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Abstract: Neutrosophic number (NN) is a useful tool which is used to overcome the difficulty of 

describing indeterminate evaluation information. The purpose of the study is to propose some power 

aggregation operators based on neutrosophic number which are used to deal with multiple attributes 

group decision making problems more effectively. Firstly, the basic concepts and the operational rules 

and the characteristics of NNs are introduced. Then, some aggregation operators based on neutrosophic 

numbers are developed, included the neutrosophic number weighted power averaging (NNWPA) 

operator, the neutrosophic number weighted geometric power averaging (NNWGPA) operator, the 

generalized neutrosophic number weighted power averaging (GNNWPA)operator. At the same time, 

the properties of above operators are studied such as idempotency, monotonicity, boundedness and so 

on. Then, the generalized neutrosophic number weighted power averaging (GNNWPA) operator is 

applied to solve multiple attribute group decision making problems. Afterwards, a numerical example 

is given to demonstrate the effective of the new developed method, and some comparison are 

conducted to verify the influence of different parameters or to reveal the difference with another 

method. In the end, the main conclusion of this paper is summarized. 

Keywords: multiple attribute group decision making; neutrosophic numbers; power aggregation 

operator; neutrosophic numbers power aggregation operator. 

1. Introduction 

In real decision making, since the fuzziness and complexity of decision making problems, 

sometimes the people’s judgments by crisp numbers have difficulty in conveying their opinions 

thoroughly. Zadeh [1] innovatively proposed the fuzzy set (FS) to cope with the fuzzy information. 

Since the fuzzy set has only the membership degree and has not the non-membership degree, 

Atanassov [2] made an improvement to overcome this shortcoming, and proposed the intuitionistic 

fuzzy set (IFS) which is made up with membership degree and non-membership degree. However IFS 

did not consider the indeterminacy-membership degree. To find a more precise measurement, 

Smarandache [3] further proposed the neutrosophic numbers (NNs), and it can be divided into 

determinate part and indeterminate part. The neutrosophic number (NN) is in the form of bIaN  . 

As we can see that a is the determinate part and bI represents the indeterminate part. Obviously, about 

the indeterminate part, the fewer it is, the better it is. So, the worst scenario is bIN  . Conversely, the 

best case is aN  . To this day, there is the little progress to cope with indeterminate problems by 

neutrosophic numbers in fields of scientific and engineering techniques. Therefore, it is necessary to 

propose a new method based on neutrosophic numbers (NNs) to handle group decision making 

problems. 

Researchers have paid more and more attentions on information aggregation operators. The OWA 

operator can weight the inputs according to the ranking position of them, then many extensions of the 

OWA operator have been proposed, such as uncertain aggregation operators [4-6], the induced 
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aggregation operators [7,8], the linguistic aggregation operators [9-11], the uncertain linguistic 

aggregation operators [12,13,14], the fuzzy aggregation operators [15,16], the fuzzy linguistic 

aggregation operators [17], the induced linguistic aggregation operators [18], the induced uncertain 

linguistic aggregation operators [19,20], the fuzzy induced aggregation operators [21] and the 

intuitionistic fuzzy aggregation operators [22]. Based on the operators mentioned above, Xu and Chen 

[23] proposed some interval-valued intuitionistic fuzzy arithmetic aggregation (IVIFAA) operators, 

such as the interval-valued intuitionistic fuzzy weighted aggregation(IVIFWA) operator, the 

interval-valued intuitionistic fuzzy ordered weighted aggregation (IVIFOWA) operator, and the 

interval-valued intuitionistic fuzzy hybrid aggregation (IVIFHA) operator. Zhao [24] proposed the 

generalized intuitionistic fuzzy weighted aggregation (GIFWA) operator[25], the generalized 

intuitionistic fuzzy ordered weighted (GIFOWA) aggregation operator, and the generalized 

intuitionistic fuzzy hybrid aggregation (GIFHA) operator. However, these operators didn’t consider the 

relationship between the attributes. So, Yager [26] developed a power average (PA) operator to 

overcome this shortcoming, i.e., it can consider the relationship between the attributes, a large amount 

of operators based on PA have been developed to aggregate evaluation information in order to adapt to 

various environments [15, 27-29]. For instance, power geometric (PG) operator, generalized power 

average (GPA) operator, linguistic generalized power average (LGPA) operator and so on.  

