6 (%0 Y1) =08, (X,, y,)=0.  Since t,,t, are not decreasing, so:
VX <X Yy S Y X <X, Y <Y, [ (X, Y1) =0,t, (X, y;)=0. Since s is a nipoltent fuzzy t-conorm
on [0,1] s0: 3x,, Y, #1|S; (X, ¥5) =1. Let x=(X{, %5, %),y =(V, Y5 ¥5) € D". Then:

T(%Y)=(t (X, ¥1):t, (X5.Y5),85 (%, ¥5)) =0~ T isanipoltent picture fuzzy t-norm.
4. A classification of representable picture fuzzy t-conorms

Similar to the section 3, we can give some subclasses of represntable picture fuzzy

t-conorms as follows:



4.1. Strict-strict-strict t-conorms subclass, denoted by V

Definition 4.1. A picture fuzzy t-conorm S is called strict-strict-strict iff
S(%Y)=(S5 (% V1 )ots (X Y2 )t (X, ), WX, y € D

where t, t, are strict fuzzy t-norms on [0,1] and s, is a strict fuzzy t-conorm on [0,1].

Example 4.1.

Sl(x’ Y) :(X1+ Y1 =% Y1 X2y21X3YS)’

1
(v a_ ya,aa X2Yo
Sy, Y)=((% +Yy; —=x'Yyr) ’4+(1—21)(X2+y2—x2y2)'
Xs¥3 ), Ay Apsa el 4o0).

A+ (L= A) (X + Y3 — X3Y3)

4.2 Nipoltent-nipoltent-nipoltent t-conorms subclass, denoted by V. :
Definition 4.2. A picture fuzzy t-conorm S is called nipoltent-nipoltent-nipoltent iff
S(%Y)=(S5 (% V1 )ots (X ¥, )t (X, ), WX, y € D
where t, t, are nipoltent fuzzy t-norms on [0,1] and s, is a nipoltent fuzzy t-conorm
on [0,1].
Example 4.2.

S3(%,Y) =LA (X + Y1), 0V (X + Y, =1), 0v (X3 + Y3 —1)),

1
S4(6Y) = @A 0 + Y1), (% + Yo =D+ 4) = A%, Y,) v O,
(X3 + Y3 DA+ 4,) —AXy3) v 0), 4,4, €[0,+0),a>1,

1 1
Ss (X, ¥) = (LA + V)2, (0v (x5 +ys —1)b,

1
Ov (x5 +Yys-1¢), ab,c>1



1
So(% Y) = WA OF + V)%, (% + Y, ~1+ (0-1),y) v O),

(%(x3 +Y;-1+(c-1)x3y;) v0)), a=1Lb,ce(0,1],
1
%) = @A OF + V)%, (6 + Y, ~1+ (6-1)y) v ),

((X3+y3—D(@+ 1) —AxX3y3)v0), a=Lbe(0,1],412>0,
1
Sg(X,Y) = (@A (g +¥1)3, (% + Y, ~1)(L+ A) = Ax,Y,) v O,

(%(x3 ry,—14(b-Dxey,)v0), azLbe (01,420,

1
-1

Se(X,Y) =(1A(Xf+yf‘)a,(5(x2+y2 -1+ (b-1)x,y,) v0),

1

Ov (x5 +Yys-1¢), be(0,1,ac>1,
1 1

S10(% Y) = (LA O +¥1)2,0v (x5 + Y5 1P,

c

1
S1.(%, Y) = AAOG +Y1)3, (X + Yo —1)(A+ A) — A%, Y,) v O,
1
Ov (X3 +ys—1)b), 1>0,ab>1,
1 1
S12(X, ¥) = (@A G +Y7)2,0v (x5 +y5 ~1)P,
((X3+y3—D(@+A)—AxX3y3)v0), A1>0,a,b>1.

4.3.Strict-nipoltent-nipoltent t-conorms subclass, denoted by V.
Definition 4.3. A picture fuzzy t-conorm S is called strict-nipoltent-nipoltent iff
S(% Y)=(S5 (% V1 )ots (X Y2 )t (X, ), WX, y € D
where t, t, are nipoltent fuzzy t-norms on [0,1] and s, is a strict fuzzy t-conorm on [0,1].
Examples 4.3.

Si3(X,Y) = (X + Y1 =% Y1, OV (X5 + Y, =1), 0V (X3 + Y3 —1)),



1
-1
Si4(X, Y)Z((Xf"‘YfI—XfYF)a’E(Xz‘Fyz -1+ X,¥,) v,

%(x3 +Y3 =14+ X3y3)v0), ax=1
1
Sis (%, ) = ((x +y1 =X y1)2, (% + Yo ~DA+ A4) = AX¥,) VO,

((Xg+ Y3 =D(A+A4,)—Xy3)v0), A4, 4, €[0,+x),a>1,
1 1 1
S16(X, ¥) = (X + Y5 =X ¥5)°, 0v (G +y5 —1)2,0v (x5 +y3 —1)°), a,b,c21,

