
Neural Computing and Applications manuscript No.
(will be inserted by the editor)

TOPSIS method for multi-attribute group decision

making under single-valued neutrosophic environment

Pranab Biswas · Surapati Pramanik

Bibhas C. Giri.

Received: date / Accepted: date
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set. It has been proposed as a generalization of crisp sets, fuzzy sets, and in-

tuitionistic fuzzy sets in order to deal with incomplete information. In this

paper, a new approach for multi-attribute group decision making problems

P. Biswas (�)

1Department of Mathematics, Jadavpur University, Kolkata–700032, West Bengal, India.

Tel.: +919734321040

E-mail: paldam2010@gmail.com

S. Pramanik

2Department of Mathematics, Nandalal Ghosh B.T College, Panpur-743126,

West bengal, India,Tel.: +91947703544

E-mail: sura pati@yahoo.co.in

B.C. Giri

3Department of Mathematics, Jadavpur University, Kolkata–700032, West Bengal, India.

Tel.: +919433766361

E-mail: bcgiri.jumath@gmail.com

Manuscript
Click here to download Manuscript: NCAA REVIS - PB.tex 
Click here to view linked References

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

http://www.editorialmanager.com/ncaa/download.aspx?id=118294&guid=1a06aba7-bc98-4d5e-aed9-a164f0acc21d&scheme=1
http://www.editorialmanager.com/ncaa/viewRCResults.aspx?pdf=1&docID=7512&rev=1&fileID=118294&msid={24CB9D90-5769-4164-ABC3-FB435CAD93D6}


2 Pranab Biswas, Surapati Pramanik Bibhas C. Giri.

is proposed by extending the Technique for Order Preference by Similarity

to Ideal Solution (TOPSIS) to single-valued neutrosophic environment. Rat-

ings of alternative with respect to each attribute are considered as single-

valued neutrosophic set that reflect the decision makers’ opinion based on the

provided information. Neutrosophic set characterized by three independent

degrees namely truth-membership degree (T), indeterminacy-membership de-

gree (I), and falsity-membership degree (F) which is more capable to catch up

incomplete information. Single-valued neutrosophic set based weighted aver-

aging operator is used to aggregate all the individual decision maker’s opinion

into one common opinion for rating the importance of criteria and alterna-

tives. Finally, an illustrative example is provided in order to demonstrate its

applicability and effectiveness of the proposed approach.

Keywords Fuzzy set · Intuitionistic fuzzy set · Multi-attribute group decision

making · Neutrosophic set · Single-valued neutrosophic set · TOPSIS

1 Introduction

Multiple attribute decision making (MADM) problems with quantitative or

qualitative attribute values have broad applications in the area of operation

research, management science, urban planning, natural science and military af-

fairs, etc. The attribute values of MADM problems cannot be expressed always

with crisp numbers because of ambiguity and complexity of attribute. In clas-

sical MADM methods, such as Technique for Order Preference by Similarity to

Ideal Solution (TOPSIS) developed by Hwang and Yoon [1], PROMETHEE
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TOPSIS method for multi-attribute group decision making 3

[2], VIKOR [3], ELECTRE [4], the weight of each attribute and ratings of

alternative are presented by crisp numbers. However, in real world, decision

maker may prefer to evaluate attributes by using linguistic variables rather

than exact values because of partial knowledge about the attribute and lack of

information processing capabilities of the problem domain. In such situation, a

preference information of alternatives provided by the decision makers may be

vague, imprecise or incomplete. Fuzzy set [5] introduced by Zadeh , is one of

such tool that utilizes impreciseness in a mathematical form. MADM problem

with imprecise information can be modeled quite well by using fuzzy set theory

into the field of decision making. Chen [6] extended the TOPSIS method for

solving multi-criteria decision making problems in fuzzy environment. How-

ever, fuzzy set can only focus on the membership degree of vague parameters

or events. It fails to handle non-membership degree and indeterminacy degree

of imprecise parameters. In 1986, Atanassov [7] introduced intuitionistic fuzzy

set (IFS) characterized by membership and non-membership degrees simulta-

neously.

Boran et al. [8] extended the TOPSIS method for multi-criteria intuition-

istic decision making problem. Pramanik and Mukhopadhyaya [9] studied

teacher selection in intuitionistic fuzzy environment. However in IFSs, sum of

membership degree and non-membership degree of a vague parameter is less

than unity. Therefore, a certain amount of incomplete information or inde-

terminacy arises in an intuitionistic fuzzy set. It cannot handle all types of
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uncertainties successfully in different real physical problems such as problems

involving indeterminate information.

Smarandache [10] first introduced the concept of neutrosophic set (NS)

from philosophical point of view to handle indeterminate or inconsistent in-

formation usually exist in real situation. A neutrosophic set is characterized

by a truth membership degree, an indeterminacy membership degree and a

falsity membership degree independently. An important feature of NS is that

every element of the universe has not only a certain degree of truth (T) but

also a falsity degree (F) and indeterminacy degree (I). This set is a gener-

alization of crisp set, fuzzy set, interval-valued fuzzy set, intuitionistic fuzzy

set, interval-valued intuitionistic fuzzy set etc. However, NS is difficult to ap-

ply directly in real engineering and scientific applications. In order to deal

with difficulties, Wang et al. [11] introduced a subclass of NS called single-

valued neutrosophic set (SVNS) characterized by truth membership degree,

an indeterminacy membership degree and a falsity membership degree. SVNS

can be applied quite well in real scientific and engineering fields to handle

the uncertainty, imprecise, incomplete, and inconsistent information. Ye [13]

studied multi-criteria decision-making problem by using the weighted correla-

tion coefficient of SVNSs. Ye [14] also developed single-valued neutrosophic

cross entropy for multi-criteria decision-making problems. Biswas et al. [15]

proposed an entropy based grey relational analysis method for solving a multi

attribute decision making problem under SVNSs. Biswas et al. [16] also de-

veloped a new methodology for solving SVNSs based MADM with unknown
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TOPSIS method for multi-attribute group decision making 5

weight information. Zhang et al. [18] studied multi-criteria decision making

problems under interval neutrosophic sets information . Ye [19] further dis-

cussed multi-criteria decision making problem by using aggregation operators

for simplified neutrosophic sets. Chi and Liu [17] discussed an extended TOP-

SIS method for interval neutrosophic set based MADM problems.

The objective of this paper is to extend the concept of TOPSIS method

for multi-attribute group decision making (MAGDM) problems into MAGDM

with SVNS information. The information provided by different domain ex-

perts in MAGDM problems about alternative and attribute values takes the

form of single valued neutrosophic set. In a group decision making process,

neutrosophic weighted averaging operator needs to be used to aggregate all

the decision makers’ opinions into a single opinion for rating the selected al-

ternatives.