    To this day, there is not the research on the combination the neutrosophic numbers with power 

aggregation operator. Thus, it is very necessary to do the research based on neutrosophic numbers 

aggregation operators. In this study, we will propose the generalized hybrid weighted power averaging 

operator under neutrosophic numbers environment, and then propose a new method for the multiple 

attribute group decision problems, which has two advantages, one is that it can cope with the 

indeterminacy of evaluation information precisely; another is that it can take the relationship between 

the attributes into consideration. 

This paper is written as below: The section 2 is about basic concepts, the operational rules and the 

characteristics of NNs. In section 3, some aggregation operators based on neutrosophic numbers are 

developed, such as the neutrosophic number weighted power averaging (NNWPA) operator, the 

neutrosophic number weighted geometric power averaging (NNWGPA) operator, the generalized 

neutrosophic number weighted power averaging (GNNWPA) operator, and then their properties are 

proved. In section 4, we propose a multiple attribute group decision making method based on the 

GNNWPA operator, and introduce the decision steps. In section 5, a numerical example is given to 

demonstrate the effective of the new developed method. In section 6, the conclusion is made. 

2. Preliminaries 

2.1 Basic concepts of neutrosophic numbers and their operators 
    The concept of neutrosophic number is firstly proposed by Smarandache in neutrosophic 

probability. It includes two parts: determinate part and indeterminate part. 

Definition 1[30-32]. Let ],[  I be an indeterminate part, a neutrosophic number N is denoted 

as: 

                     N a bI                            (1) 

where a and b are both real numbers, and I is the indeterminate part, such that II 2 , 00  I , and I/I = 

undefined.  

Definition 2[30-32]. Let 1 1 1 N a b I and 2 2 2 N a b I be two neutrosophic numbers, then, operational 
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relations of neutrosophic numbers are shown as follows: 

(1) 1 2 1 2 1 2( )    N N a a b b I                                                   (2) 

(2) 1 2 1 2 1 2( )    N N a a b b I                                                   (3) 

(3) 1 2 1 2 1 2 1 2 1 2( )    N N a a a b b a b b I                                             (4) 

(4) 2 2 2 2
1 1 1 1 1 1 1( ) (2 )    N a b I a a b b I                                            (5) 

(5) IbaN 111                                                              (6) 

(6)   0)( 11111   IabaaN                                            (7) 

(7) 1 1 1 1 2 1 1 2

2 2 2 2 2 2 2( )

 
  

 
N a b I a a b a b

I
N a b I a a a b

 222 0 baandafor                          (8) 

Theorem 1. Let IbaN iii  be any neutrosophic number, 0, 21  ， , the operational laws have the 

following characteristics: 

(1) 1 2 2 1  N N N N                                                          (9) 

(2) 1 2 2 1  N N N N                                                          (10)  

(3) 1 2 1 2( )    N N N N                                                     (11) 

(4) 1 1 2 1 1 2 1( )     N N N                                                     (12)  

(5)  )( 2121 NNNN                                                        (13) 

(6) 1 2 1 2
1 1 1( )    N N N                                                        (14) 

Proof. 

(1) Obviously, the equation (9) is right according to the operational rule (1) expressed by (2). 

(2) Obviously, the equation (10) is right according to the operational rule (3) expressed by (4). 

(3) For the left of the equation (11), we have 

   IbbaaIbaIbaNN )()()()()( 2121221121    

And for the right of the equation (11), we have 

 IbbaaIbbaa
IbaIbaIbaIbaNN

)()()()(
)()()()(

21212121

2211221121






 

So, we can get equation (11) is right. 

(4) For the equation (12), we have 

IbbaaIbaIbaNN )()()()( 121112111121111211    

121121121 )()()( NIba    

So, the equation (12) is right. 

(5) For the left of the equation (13), we have 

     IabaaIabaaNN 
2222111121 )()(   

      IabaabaIabaaIabaaaa 
1112221112222121 )()()()( 

   IaabaaIaabaaaa 
121122122121 )()( 

   

 Iaabaabaababa 
212211121122 )()()()(   

 Iaababaaa 
21112221 )()()( 
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and the right of the equation (13), we have 

    IbbbabaaaIbaIbaNN )()()()( 21122121221121                 

 Iaabbbabaaaaa  )()()( 212112212121   

 Iaababaaa 
21221121 )()()(      

So, the equation (13) is right. 

