Rajesh Singh

School of Statistics, D. A.V.V., Indore (M.P.), India

Jayant Singh

Department of Statistics Rajasthan University, Jaipur, India

Florentin Smarandache

Department of Mathematics, University of New Mexico, Gallup, USA

A Note on Testing of Hypothesis

Published in: Rajesh Singh, Jayant Singh, F. Smarandache (Editors) **STUDIES IN STATISTICAL INFERENCE, SAMPLING TECHNIQUES AND DEMOGRAPHY** InfoLearnQuest, Ann Arbor, USA, 2009 (ISBN-10): 1-59973-087-1 (ISBN-13): 978-1-59973-087-5 pp. 21 - 25

Abstract :

In testing of hypothesis situation if the null hypothesis is rejected will it automatically imply alternative hypothesis will be accepted. This problem has been discussed by taking examples from normal distribution.

Keywords : Hypothesis, level of significance, Baye's rule.

1. Introduction

Let the random variable (r.v.) X have a normal distribution $N(\theta, \sigma^2)$, σ^2 is assumed to be known. The hypothesis $H_0: \theta = \theta_0$ against $H_1: \theta = \theta_1$, $\theta_1 > \theta_0$ is to be tested. Let X_1 , X_2, \ldots, X_n be a random sample from $N(\theta, \sigma^2)$ population. Let $\overline{X} (= \frac{1}{n} \sum_{i=1}^n X_i)$ be the sample mean.

incuii.

By Neyman – Pearson lemma the most powerful test rejects H_0 at $\alpha\,\%$ level of significance,

if
$$\frac{\sqrt{n}(\overline{X} - \theta_o)}{\sigma} \ge d_\alpha$$
, where d_α is such that

$$\int_{d_{\alpha}}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{Z^{2}}{2}} dZ = \alpha$$

If the sample is such that H₀ is rejected then will it imply that H₁ will be accepted?

In general this will not be true for all values of θ_1 , but will be true for some specific value of θ_1 i.e., when θ_1 is at a specific distance from θ_0 .

$$H_{0} \text{ is rejected if } \frac{\sqrt{n}(\overline{X} - \theta_{o})}{\sigma} \geq d_{\alpha}$$

i.e. $\overline{X} \geq \theta_{0} + d_{\alpha} \frac{\sigma}{\sqrt{n}}$ (1)

Similarly the Most Powerful Test will accept H1 against H0

if
$$\frac{\sqrt{n}(\overline{X} - \theta_1)}{\sigma} \ge -d_{\alpha}$$

i.e.
$$\overline{X} \ge \theta_1 - d_\alpha \frac{\sigma}{\sqrt{n}}$$
 (2)

Rejecting H₀ will mean accepting H₁

if
$$(1) \Rightarrow (2)$$

i.e.
$$\overline{X} \ge \theta_0 + d_\alpha \frac{\sigma}{\sqrt{n}} \implies \overline{X} \ge \theta_1 - d_\alpha \frac{\sigma}{\sqrt{n}}$$

i.e.
$$\theta_1 - d_\alpha \frac{\sigma}{\sqrt{n}} \leq \theta_0 + d_\alpha \frac{\sigma}{\sqrt{n}}$$
 (3)

Similarly accepting H1 will mean rejecting H0

if $(2) \Rightarrow (1)$

i.e. $\theta_0 + d_\alpha \frac{\sigma}{\sqrt{n}} \leq \theta_1 - d_\alpha \frac{\sigma}{\sqrt{n}}$ (4)

From (3) and (4) we have

$$\theta_0 + d_\alpha \frac{\sigma}{\sqrt{n}} = \theta_1 - d_\alpha \frac{\sigma}{\sqrt{n}}$$

i.e. $\theta_1 - \theta_0 = 2 d_\alpha \frac{\sigma}{\sqrt{n}}$ (5)

Thus $d_{\alpha} \frac{\sigma}{\sqrt{n}} = \frac{\theta_1 - \theta_0}{2}$ and $\theta_1 = \theta_0 + 2 d_{\alpha} \frac{\sigma}{\sqrt{n}}$.

From (1) Reject H₀ if
$$\overline{X} > \theta_0 + \frac{\theta_1 - \theta_0}{2} = \frac{\theta_0 + \theta_1}{2}$$

and from (2) Accept H₁ if $\overline{X} > \theta_1 - \frac{\theta_1 - \theta_0}{2} = \frac{\theta_0 + \theta_1}{2}$

Thus rejecting H₀ will mean accepting H₁

when
$$\overline{X} > \frac{\theta_0 + \theta_1}{2}$$

From (5) this will be true only when $\theta_1 = \theta_0 + 2 \ d_{\alpha} \frac{\sigma}{\sqrt{n}}$. For other values of

$$\theta_1 \neq \theta_0 + 2 d_\alpha \frac{\sigma}{\sqrt{n}}$$
 rejecting H₀ will not mean accepting H₁.

It is therefore, recommended that instead of testing H_0 : $\theta = \theta_0$ against

$$\begin{split} H_1: \, \theta \, = \, \theta_1, \ \ \theta_1 > \, \theta_0, \, \text{it is more appropriate to test} \ \ H_0: \, \theta \, = \, \theta_0 \, \text{ against } H_1: \ \ \theta > \, \theta_0. \, \text{In this} \\ \text{situation rejecting } H_0 \, \text{will mean} \ \ \theta > \, \theta_0 \, \text{ and is not equal to some given value} \ \ \theta_1. \end{split}$$

But in Baye's setup rejecting H_0 means accepting H_1 whatever may be θ_0 and θ_1 . In this set up the level of significance is not a preassigned constant, but depends on θ_0 , θ_1 , σ^2 and n.

Consider (0,1) loss function and equal prior probabilities $\frac{1}{2}$ for θ_0 and θ_1 . The Baye's test rejects H_0 (accepts H_1)

if
$$\overline{X} > \frac{\theta_0 + \theta_1}{2}$$

and accepts H₀ (rejects H₁)

$$\text{if } \quad \overline{X} < \frac{\theta_0 + \theta_1}{2}.$$

[See Rohatagi, p.463, Example 2.]

The level of significance is given by

$$P_{H_0} \left[\overline{X} > \frac{\theta_0 + \theta_1}{2} \right] = P_{H_0} \left[\frac{(\overline{X} - \theta_0)\sqrt{n}}{\sigma} > \frac{(\theta_1 - \theta_0)\sqrt{n}}{2\sigma} \right]$$

$$= 1 - \Phi \left(\frac{\sqrt{n}(\theta_1 - \theta_0)}{2\sigma} \right)$$

where $\Phi(t) = \int_{-\infty}^{t} \frac{1}{\sqrt{2\pi}} e^{-\frac{Z^2}{2}} dZ$.

Thus the level of significance depends on $\,\theta_0,\,\theta_1,\,\sigma^2$ and n.

Acknowledgement : Author's are thankful to Prof. Jokhan Singh for suggesting this problem.

References

Lehmann, E.L. (1976) : Testing Statistical Hypotheses, Wiley Eastern Ltd., New Delhi.

Rohatagi, V.K. (1985) : An introduction to probability theory and mathematical statistics, Wiley Eastern Ltd., New Delhi.