The remaining part of this paper is organized as follows: section 2 briefly

introduces some preliminaries relating to neutrosophic set and the basics of

single-valued neutrosophic set. In section 3, basics of TOPSIS method are

discussed. Section 4 is devoted to develop TOPSIS method for MADM under

simplified neutrosophic environment. In section 5, an illustrative example is

provided to show the effectiveness of the proposed approach. Finally, section 6

presents the concluding remarks.
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2 Preliminaries of neutrosophic sets and single valued neutrosophic

sets

In this section, some basic definitions of neutrosophic set defined by Smaran-

dache [10] have been provided to develop the paper.

2.1 Neutrosophic Set

Neutrosophic set is originated from neutrosophy, a new branch of philosophy

which reflects the origin, nature, and scope of neutralities, as well as their

interactions with different ideational spectra [10].

Definition 1 Let X be a universal space of points (objects), with a generic

element of X denoted by x. A neutrosophic set N ⊂ X is characterized by

a truth-membership function TN (x), an indeterminacy membership function

IN (x) and a falsity-membership function FN (x). TN (x), IN (x) and FN (x) are

real standard or non-standard subsets of [0−, 1+], so that all three neutrosophic

components TN (x) → [0−, 1+], IN (x) → [0−, 1+] and FN (x) → [0−, 1+].

The set IN (x) may represent not only indeterminacy but also vagueness, un-

certainty, imprecision, error, contradiction, undefined, unknown, incomplete-

ness, redundancy etc, [20,21]. In order to catch up vague information, an

indeterminacy membership degree can be split into sub-components, such

as“contradiction”, “uncertainty”, “unknown”, etc, [22].
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TOPSIS method for multi-attribute group decision making 7

It should be noted that the sum of three independent membership degrees

TN (x), IN (x) and FN (x) have no restriction such that [11]

0− ≤ TN (x) + IN (x) + FN (x) ≤ 3+

Definition 2 The complement of neutrosophic set A is denoted by Ac and is

defined as T cA(x) =1+ ⊖ TA(x), I
c
A(x) =1+ ⊖ IA(x), and F

c
A(x) =1+ ⊖ FA(x)

for all x ∈ X

Definition 3 A neutrosophic set A is contained in other neutrosophic set B,

i.e. A ⊆ B if and only if inf TA(x) ≤ inf TB(x), sup TA(x) ≤ sup TB(x),

inf IA(x) ≥ inf IB(x), sup IA(x) ≥ sup IB(x), inf FA(x) ≥ inf FB(x),

supFA(x) ≥ supFB(x), for all x in X .

2.2 Single-valued neutrosophic Set

Single-valued neutrosophic set is a special case of neutrosophic set. It can be

used in real scientific and engineering applications. In the following sections

some basic definitions, operations, and properties regarding single valued neu-

trosophic sets [11] are provided.

Definition 4 Let X be a universal space of points (objects), with a generic

element of X denoted by x. A single-valued neutrosophic set (SVNS) Ñ ⊂ X

is characterized by a truth membership function T
Ñ
(x), an indeterminacy

membership function I
Ñ
(x), and a falsity membership function F

Ñ
(x) with

T
Ñ
(x), I

Ñ
(x), F

Ñ
(x) ∈ [0, 1] for all x ∈ X .
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It should be noted that for SVNS Ñ , the relation

0 ≤ T
Ñ
(x) + I

Ñ
(x) + F

Ñ
(x) ≤ 3 for all x ∈ X

holds good. When X is continuous a SVNS Ñ can be written as

Ñ =

∫

x

〈T
Ñ
(x), I

Ñ
(x), F

Ñ
(x)〉 |x, for all x ∈ X.

When X is discrete a SVNS Ñ can be written as

Ñ =
∑

x

〈T
Ñ
(x), I

Ñ
(x), F

Ñ
(x)〉 |x, for all x ∈ X.

SVNS has the following pattern: Ñ= {(x| 〈T
Ñ
(x), I

Ñ
(x), F

Ñ
(x)〉)|x ∈ X}.

Thus finite SVNS can be presented by the ordered tetrads:

Ñ = {(x1| 〈TÑ (x1), IÑ (x1), FÑ
(x1)〉), . . . , (xM | 〈T

Ñ
(xM ), I

Ñ
(xM ), F

Ñ
(xM )〉)}

∀x ∈ X . For convenience, a SVNS Ñ = {(x| 〈T
Ñ
(x), I

Ñ
(x), F

Ñ
(x)〉)|x ∈ X}

is denoted by the simplified symbol Ñ = 〈T
Ñ
(x), I

Ñ
(x), F

Ñ
(x)〉 for all x ∈ X .

Definition 5 Let Ã = 〈T
Ã
(x), I

Ã
(x), F

Ã
(x)〉 and B̃ = 〈T

B̃
(x), I

B̃
(x), F

B̃
(x)〉

be any two SVNSs, then Wang et al. [11] defined the following set of operations

as:

1. Ã ⊆ B̃ if and only if T
Ã
(x) ≤ T

B̃
(x), I

Ã
(x) ≥ I

B̃
(x), F

Ã
(x) ≥ F

B̃
(x) for

all x ∈ X .

2. Ã = B̃ if and only if Ã ⊆ B̃ and B̃ ⊆ Ã for all x ∈ X .

3. Ãc= {(x| 〈F
Ã
(x), 1 − I

Ã
(x), T

Ã
(x)〉)|x ∈ X} for all x ∈ X . (1)

4. Ã ∪ B̃= 〈max(T
Ã
(x), T

B̃
(x)),min(I

Ã
(x), I

B̃
(x)),min(F

Ã
(x), F

B̃
(x))〉 for

all x ∈ X .
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TOPSIS method for multi-attribute group decision making 9

5. Ã ∩ B̃= 〈min(T
Ã
(x), T

B̃
(x)),max(I

Ã
(x), I

B̃
(x)),max(F

Ã
(x), F

B̃
(x))〉 for

all x ∈ X .

Liu and Wang defined the following set of operations for SVNSs in [12] as:

Definition 6 Let Ã and B̃ be two SVNSs, then

1. Ã ⊕ B̃ = 〈T
Ã
(x) + T

B̃
(x) − T

Ã
(x).T

B̃
(x), I

Ã
(x).I

B̃
(x), F

Ã
(x).F

B̃
(x)〉

for all x ∈ X. (2)

2. Ã ⊗ B̃= 〈T
Ã
(x).T

B̃
(x), I

Ã
(x) + I

B̃
(x) − I

Ã
(x).I

B̃
(x), F

Ã
(x) + F

B̃
(x)

− F
Ã
(x).F

B̃
(x)〉for all x ∈ X. (3)

3. Ã ∪ B̃= 〈max(T
Ã
(x), T

B̃
(x)),min(I

Ã
(x), I

B̃
(x)),min(F

Ã
(x), F

B̃
(x))〉 for

all x ∈ X .