(6) For the equation (12), we have 

     IabaaIabaaNN 22211121
1111111111 )()(    

       IabaabaIabaaIabaaaa 112211222121
1111111111111111 )()()()(    

 Iaababaaa 121221
11111111 )()(    

 Iabaa 212121
1111 )(     

21
1

  N  

So we can get the equation (14) is right. 

Definition 3[33]. Suppose that   i i iN a b I with ),,2,1](,[ niI    is any neutrosophic 

number for Rba ii   ,,, , where R is the set of real numbers. To normalize iN , we get 

                   
max( ) max( )

 i i
i

i i

a b
N I

a b
                                   (15) 

Definition 4[33]. Suppose that   i i iN a b I with ),,2,1](,[ niI    is any neutrosophic 

number for Rba ii   ,,, , where R is the set of real numbers. We can give the distance between 

iN and jN as follow: 

          
2 2[( ) ( ) ] [( ) ( ) ]1

( , )
2 2

        
 j i j i j i j i

i j

a a b b a a b b
d N N                (16) 

which meets the following criteria: 

(1) 1),(0  ji NNd                                                              (17) 

(2) 0),( ii NNd                                                                 (18)      

(3) 1 2 2 1( , ) ( , )d N N d N N                                                          (19) 

(4) 1 2 2 3 1 3( , ) ( , ) ( , ) d N N d N N d N N                                                (20) 

Definition 5[34]. Let IbaN iii  be a set of neutrosophic number , ),...,2,1(],[ niI    , ii ba , , 

R  , , where R is the set of real numbers, the neutrosophic number ],[    iiiii babaN , 
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so the possibility degree is 
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
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












0,0,
)()()()(

)()(
max1max)(





jjjjiiii

iijj
jiij

babababa

baba
NNPP    (21) 

where 0ijP , 1 jiij PP , and 5.0iiP . Then, the value of ),...,2,1( niNi  can be used for ranking 

order as follows: 

                             
)1(

1
21











 




nn

n
P

q

n

j
ij

i                                   (22) 

Therefore, if the value of ),,2,1( niqi  is bigger, information that neutrosophic numbers 

represent is more precise. In consequence, we rank the neutrosophic numbers of ),,2,1( niqi  in an 

ascending order in order to get the best ),...,2,1( niNi  . 

2.2 The Power Aggregation (PA) operator 
Definition 5[6]. For real numbers ),,2,1( niai  , the power average operator is defined as 

 

  

  












n

i
i

n

i
ii

n

aT

aaT

aaaPA

1

1
21

1

1

),,,(                                   (23) 

where 

                        




n

ij
j

jii aaaT
1

),sup()(                                     (24) 

and  ji aa ,sup means the degree to which ja supports ia . It satisfies the following rules. 

(1)    ijji aaaa ,sup,sup                                                          (25) 

(2)    1,0,sup ji aa                                                              (26) 

(3)    nmji aaaa ,sup,sup  ,if nmji aaaa --                                           (27) 

3. Neutrosophic Number Aggregation Operators 

A neutrosophic number includes two parts: determinate part and indeterminate part. Thus, it is a 

good tool to express the indeterminate and incomplete information. At the same time, the Power 

aggregation can take the relationship between the attributes into consideration. For this reason, we 

combine them together, and develop some kinds of neutrosophic number aggregation operators. 

3.1 The Neutrosophic Number Weighted Power Averaging Operator 
Definition 6[6]. Let IbaN iii  be a set of neutrosophic numbers, then we define NNPA 

(neutrosophic number powered aggregation) operator as follows:  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 
 6

              

 

 












n

i
i

n

i
ii

n

NT

NNT

NNNNNPA

1

1
21
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)(1
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where    
1

sup ,



 
n

i i j
j
j i

T N N N , and ),sup( ji NN means the support for ia from ja , 

),(1),sup( jiji NNdNN  . Obviously, it satisfies the following rules: 

(1) ),sup(),sup( ijji NNNN                                                        (29) 

(2) ]1,0[),sup( ji NN                                                             (30) 

(3) ),sup(),sup( nmji NNNN  , if nmji NNNN                                   (31) 

Theorem 2. Let IbaN iii  be a set of neutrosophic numbers and NNPA: NNSn→ NNS. If  
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So the result of Eq.(28) is still a NN. 

We use Mathematical induction on n to testify the Eq.(32) as follows: 

Proof. 

(i) When 1n , it’s clear that the Eq. (32) is right. 

