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Abstract : 

In testing of hypothesis situation if the null hypothesis is rejected will it 

automatically imply alternative hypothesis will be accepted.  This problem has been 

discussed by taking examples from normal distribution. 
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1. Introduction

Let the random variable (r.v.) X have a normal distribution N(� , 2� ),  2�  is assumed 

to be known. The hypothesis H0 : �  = 0�  against H1 : �  = 1� ,  1�  > 0� is to be tested. Let X1, 

X2, …, Xn be a random sample from N(� , 2� ) population. Let X (= �
�

n

1i
iX

n
1 ) be the sample 

mean. 

By Neyman – Pearson lemma the most powerful test rejects H0 at � % level of 

significance, 

if   � �
�

�� oXn   
   �d ,  where �d  is such that

dZe
2
1 2

Z

d

2
�

�

	
�

�
 = �  

If the sample is such that H0 is rejected then will it imply that H1 will be accepted? 

In general this will not be true for all values of  1� , but will be true for some specific 

value of 1�  i.e., when 1�  is at a specific distance from 0� . 

 H0 is rejected if    � �
�

�� oXn   
   �d

 i.e.  X   
   0� +
n

d �
� (1) 

Similarly the Most Powerful Test will accept H1 against H0 

if      � �
�

�� 1Xn   
   - �d
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i.e.       X   
   1� - 
n

d �
�        (2) 

Rejecting  H0 will mean accepting H1 

if (1)  -    (2) 

 i.e.     X   
   0� +
n

d �
�      -    X   
   1� - 

n
d �

�   

 i.e.     1� - 
n

d �
�    $   0� +

n
d �

�       (3) 

Similarly accepting H1 will mean rejecting H0 

 if  (2)   -    (1) 

 i.e.     0� +
n

d �
�   $    1� - 

n
d �

�       (4) 

From (3) and (4) we have 

        0� +
n

d �
�    =  1� - 

n
d �

�   

 i.e.  1�  - 0�  = 2 
n

d �
�        (5) 

Thus  
n

d �
�  =  

2
01 ���   and  1� = 0� +2

n
d �

� . 

From (1)        Reject  H0 if     X   >   0�  + 
2

01 ���   =  
2

10 ���  

and from (2)  Accept H1 if     X   >   1�  - 
2

01 ���   =   
2

10 ���  

Thus rejecting   H0  will mean accepting  H1 
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 when       X  >  
2

10 ��� . 

From (5) this will be true only when  1�  =  0�  + 2 
n

d �
� . For other values of   

1�  )  0�  + 2 
n

d �
�  rejecting H0 will not mean accepting H1. 

 It is therefore, recommended that instead of testing H0 : �  = 0�  against  

H1 : �  = 1� ,  1�  > 0� , it is more appropriate to test  H0 : �  = 0�  against H1 :  �  > 0� . In this 

situation rejecting H0 will mean �> 0�  and is not equal to some given value 1� . 

 But in Baye’s setup rejecting H0 means accepting H1 whatever may be 0� and 1� . In 

this set up the level of significance is not a preassigned constant, but depends on 0� , 1� , 2�  

and n. 

 Consider (0,1) loss function and equal prior probabilities ½  for 0� and 1� . The Baye’s 

test rejects H0 (accepts H1)  

 if     X  >  
2

10 ���  

and accepts H0 (rejects H1) 

 if     X  <  
2

10 ��� . 

[See Rohatagi, p.463, Example 2.] 

 The level of significance is given by 

 
0HP  [ X  >  

2
10 ��� ]  =  

0HP [ 
�
�� n)X( 0   >  

�
���

2
n)( 01  ] 
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         =  1 - �
�
�

�
�
�
�

�

�
���

#
2

(n 01  

where )t(# = dZe
2
1 2

Zt 2
�

��
	 �

. 

Thus the level of significance depends on 0� , 1� , 2�  and n. 
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