4. Ã ∩ B̃= 〈min(T
Ã
(x), T

B̃
(x)),max(I

Ã
(x), I

B̃
(x)),max(F

Ã
(x), F

B̃
(x))〉 for

all x ∈ X .

2.3 Distance between two SVNSs

Majumdar and Samanta [23] studied similarity and entropy measure by incor-

porating euclidean distances of neutrosophic sets.

Definition 7 (Euclidean distance)

Let Ã = {(x1| 〈TÃ(x1), IÃ(x1), FÃ
(x1)〉 , . . . , (xn| 〈TÃ(xn), IÃ(xn), FÃ

(xn)〉}

and B̃= {(x1| 〈TB̃(x1), IB̃(x1), FB̃
(x1)〉 , . . . , (xn| 〈TB̃(xn), IB̃(xn), FB̃

(xn)〉} be

two SVNSs for xi ∈ X , where i = 1, 2, . . . , n. Then the Euclidean distance
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between two SVNSs Ã and B̃ can be defined as follows:

DEucl(Ã, B̃) =

√

√

√

√

√

√

√

n
∑

i=1















(T
Ã
(x1)− T

B̃
(x1))

2
+ (I

Ã
(x1)− I

B̃
(x1))

2

+ (F
Ã
(x1)− F

B̃
(x1))

2















(4)

and the normalized Euclidean distance between two SVNSs Ã and B̃ can be

defined as follows:

DN
Eucl(Ã, B̃) =

√

√

√

√

√

√

√

1

3n

n
∑

i=1















(T
Ã
(x1)− T

B̃
(x1))

2 + (I
Ã
(x1)− I

B̃
(x1))

2

+ (F
Ã
(x1)− F

B̃
(x1))

2















(5)

Definition 8 (Deneutrosophication of SVNS) Deneutrosophication of

SVNS Ñ can be defined as a process of mapping Ñ into a single crisp output

ψ∗ ∈ X i.e. f : Ñ → ψ∗ for x ∈ X . If Ñ is discrete set then the vector

of tetrads Ñ = {(x| 〈T
Ñ
(x), I

Ñ
(x), F

Ñ
(x)〉)|x ∈ X} is reduced to a single

scalar quantity ψ∗ ∈ X by deneutrosophication. The obtained scalar quan-

tity ψ∗ ∈ X best represents the aggregate distribution of three membership

degrees of neutrosophic element 〈T
Ñ
(x), I

Ñ
(x), F

Ñ
(x)〉.

3 TOPSIS

TOPSIS method is used to determine the best alternative from the concepts

of the compromise solution. The best compromise solution should have the

shortest Euclidean distance from the ideal solution and the farthest Euclidean

distance from the negative ideal solution. The procedures of TOPSIS can be

described as follows. Let A= {A1, A2, . . . Am} be the set of alternatives , C=

{C1, C2, . . . Cn} be the set of criteria and D= {dij}, i = 1, 2, . . . ,m, j =
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TOPSIS method for multi-attribute group decision making 11

1, 2, . . . , n, be the performance ratings with the criteria weight vector W =

{wj |j = 1, 2, . . . , n}. TOPSIS method is presented with these following steps:

Step 1. Normalization the decision matrix

The normalized value dNij is calculated as follows:

– For benefit criteria (larger the better), dNij=(dij − d−j )/(d
+
j − d−j ), where

d+j = maxi(dij) and d
−
j = mini(dij) or setting d

+
j is the aspired or desired

level and d−j is the worst level.

– For cost criteria (smaller the better), dNij=(d−j − dij)/(d
−
j − d+j ).

Step 2. Calculation of weighted normalized decision matrix

In the weighted normalized decision matrix, the modified ratings are calculated

as the following way:

vij = wj × dNij for i = 1, 2, . . . ,m and j = 1, 2, . . . , n. (6)

where wj is the weight of the j-th criteria such that wj ≥ 0 for j = 1, 2, . . . , n

and
∑n

j=1 wj = 1.
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12 Pranab Biswas, Surapati Pramanik Bibhas C. Giri.

Step 3. Determination of the positive and the negative ideal solutions

The positive ideal solution (PIS) and the negative ideal solution(NIS) are

derived as follows:

PIS = A+ =
{

v+1 , v
+
2 , . . . v

+
n ,

}

(7)

=

{(

max
j
vij |j ∈ J1

)

,

(

min
j
vij |j ∈ J2

)

|j = 1, 2, . . . , n

}

and

NIS = A− =
{

v−1 , v
−
2 , . . . v

−
n ,

}

(8)

=

{(

min
j
vij |j ∈ J1

)

,

(

max
j
vij |j ∈ J2

)

|j = 1, 2, . . . , n

}

where J1 and J2 are the benefit and cost type criteria respectively.

Step 4. Calculate the separation measures for each alternative from the PIS

and the NIS.

The separation values for the PIS can be measured by using the n-dimensional

Euclidean distance which is given as:

D+
i =

√

√

√

√

n
∑

j=1

(

vij − v+j
)2

i = 1, 2, . . .m. (9)

Similarly, separation values for the NIS is

D−
i =

√

√

√

√

n
∑

j=1

(

vij − v−j
)2

i = 1, 2, . . .m. (10)
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TOPSIS method for multi-attribute group decision making 13

Step 5. Calculation of the relative closeness coefficient to the positive ideal

solution.

The relative closeness coefficient for the alternative Ai with respect to A+ is

Ci =
D−
i

D+
i +D−

i

for i = 1, 2, . . .m. (11)

Step 6. Ranking the alternatives

According to relative closeness coefficient to the ideal alternative, larger value

of Ci indicates the better alternative Ai.

4 TOPSIS Method for multi-attribute decision making with

single-valued neutrosophic information.

Consider a multi-attribute decision-making problem with m alternatives and

n attributes. Let A={A1, A2, ..., Am} be a discrete set of alternatives, and

C={C1, C2, ..., Cn} be the set of attributes. The rating provided by the decision

maker describes the performance of alternative Ai against attribute Cj . Let

us also assume that W = {w1, w2 . . . , wn} be the weight vector assigned for

the attributes C1, C2, ..., Cn by the decision makers. The values associated

with the alternatives for MADM problems can be presented in the following
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decision matrix

D = 〈dij〉m×n
=

























C1 C2 . . . Cn

A1 d11 d12 . . . d1n

A2 d21 d22 . . . d2n

. . . . . . . . . . . . . . .