1
-1
Sz (X, y)=(( +y7 —Xf‘yf)a,B(Xz +Y, =1+ (b-1)x,y,) v 0,

1
Ov(xs+ys—1¢), be(0,1];a,c>1,

1
-1
Sig(X, Y)=((Xf+Yf—Xfyf)a’B(X2+Y2 -1+(b-1)x,y,) v 0,

%(x3 +Y;-1+(c-1)x3y;)v0), b,ce(0,1;a>1,

1

1
Sio(X, ¥) =((x +y5 _Xfo)a,B(Xz +Y, =1+ (b-1)x,y,) 0,

((x3+y3—D(@+c)—cx3y3)v0), a=1be(0,1];c=0,
1 1
Sao(X, ¥) = (06 + Y7 —x{¥1)2, (6 + Y3 ~D° v O,

1(x3+y3—1+(c—1)x3y3)v0), ce(0,1];a,b>1,
C
1
Sy (% Y) = (04 + Y1 =X ¥1) 2, (%o + Yo ~1)(1+Db) —bx,y,) v O,
%(x3 +Y;-1+(c-1)x3y;)v0), a=Lb=0;ce(0,1],

1
So (%, Y) = (% +yr =X ¥1) 2, (X, + Yo, DA+ A1) — A%, ¥,) v O,
1
Ov(xs+ys—1)P), 1>0,ab>1,
1 1
S35 (%, ¥) = (OF +¥f —x{¥1)2,0v (%3 +y5 ~1)°,
(X3 +y3=D(@A+A)—AX%3y3)v0), A=0,a,b>1.

4.4.Strict-nipoltent-strict t-conorms subclass, denoted by V

Definition 4.4. A picture fuzzy t-conorm S is called strict-nipoltent-strict iff



S(%Y)=(8 (% Y1)t (% ¥2) 1 (%, V), VX, y € D™
where t, is a strict fuzzy t-norm on [0,1], t, is a nipoltent fuzzy t-norm on [0,1] and s,
is a strict fuzzy t-conorm on [0,1].

Example 4.4.

Spa (X% Y) =04 + Y1 =X Y1, OV (% + Y, —1), X3¥3),
1
Sos(X, ) = (% +yr =X ¥1) 2, (X + Yo DA+ A4) — 4%, ¥,) VO,

X3Ys3 )
), 4=204,a2>1
A +(L=24) (X3 + Y3 —X3Y3)
1 1
Sps (X, Y) = (2 +yi —x2y2)2,0v (x5 +y5 —1)P,
Xs¥3 ), A >Lab>1

A +@Q=4)(X3 + Y3 —X3Y3)
1
=1
Sy (X, Y) = (04 +Yr =X yr)?, B(Xz +Y, =1+ (b-1)X,y,) v O,

Xs¥3 ,al >Lbe(0.1].
/71+(1—21)(X3+y3_X3Y3)) a4 =Lbe O]

4.5.Strict-strict-nipoltent t-conorms subclass, denoted by V,

Definition 4.5. A picture fuzzy t-conorm S is called strict-strict-nipoltent iff
S(%Y)=(8 (% Y1)t (% ¥2) 1 (%, V), VX, y € D™

where t, is a nipoltent fuzzy t-norm on [0,1], t, is a strict fuzzy t-norm on [0,1] and s, is a strict
fuzzy t-conorm on [0,1].

Example4.5.
Sxg (X, Y) = (X + Y1 =X Y1, X Y2, 0V (X3 + Y3 —1)),

X2 ¥,
A+(A=A)(X5 + Yy = X5Y5)

1
Sy (X, Y) = (0 + Y7 — X7 yr)?3

%(x3 +Y;-1+(b-1)x3y3)v0), a,A1=Lbe(0,1],



1
S0 (X, y) = (X2 + y2 —x3yd)a, %Y )
3006 Y) = (0 +Y1 =X Yr) A=) + Yo — %Y,

1
Ov (X +ys—1)b), ab, 121,

1
X2 Yo

a
A+ A-2)(X + Yo —XoYp)
(% +Y, —DA+b)-bx,y,)v0), a,1=2Lb>0.

Sar (X, ¥) =((% + yr —x{'y5)

Proposition 4.6. There doesn’t exist representable picture fuzzy t-conorm S :
S(%Y)=(S5 (% V1 )ots (X ¥, )t (X, 3)), WX, y € D
where t, or t, is strict fuzzy t-norm on [0,1] and s, is a nipoltent fuzzy t-conorm on [0,1].

Proposition 4.7. 1f S belongs to one of four classes V., V., Vs, Vi then S is strict.

Sss ! snn ! sns !

Proposition 4.8. If S belongs to the class V,,, then S is nipoltent.

5. Conclusion

t-norms and t-conorms are basic operators of the fuzzy logics [5,6]. Picture fuzzy t-norms and
picture fuzzy t-conorms firstly defined and studied in 2015 [13]. In this paper we give some
algebraic properties of the picture fuzzy t-norms and the picture fuzzy t-conrms on standard
neutrsophic sets , including some classifications of the class of representable picture fuzzy t-norms
and and of the class of representable picture fuzzy t-conorms. Another important operators of
picture fuzzy logics should be considered in the future papers.
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