(ii) Suppose when n k , the Eq.(32) is right, i.e., 
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Then when 1 n k , we have 
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


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
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Thus, when 1 n k , the Eq. (32) is right too. 
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Accordingly, we can get that the Eq.(32) is right for all n . 

Theorem 3. If  ,k jSup a a c  , then the power averaging operator of NNs will degrade to the 

arithmetic averaging operator of NNs shown as follows. 

  1
1 2

1 1

1 1
, ,..., 

 

  


 

n

i n n
i

n i i
i i

N
NNPA N N N a b I

n n n
 

Theorem 4. (Idempotency). 

Let all IbaNi  , ),,2,1( ni  , then  

bIaNNNNNNPA in ),,( 21   

Proof. 

Since all IbaNi  , we have  

 

 

 

 

 

 

bIaI

NT

bNT

NT

aNT

NT

NNT
NNNNNPA

n

i i

n

i i

n

i i

n

i i

n

i i

n

i ii
n 








































1

1

1

1

1

1
21

)(1

)(1

)(1

)(1

)(1

)(1
)( ，，

 

which completes the proof of this theorem 4.  

Theorem 5. (Monotonicity). 

Let iii baN  and   iii baN be two collections of NNs which meets *
ii aa  ii bb * , 

ni ,,2,1  ,then 

),,(),,( 2121
 nn NNNNNPANNNNNPA  . 

Proof.  

Since for all i , *
ii aa  , ii bb * , we can obtain 









n

i
j

n

i
i aa

11

, 


 
n

i
i

n

i
i IbIb

11

 

So, we can get 

),,(),,( 2121
 nn NNNNNPANNNNNPA   

which completes the proof of theorem 5. 

Theorem 6. (Boundedness). 

Let IbaN iii  ),...,2,1( ni  be a set of NNs. If 

IbaNNNN n minmax21max ),...,,max(  , 

IbaNNNN n maxmin21min ),...,,min(  , 

then  

max21min ),,( NNNNNNPAN n   . 

Proof. 

Since maxmin aaa j  , maxmin bbb j  , in the case of all i ,we can obtain  
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



n

i

n

i
j

n

i

aaa
1

max
11

min , 



n

i

n

i
j

n

i

bbb
1

max
11

min  

So, we can get   

),,(),,(),,( maxmaxmax21minminmin NNNNNPANNNNNPANNNNNPA n    

Based on theorem 3, we can know  

minminminmin ),,( NNNNNNPA   

maxmaxmaxmax ),,( NNNNNNPA   

So, we can get 

max21min ),,( NNNNNNPAN n   . 

Theorem 7. (Commutativity). 

We assume that ),...,,( '
2
'

1
'

nNNN  is any permutation of ),...,,( 21 nNNN ,  

then 

),,(),,( 21
''

2
'
1 nn NNNNNPANNNNNPA    

Proof.   

Since ),...,,( '
2
'

1
'

nNNN is any permutation of ),...,,( 21 nNNN , we have 





n

i
j

n

i
i aa

1

'

1

, 



n

i
j

n

i
i bb

1

'

1

 

then, we can get 

),,(),( 21
''

2
'
1 nn NNNNNPANNNNNPA  ，  

So, theorem 7 is right. 

Definition 7[35]. Let IbaN iii  be a set of neutrosophic numbers, and NNWPA:NNSn→ NNS. If 

               














n

i
ii

i

n

i
ii

n

NT

NNT

NNNNNWPA

1

1
21

))(1(

))(1(

),(




，                   (33) 

where
1 2

( , ,..., )
n

    is the weight vector of ),2,1( niNi  which satisfies ]1,0[i  

),2,1( ni  and 1
1




n

i
i . NNWPA operator is called neutrosophic number weighted power 

averaging operator. 

Theorem 8. Let IbaN iii  ),...,2,1( ni  be a set of NNs,
1 2

( , ,..., )
n

    be the weight vector 
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of ),2,1( niNi  satisfying ),...,2,1(]1,0[ nii  and 1
1

 

n

i i .Then the result aggregated from 

Definition 7 is still a NN, even 

 

 

 

 

 

 
I

NT

bNT

NT

aNT

NT

NNT

NNNNNWPA
n

i
ii

n

i
iii

n

i
ii

n

i
iii

n

i
ii

n

i
iii

n











































1

1

1

1

1

1
21

)(1

)(1

)(1

)(1

)(1

)(1

)(












，，  (34) 

where 




n

ji
j

jii NNNT
1

),sup()( , ),sup( ji NN is the degree to which jN supports iN . Particularly, 

when
1 1 1

, ,...,    
 n n n

, the NNWPA operator will reduce to neutrosophic number power averaging 

(NNPA) operator:  

 

 

 

 

 

 
I

NT

bNT

NT

aNT

NT
n

NNT
n

NNNNNWPA
n

i
i

n

i
ii

n

i
i

n

i
ii

n

i
i

n

i
ii

n











































1

1

1

1

1

1
21

)(1

)(1

)(1

)(1

)(1
1

)(1
1

)( ，，  

Obviously the result obtained by Eq. (33) is still a NN. 