Am d1m d2m . . . dmn

























(12)

Step 1. Determination of the most important attribute

Generally, there are many criteria or attributes in decision-making problems,

where some of them are important and others may not be so important. So it is

crucial to select the proper criteria or attributes for decision-making situation.

The most important attributes may be chosen with the help of expert opinions

or by some others method that are technically sound.

Step 2. Construction of decision matrix with SVNSs

It is assumed that the rating of each alternative with respect to each attribute

is expressed as SVNS for MADM problem.The neutrosophic values associated

with the alternatives for MADM problems can be represented in the following
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TOPSIS method for multi-attribute group decision making 15

decision matrix:

D
Ñ

=
〈

dsij
〉

m×n
= 〈Tij , Iij , Fij〉m×n

(13)

=





























C1 C2 . . . Cn

A1 〈T11, I11, F11〉 〈T12, I12, F12〉 . . . 〈T1n, I1n, F1n〉

A2 〈T21, I21, F21〉 〈T22, I22, F22〉 . . . 〈T2n, I2n, F2n〉

. . . . . . . . . . . . . . .

Am 〈Tm1, Im1, Fm1〉 〈Tm2, Im2, Fm2〉 . . . 〈Tmn, Imn, Fmn〉





























(14)

In the matrix D
Ñ

= 〈Tij , Iij , Fij〉m×n
, Tij ,Iij and Fij denote the degree of

truth membership value, indeterminacy membership value and falsity mem-

bership value of alternative Ai with respect to attribute Cj satisfying the

following properties under the single-valued neutrosophic environment:

1. 0 ≤ Tij ≤ 1; 0 ≤ Iij ≤ 1; 0 ≤ Fij ≤ 1.

2. 0 ≤ Tij + Iij + Fij ≤ 3 for i = 1,2,..., n and j = 1,2,..., m.

The ratings of each alternative over the attributes are best illustrated by

the neutrosophic cube [24] proposed by Dezert in 2002. The vertices of neutro-

sophic cube are (0, 0, 0), (1, 0, 0),(1, 0, 1),(0, 0, 1),(0, 1, 0),(1, 1, 0),(1, 1, 1) and

(0, 1, 1). The area of ratings in neutrosophic cube are classified in three cate-

gories namely, 1. highly acceptable neutrosophic ratings, 2. tolerable neutro-

sophic rating and 3. unacceptable neutrosophic ratings.

Definition 9 (Highly acceptable neutrosophic ratings)

The subcube(Λ) of a neutrosophic cube(∆) (i.e. Λ ⊂ ∆) represents the area
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of highly acceptable neutrosophic ratings (U)for decision making. Vertices of

Λ are defined with these eight points (0.5, 0, 0),(1, 0, 0),(1, 0, 0.5),(0.5, 0, 0.5),

(0.5, 0, 0.5),(1, 0, 0.5),(1, 0.5, 0.5) and (0.5, 0.5, 0.5). U includes all the ratings of

alternative considered with the above average truth membership degree, below

average indeterminacy degree and below average falsity membership degree

for multi-attribute decision making. Therefore, U has a great contribution in

decision making process and can be defined as

U = 〈Tij , Iij , Fij〉 where 0.5 < Tij < 1, 0 < Iij < 0.5 and 0 < Fij < 0.5.

for i=1, 2, . . . ,m and j=1, 2, . . . , n.

Definition 10 (Unacceptable neutrosophic ratings) The area Γ of un-

acceptable neutrosophic ratings V is defined by the ratings which are char-

acterized by 0% membership degree, 100% indeterminacy degree and 100%

falsity membership degree. Thus the set of unacceptable ratings V can be

considered as the set of all ratings whose truth membership value is zero.

V = 〈Tij , Iij , Fij〉 where Tij = 0, 0 < Iij ≤ 1 and 0 < Fij ≤ 1.

for i=1, 2, . . . ,m and j=1, 2, . . . , n.

Consideration of V should be avoided in decision making process.

Definition 11 (Tolerable neutrosophic ratings) Excluding the area of

highly acceptable ratings and unacceptable ratings from a neutrosophic cube,

tolerable neutrosophic rating area Θ (=∆∩¬Λ∩¬Γ )can be determined. The

tolerable neutrosophic rating (Z) considered with below average truth mem-

bership degree, above average indeterminacy degree and above average falsity
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TOPSIS method for multi-attribute group decision making 17

membership degree are taken in decision making process. Z can be defined by

the following expression

Z = 〈Tij , Iij , Fij〉 where 0 < Tij < 0.5, 0.5 < Iij < 1 and 0.5 < Fij < 1.

for i=1, 2, . . . ,m and j=1, 2, . . . , n.

Definition 12 Fuzzification of SVNS Ñ = {(x| 〈T
Ñ
(x), I

Ñ
(x), F

Ñ
(x)〉)|x ∈

X} can be defined as a process of mappingÑ into fuzzy set F̃ = {x|µF̃ (x)|x ∈

X} i.e. f : Ñ → F̃ for x ∈ X . The representative fuzzy membership degree

µF̃ (x) ∈ [0, 1]1 of the vector tetrads {(x| 〈T
Ñ
(x), I

Ñ
(x), F

Ñ
(x)〉)|x ∈ X} is

defined from the concept of neutrosophic cube. It can be obtained by deter-

mining the root mean square of 1 − T
Ñ
(x), I

Ñ
(x) and F

Ñ
(x) for all x ∈ X .

Therefore the equivalent fuzzy membership degree is as:

µF̃ (x) =



















1−
√

{(1− T
Ñ
(x))2 + I

Ñ
(x)2 + F

Ñ
(x)2}/3, for ∀x ∈ U ∪ Z

0, for ∀x ∈ V

(15)

Step 3. Determination of the weights of decision makers

Let us assume that the group of p decision makers having their own decision

weights. Thus the importance of the decision makers in a committee may not

be equal to each other. Let us assume that the importance of each decision

maker is considered with linguistic variables and expressed it by neutrosophic

numbers.
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Let Ek=〈Tk, Ik, Fk〉 be a neutrosophic number defined for the rating of k-

th decision maker. Then, according to Eq.(15) the weight of the k-th decision

maker can be written as :

ψk =
1−

√

{(1− Tk(x))2 + (Ik(x))2 + (Fk(x))2}/3
∑p

k=1

(

1−
√

{(1− Tk(x))2 + (Ik(x))2 + (Fk(x))2}/3
) (16)

and
∑p

k=1 ψk = 1

Step 4. Construction of aggregated single-valued neutrosophic decision matrix

based on decision makers’ assessments

Let D(k)= (d
(k)
ij )m×n be the single-valued neutrosophic decision matrix of the

k−th decision maker and Ψ= (ψ1, ψ2 . . . , ψp)
T
be the weight vector of decision

maker such that each ψk ∈ [0, 1]. In the group decision making process, all

the individual assessments need to be fused into a group opinion to make

an aggregated neutrosophic decision matrix. This aggregated matrix can be

obtained by using single-valued neutrosophic weighted averaging (SVNWA)

aggregation operator proposed by Ye[19] for SVNSs as follows:

D = (dij)m×n where,

dij = SV NSWAΨ

(

d
(1)
ij , d

(2)
ij , . . . , d

(p)
ij

)

= ψ1d
(1)
ij ⊕ ψ2d

(2)
ij ⊕ · · · ⊕ ψ(p)d

(p)
ij

=

〈

1−

p
∏

k=1

(

1− T
(p)
ij

)ψk

,

p
∏

k=1

(

I
(p)
ij

)ψk

,

p
∏

k=1

(

F
(p)
ij

)ψk

〉

(17)
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TOPSIS method for multi-attribute group decision making 19

Therefore the aggregated neutrosophic decision matrix is defined as follows:

D = 〈dij〉m×n
= 〈Tij , Iij , Fij〉m×n

(18)

=





























C1 C2 . . . Cn

A1 〈T11, I11, F11〉 〈T12, I12, F12〉 . . . 〈T1n, I1n, F1n〉

A2 〈T21, I21, F21〉 〈T22, I22, F22〉 . . . 〈T2n, I2n, F2n〉

. . . . . . . . . . . . . . .

Am 〈Tm1, Im1, Fm1〉 〈Tm2, Im2, Fm2〉 . . . 〈Tmn, Imn, Fmn〉





























(19)

where, dij= 〈Tij , Iij , Fij〉 is the aggregated element of neutrosophic decision

matrix D for i = 1, 2, . . .m and j = 1, 2, . . . n.

Step 5. Determination of the attribute weights

In the decision-making process, decision makers may feel that all attributes

are not equal importance. Thus every decision maker may have their very

own opinion regarding attribute weights. To obtain the grouped opinion of the

chosen attribute, all the decision makers’ opinions for the importance of each

attribute need to be aggregated. Let wjk=(w
(1)
j , w

(2)
j . . . , w

(p)
j ) be the neutro-

sophic number(NN) assigned to the attribute Cj by the k− th decision maker.

Then the combined weight W={w1, w2 . . . , wn} of the attribute can be deter-
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mined by using SVNWA aggregation operator [19].

wj = SV NWAΨ

(

w
(1)
j , w

(2)
j , . . . , w

(p)
j

)

= ψ1w
(1)
j ⊕ ψ2w

(2)
j ⊕ · · · ⊕ ψ(p)w

(p)
j

=

〈

1−

p
∏

k=1

(

1− T
(p)
j

)ψk

,

p
∏

k=1

(

I
(p)
j

)ψk

,

p
∏

k=1

(

F
(p)
j

)ψk

〉

(20)

W = {w1, w2, . . . , wn} (21)

where, wj = 〈Tj, Ij , Fj〉 for j = 1, 2, . . . n.

Step 6. Aggregation of the weighted neutrosophic decision matrix

In this section, the obtained weights of attribute and aggregated neutrosophic

decision matrix need to be further fused to make the aggregated weighted

neutrosophic decision matrix.

The aggregated weighted neutrosophic decision matrix can be obtained by

using the multiplication formula (3) of two neutrosophic sets as:

D⊗W = Dw =
〈

d
wj

ij

〉

m×n
=

〈

T
wj

ij , I
wj

ij , F
wj

ij

〉

m×n
(22)

=





























C1 C2 . . . Cn

A1 〈Tw1

11 , I
w1

11 , F
w1

11 〉 〈Tw2

12 , I
w2

12 , F
w2

12 〉 . . . 〈Twn

1n , I
wn

1n , F
wn

1n 〉

A2 〈Tw1

21 , I
w1

21 , F
w1

21 〉 〈Tw2

22 , I
w2

22 , F
w2

22 〉 . . . 〈Twn

2n , I
wn

2n , F
wn

2n 〉

. . . . . . . . . . . . . . .

Am 〈Tw1

m1, I
w1

m1, F
w1

m1〉 〈Tw2

m2, I
w2

m2, F
w2

m2〉 . . . 〈Twn
mn, I

wn
mn, F

wn
mn〉





























(23)
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Here, d
wj

ij =
〈

T
wj

ij , I
wj

ij , F
wj

ij

〉

is an element of the aggregated weighted neu-

trosophic decision matrix Dw for i = 1, 2, . . . ,m and j = 1, 2, . . . , n.

Step 7. Determination of the relative positive ideal solution (RPIS) and the

relative negative ideal solution (RNIS) for SVNSs

Let D
Ñ
=
〈

dwij
〉

m×n
= 〈Tij , Iij , Fij〉m×n

be a SVNS based decision matrix,

where, Tij , Iij and Fij are the membership degree, indeterminacy degree and

non-membership degree of evaluation for the attribute Cj with respect to the

alternative Ai.

In practical, two types of attributes namely, benefit type attribute and cost

type attribute exist in multi-attribute decision making problem.

Definition 13 Let J1 and J2 be the benefit type attribute and cost type

attribute respectively. Q+

Ñ
is the relative neutrosophic positive ideal solution

(RNPIS) and Q−

Ñ
is the relative neutrosophic negative ideal solution (RNNIS).

Then Q+

Ñ
can be defined as follows:

Q+

Ñ
=

[

dw1
+, dw2

+, . . . , dwn
+] (24)

where, dwj
+=

〈

Twj
+, Iwj

+, Fwj
+
〉

for j = 1, 2, . . . , n.

Twj
+ =

{(

max
i

{T
wj

ij }|j ∈ J1

)

,

(

min
i
{T

wj

ij }|j ∈ J2

)}

(25)

Iwj
+ =

{(

min
i
{I
wj

ij }|j ∈ J1

)

,

(

max
i

{I
wj

ij }|j ∈ J2

)}

(26)

Fwj
+ =

{(

min
i
{F

wj

ij }|j ∈ J1

)

,

(

max
i

{F
wj

ij }|j ∈ J2

)}

(27)
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and Q−

Ñ
can be defined by

Q−

Ñ
=

[

dw1
−, dw2

−, . . . , dwn
−
]

(28)

where, dwj
−=

〈

Twj
−, Iwj

−, Fwj
−
〉

for j = 1, 2, . . . , n.

Twj
− =

{(

min
i
{T

wj

ij }|j ∈ J1

)

,

(

max
i

{T
wj

ij }|j ∈ J2

)}

(29)

Iwj
− =

{(

max
i

{I
wj

ij }|j ∈ J1

)

,

(

min
i
{I
wj

ij }|j ∈ J2

)}

(30)

Fwj
− =

{(

max
i

{F
wj

ij }|j ∈ J1

)

,

(

min
i
{F

wj

ij }|j ∈ J2

)}

(31)

Step 8. Determination of the distance measure of each alternative from the

RNPIS and the RNNIS for SVNSs

Similar to Eq.(5), the normalized Euclidean distance measure of each alter-

native
〈

T
wj

ij , I
wj

ij , F
wj

ij

〉

from the RNPIS
〈

Twj
+, Iwj

+, Fwj
+
〉

for i = 1, 2, . . . ,m

and j = 1, 2, . . . , n can be written as follows:

Di+
Eu

(

d
wj

ij , d
w
j
+) =

√

√

√

√

√

√

√

1

3n

n
∑

j=1















(

T
wj

ij (xj)− Twj
+(xj)

)2
+
(

I
wj

ij (xj)− Iwj
+(xj)

)2

+
(

F
wj

ij (xj)− Fwj
+(xj)

)2















(32)

similarly, the normalized Euclidean distance measure of each alternative

〈

T
wj

ij , I
wj

ij , F
wj

ij

〉

from the RNNIS
〈

Twj
−, Iwj

−, Fwj
−
〉

can be written as:

Di−
Eu

(

d
wj

ij , d
w
j
−
)

=

√

√

√

√

√

√

√

1

3n

n
∑

j=1















(

T
wj

ij (xj)− Twj
−(xj)

)2
+

(

I
wj

ij (xj)− Iwj
−(xj)

)2

+
(

F
wj

ij (xj)− Fwj
−(xj)

)2















(33)
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Step 9. Determination of the relative closeness co-efficient to the neutrosophic

ideal solution for SVNSs

The relative closeness coefficient of each alternative Ai with respect to the

neutrosophic positive ideal solution Q+

Ñ
is defined as follows:

C∗
i =

Di−
Eu

(

d
wj

ij , d
w
j
−
)

Di+
Eu

(

d
wj

ij , d
w
j
−
)

+Di−
Eu

(

d
wj

ij , d
w
j
−
) (34)

where, 0 ≤ C∗
i ≤ 1.

Step 10. Ranking the alternatives

According to the relative closeness co-efficient values larger the values of C∗
i

reflects the better alternative Ai for i = 1, 2, . . . ,m.

5 Numerical example

Let us suppose that a group of four decision makers (DM1,DM2, DM3, DM4)

intend to select the most suitable tablet from the four initially chosen tablet

(A1, A2, A2, A4) by considering six attributes namely: Features C1, Hardware

C2, Display C3, Communication C4, Affordable Price C5, Customer care C6.

Based on the proposed approach discussed in section 4, the considered problem

is solved by the following steps:

Step 1. Determination of the weights of decision makers.

The importance of four decision makers in a selection committee may not be

equal to each other according their status. Their decision powers are considered
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as linguistic terms expressed in Table -1. The importance of each decision

Table 1 Linguistic terms for rating of attributes and decision makers.

Linguistic Terms SVNNs

Very Good / Very Important (VG/VI) 〈0.90, 0.10, 0.10〉

Good / Important(G /I) 〈0.80, 0.20, 0.15〉

Fair / Medium(F/M) 〈0.50, 0.40, 0.45〉

Bad / Unimportant (B / UI) 〈0.35, 0.60, 0.70〉

Very Bad / Very Unimportant (VB/VUI) 〈0.10, 0.80, 0.90〉

maker expressed by linguistic term with its corresponding SVNN shown in

Table-2. The weight of decision maker is determined with the help of Eq.(16)

as follows:

ψ1 =
1−

√

(0.01 + 0.01 + 0.01)/3
(

4−
√

0.03/3−
√

0.1025/3−
√

0.6125/3−
√

0.1025/3
) = 0.292

Similarly, other three weights of decision ψ2= 0.265, ψ3= 0.178 and ψ4= 0.265

can be obtained. Thus the weight vector of the four decision maker is:

Ψ = (0.292, 0.265, 0.178, 0.265) (35)

Table 2 Importance of decision makers expressed with SVNNs.

DM-1 DM-2 DM-3 DM-4

LT VI I M I

W̃ 〈0.90, 0.10, 0.10〉 〈0.80, 0.20, 0.15〉 〈0.50, 0.40, 0.45〉 〈0.80, 0.20, 0.15〉
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Table 3 Linguistic terms for rating the candidates with SVNNs.

Linguistic terms SVNNs

Extremely Good/High (EG/EH) 〈1.00, 0.00, 0.00〉

Very Good/High (VG/VH) 〈0.90, 0.10, 0.05〉

Good/High (G/H) 〈0.80, 0.20, 0.15〉

Medium Good/High (MG/MH) 〈0.65, 0.35, 0.30〉

Medium/Fair (M/F) 〈0.50, 0.50, 0.45〉

Medium Bad/Medium Law (MB/ML) 〈0.35, 0.65, 0.60〉

Bad/Law (B/L) 〈0.20, 0.75, 0.80〉

Very Bad/Low (VB/VL) 〈0.10, 0.85, 0.90〉

Very Very Bad/low (VVB/VVL) 〈0.05, 0.90, 0.95〉

Step-2. Construction of the aggregated neutrosophic decision matrix based on

the assessments of decision makers.

The linguistic term along with SVNNs is defined in Table-3 to rate each alter-

native with respect to each attribute. The assessment values of each alternative

Ai (i = 1, 2, 3, 4) with respect to each attribute Cj (j = 1, 2, 3, 4, 5, 6) provided

by four decision makers are listed in Table-4. Then the aggregated neutrosophic

decision matrix can be obtained by fusing all the decision makers’ opinion with

the help of aggregation operator [19] as in Table-5.

By using Eq.(17), the aggregated value of the four decision makers’ assess-

ment values are arbitrarily chosen as an illustration for the alternative A1 with
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Table 4 Assessments of alternatives and attribute weights given by four decision makers.

Alternatives (Ai) Decision Makers C1 C2 C3 C4 C5 C6

A1 DM-1 VG G G G G VG

DM-2 VG VG G G G VG

DM-3 G VG G G VG G

DM-4 G G G G G G

A2 DM-1 M G M G G M

DM-2 G MG G G MG G

DM-3 G M G G M M

DM-4 M G M G M M

A3 DM-1 VG VG G G VG VG

DM-2 G VG VG G G VG

DM-3 VG G G MG G MG

DM-4 VG VG G G MG G

A4 DM-1 M VG G G VG M

DM-2 M M G G M G

DM-3 G G G G M VG

DM-4 G M M G G VG

Weights DM-1 VI VI I M I I

DM-2 I VI I I M M

DM-3 M I M M I M

DM-4 M VI M I VI I
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Table 5 Aggregated neutrosophic decision matrix.




C1 C2 C3

A1 〈0.864, 0.136, 0.081〉 〈0.853, 0.147, 0.092〉 〈0.800, 0.200, 0.150〉

A2 〈0.667, 0.333, 0.277〉 〈0.727, 0.273, 0.219〉 〈0.667, 0.333, 0.277〉

A3 〈0.880, 0.120, 0.067〉 〈0.887, 0.113, 0.064〉 〈0.834, 0.166, 0.112〉

A4 〈0.667, 0.333, 0.277〉 〈0.735, 0.265, 0.195〉 〈0.768, 0.232, 0.180〉







C4 C5 C6

A1 〈0.704, 0.296, 0.241〉 〈0.823, 0.177, 0.123〉 〈0.864, 0.136, 0.081〉

A2 〈0.744, 0.256, 0.204〉 〈0.652, 0.348, 0.293〉 〈0.608, 0.392, 0.336〉

A3 〈0.779, 0.221, 0.170〉 〈0.811, 0.189, 0.109〉 〈0.850, 0.150, 0.092〉

A4 〈0.727, 0.273, 0.221〉 〈0.791, 0.209, 0.148〉 〈0.808, 0.192, 0.127〉




(39)

respect to the attribute C1 and shown in Eq.(36), Eq.(37), and Eq.(38).

T11 = 1− (1− 0.90)0.292 × (1− 0.90)0.265 × (1− 0.80)0.178

× (1− 0.80)0.265 = 1− 0.1359 = 0.8641. (36)

I11 = (0.10)0.292 × (0.10)0.265 × (0.20)0.178 × (0.20)0.265 = 0.1359. (37)

F11 = (0.05)0.292 × (0.05)0.265 × (0.15)0.178 × (0.15)0.265 = 0.0813. (38)

Step-3. Determine the weights of attribute.

The linguistic terms shown in Table-1 are used to evaluate each attribute. The

importance of each attribute for every decision maker are rated with linguistic
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terms shown in Table-4. Four decision makers’ opinions need to be aggregated

to determine the combined weight of each attribute.The fused attribute weight

vector is determined by using Eq.(20) as follows:

W =



















〈0.755, 0.222, 0.217〉 , 〈0.887, 0.113, 0.107〉 ,

〈0.765, 0.226, 0.182〉 , 〈0.692, 0.277, 0.251〉 ,

〈0.788, 0.200, 0.180〉 , 〈0.700, 0.272, 0.244〉



















(40)

Step-4. Construction of the aggregated weighted neutrosophic decision matrix

After obtaining the combined weights of attribute and the ratings of alterna-

tive, the aggregated weighted neutrosophic decision matrix shown in Table 6,

can be formed. For example, the element of aggregated weighted decision ma-

trix for the alternative A1 with respect to attribute C1, is determined by the

following Eq. (41).

〈Tw11, I
w
11, F

w
11〉 =

〈

0.864× 0.755, 0.136+ 0.222− 0.136× 0.222, 0.081

+0.217− 0.081× 0.217

〉

= 〈0.65232, 0.3278, 0.2804〉

(41)

Step-5. Determination of the neutrosophic relative positive ideal solution and

the neutrosophic relative negative ideal solution.

The NRPIS can be calculated from the aggregated weighted decision matrix

on the basis of attribute types i.e. benefit type or cost type by using Eq. (24)
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Table 6 Aggregated weighted neutrosophic decision matrix.




C1 C2 C3

A1 〈0.652, 0.328, 0.280〉 〈0.757, 0.243, 0.289〉 〈0.612, 0.381, 0.305〉

A2 〈0.504, 0.481, 0.434〉 〈0.645, 0.355, 0.388〉 〈0.510, 0.484, 0.409〉

A3 〈0.664, 0.315, 0.269〉 〈0.787, 0.213, 0.267〉 〈0.638, 0.354, 0.274〉

A4 〈0.504, 0.481, 0.434〉 〈0.652, 0.348, 0.370〉 〈0.588, 0.406, 0.329〉







C4 C5 C6

A1 〈0.487, 0.491, 0.432〉 〈0.649, 0.342, 0.281〉 〈0.605, 0.371, 0.305〉

A2 〈0.515, 0.402, 0.404〉 〈0.514, 0.478, 0.420〉 〈0.426, 0.557, 0.498〉

A3 〈0.539, 0.437, 0.378〉 〈0.639, 0.351, 0.269〉 〈0.595, 0.381, 0.314〉

A4 〈0.503, 0.474, 0.417〉 〈0.623, 0.367, 0.301〉 〈0.566, 0.412, 0.340〉




(42)

as

Q+

Ñ
=



















〈0.664, 0.315, 0.269〉 , 〈0.787, 0.213, 0.267〉 ,

〈0.638, 0.354, 0.274〉 , 〈0.539, 0.437, 0.378〉 ,

〈0.649, 0.342, 0.269〉 , 〈0.605, 0.371, 0.305〉



















(43)

where, dw1
+=

〈

Tw1
+, Iw1

+, Fw1
+
〉

is calculated as

Tw1
+ = max {0.652, 0.504, 0.664, 0.504} = 0.664

Iw1
+ = min {0.328, 0.481, 0.315, 0.481} = 0.315

Fw1
+ = min {0.280, 0.434, 0.269, 0.434} = 0.269

and others. Similarly, the NRNIS can be calculated from aggregated weighted

decision matrix on the basis of attribute types i.e. benefit type or cost type by
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Table 7 Distance measure and relative closeness co-efficient of each alternative.

Alternatives (Ai) Di+

Eucl
Di−

Eucl
C∗

i

A1 0.0283 0.1281 0.8190

A2 0.3472 0.0490 0.1158

A3 0.0224 0.1382 0.8605

A4 0.0900 0.0831 0.4801

using Eq. (28) as

Q−

Ñ
=



















〈0.504, 0.481, 0.434〉 , 〈0.645, 0.355, 0.388〉 ,

〈0.510, 0.484, 0.409〉 , 〈0.487, 0.491, 0.432〉 ,

〈0.514, 0.478, 0.420〉 , 〈0.426, 0.557, 0.498〉



















(44)

where, dw1
−=

〈

Tw1
−, Iw1

−, Fw1
−
〉

is calculated as

Tw1
− = min {0.652, 0.504, 0.664, 0.504} = 0.504

Iw1
− = max {0.328, 0.481, 0.315, 0.481} = 0.481

Fw1
− = max {0.280, 0.434, 0.269, 0.434} = 0.434

and other components are similarly calculated.

Step-6. Determination of the distance measure of each alternative from the

RNPIS and the RNNIS and relative closeness co-efficient

Normalized Euclidean distance measures defined in Eq.(32) and Eq. (33) are

used to determine the distances of each alternative from the RNPIS and the

RNNIS. With these distances relative closeness co-efficient is calculated by

using Eq. (34). These results are listed in Table-7.
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Step-7. Ranking the alternatives

According to the values of relative closeness coefficient of each alternative

shown in Table-7, the ranking order of four alternatives is

A3 ≻ A1 ≻ A4 ≻ A2.

Thus A3 is the best alternative tablet to buy.

6 Conclusions

This paper is devoted to present a new TOPSIS based approach for MAGDM

under simplified neutrosophic environment. In the evaluation process, the rat-

ings of each alternative with respect to each attribute are given as linguistic

variables characterized by single valued neutrosophic numbers. Neutrosophic

aggregation operator is used to aggregate all the opinions of decision makers.

Neutrosophic positive ideal and neutrosophic negative ideal solution are de-

fined from aggregated weighted decision matrix. Euclidean distance measure

is used to determine the distances of each alternative from positive as well

as negative ideal solutions for relative closeness co-efficient of each alterna-

tive. However the author hope that the concept presented in this paper may

open up new avenue of research in competitive neutrosophic decision mak-

ing arena. TOPSIS method with neutrosophic set information has enormous

chance of success for multi-attribute decision making problems. In future, the

proposed approach can be used for dealing with decision making problems
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such as personal selection in academia, project evaluation, supplier selection,

manufacturing systems, and many other areas of management systems.
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Table 1: Linguistic terms for rating of attributes and Decision Makers.
Linguistic Terms SVNNs
Very Good / Very Important (VG/VI) 〈0.90, 0.10, 0.10〉
Good / Important(G /I) 〈0.80, 0.20, 0.15〉
Fair / Medium(F/M) 〈0.50, 0.40, 0.45〉
Bad / Unimportant (B / UI) 〈0.35, 0.60, 0.70〉
Very Bad / Very Unimportant (VB/VUI) 〈0.10, 0.80, 0.90〉

Table 2: Importance of decision makers expressed with SVNNs.
DM-1 DM-2 DM-3 DM-4

LT VI I M I
˜W 〈0.90, 0.10, 0.10〉 〈0.80, 0.20, 0.15〉 〈0.50, 0.40, 0.45〉 〈0.80, 0.20, 0.15〉

Table 3: Linguistic terms for rating the candidates with SVNNs.
Linguistic terms SVNNs
Extremely Good/High (EG/EH) 〈1.00, 0.00, 0.00〉
Very Good/High (VG/VH) 〈0.90, 0.10, 0.05〉
Good/High (G/H) 〈0.80, 0.20, 0.15〉
Medium Good/High (MG/MH) 〈0.65, 0.35, 0.30〉
Medium/Fair (M/F) 〈0.50, 0.50, 0.45〉
Medium Bad/Medium Law (MB/ML) 〈0.35, 0.65, 0.60〉
Bad/Law (B/L) 〈0.20, 0.75, 0.80〉
Very Bad/Low (VB/VL) 〈0.10, 0.85, 0.90〉
Very Very Bad/low (VVB/VVL) 〈0.05, 0.90, 0.95〉
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Table 4: Assessments of alternatives and attribute weights given by four decision
makers.
Alternatives (Ai) Decision Makers C1 C2 C3 C4 C5 C6

A1 DM-1 VG G G G G VG
DM-2 VG VG G G G VG
DM-3 G VG G G VG G
DM-4 G G G G G G

A2 DM-1 M G M G G M
DM-2 G MG G G MG G
DM-3 G M G G M M
DM-4 M G M G M M

A3 DM-1 VG VG G G VG VG
DM-2 G VG VG G G VG
DM-3 VG G G MG G MG
DM-4 VG VG G G MG G

A4 DM-1 M VG G G VG M
DM-2 M M G G M G
DM-3 G G G G M VG
DM-4 G M M G G VG

Weights DM-1 VI VI I M I I
DM-2 I VI I I M M
DM-3 M I M M I M
DM-4 M VI M I VI I

Table 5: Aggregated neutrosophic decision matrix.













C1 C2 C3

A1 〈0.864, 0.136, 0.081〉 〈0.853, 0.147, 0.092〉 〈0.800, 0.200, 0.150〉

A2 〈0.667, 0.333, 0.277〉 〈0.727, 0.273, 0.219〉 〈0.667, 0.333, 0.277〉

A3 〈0.880, 0.120, 0.067〉 〈0.887, 0.113, 0.064〉 〈0.834, 0.166, 0.112〉

A4 〈0.667, 0.333, 0.277〉 〈0.735, 0.265, 0.195〉 〈0.768, 0.232, 0.180〉

























C4 C5 C6

A1 〈0.704, 0.296, 0.241〉 〈0.823, 0.177, 0.123〉 〈0.864, 0.136, 0.081〉

A2 〈0.744, 0.256, 0.204〉 〈0.652, 0.348, 0.293〉 〈0.608, 0.392, 0.336〉

A3 〈0.779, 0.221, 0.170〉 〈0.811, 0.189, 0.109〉 〈0.850, 0.150, 0.092〉

A4 〈0.727, 0.273, 0.221〉 〈0.791, 0.209, 0.148〉 〈0.808, 0.192, 0.127〉












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Table 6: Aggregated weighted neutrosophic decision matrix.













C1 C2 C3

A1 〈0.652, 0.328, 0.280〉 〈0.757, 0.243, 0.289〉 〈0.612, 0.381, 0.305〉

A2 〈0.504, 0.481, 0.434〉 〈0.645, 0.355, 0.388〉 〈0.510, 0.484, 0.409〉

A3 〈0.664, 0.315, 0.269〉 〈0.787, 0.213, 0.267〉 〈0.638, 0.354, 0.274〉

A4 〈0.504, 0.481, 0.434〉 〈0.652, 0.348, 0.370〉 〈0.588, 0.406, 0.329〉

























C4 C5 C6

A1 〈0.487, 0.491, 0.432〉 〈0.649, 0.342, 0.281〉 〈0.605, 0.371, 0.305〉

A2 〈0.515, 0.402, 0.404〉 〈0.514, 0.478, 0.420〉 〈0.426, 0.557, 0.498〉

A3 〈0.539, 0.437, 0.378〉 〈0.639, 0.351, 0.269〉 〈0.595, 0.381, 0.314〉

A4 〈0.503, 0.474, 0.417〉 〈0.623, 0.367, 0.301〉 〈0.566, 0.412, 0.340〉













Table 7: Distance measure and relative closeness co-efficient of each alternative.
Alternatives (Ai) Di+

Eucl
Di−

Eucl
C∗

i

A1 0.0283 0.1281 0.8190
A2 0.3472 0.0490 0.1158
A3 0.0224 0.1382 0.8605

A4 0.0900 0.0831 0.4801
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