The Eq.(34) can be proved by Mathematical induction on as follows: 

Proof.   

(i) Obviously, when 1n , the Eq. (34) is right. 

(ii) Given that when kn  , the Eq.(34) is right, i.e., 

 

 

 

 

 

 








































n

i
ii

n

i
iii

n
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ii

n

i
iii

n
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n

i
iii
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bNT
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aNT
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NNT
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21

)(1

)(1

)(1

)(1

)(1

)(1

)(


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


，，

 

Then when 1 kn , we have 

1121121 ),,,(),,,(   kkk NNNNNNWPANNNNNWPA   
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 
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
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1
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So, when 1 kn , the Eq.(34) is right too. 

According to (i) and (ii), we can get that the Eq.(34) is right for all n . 

Theorem 9. If  Sup ,k ja a c  , jkc  ],1,0[ ,then the weighted power averaging operator of NNs will 

reduce to the weighted arithmetic averaging operator of NNs(NNWAA) as follows: 

            1 2
1

, ,..., 


 
n

n i i
i

NNWPA N N N N  

Theorem 10. (Idempotency). 

Let all bIaNi  , then  

bIaNNNNNNWPA in ),,( 21   

Proof: 

Since all bIaIbaN iii  , then we have 

 

 

 

 

 

 
bIaI

NT

bNT

NT

aNT

NT

NNT

NNNNNWPA
n

i
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i
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


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











1

1

1

1

1

1
21
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)(1

)(1

)(1

)(1

)(1

),,(














  

which completes the proof of theorem 10. 

Theorem 11. (Monotonicity). 

Let IbaN iii  and IbaN iii
  be two sets of NNs which satisfies *

ii aa  , ii bb * ,for all i then 

),,(),,( 2121
 nn NNNNNWPANNNNNWPA   

Proof.  

Since *
ii aa  , ii bb * , for all i we can get  
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So, we can get 

),,(),,( 2121
 nn NNNNNWPANNNNNWPA  . 

which completes the proof of theorem 11.         

Theorem 12. (Boundedness). 

Let IbaN iii  ),...,2,1( ni  be a set of NNs. If 

maxmax21max ),,max( baNNNN n    
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IbaNNNN n maxmin21min ),...,,min(  , 

Then 

max21min ),,( NNNNNNWPAN n    

Proof. 

Since for all i , maxmin aaa i  , minmax bbb i  , 

we can get  
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So, we can get  

),,(),,(),,( maxmaxmax21minminmin NNNNNWPANNNNNWPANNNNNWPA n    

According to theorem 3  

minminminmin ),,( NNNNNNWPA   

maxmaxmaxmax ),,( NNNNNNWPA   

So, we can get 

max21min ),,( NNNNNNWPAN n   , 

which complete the proof of the theorem 12.   

3.2 The Neutrosophic Number Weighted Geometric Power Averaging Operator 
Definition 8[36]. Let ),2,1(, niIbaN iii  be a set of NNs, and NNGPA:NNSn→NNS. The 

neutrosophic number geometric power averaging operator is defined as: 

              
  






n

i
i

i

NT

NT

i

n

i
n NNNNNNGPA 1

)(1

)(1

1
21 ),,(                                 (35) 

where  
1,

( ) ,
 

 
n

i i j
j j k

T N Sup N N ,the weight of ),,2,1( niNi  is







n

i
i

i

NT

NT

1

)(1

)(1
. Obviously, the NNGPA 

operator is a nonlinear weighted-geometric aggregation operator. 

Theorem 13. (Idempotency).  

Let ),2,1(, niIbaN iii  be a set of NNs. If for all i , bIaNi  , then 

bIaNNNNNNGPA in ),,( 21  . 

Theorem 14.(Monotonicity). 

Let IbaN iii  and IbaN iii
***  be two collections of NNs satisfying *

ii aa  , ii bb * , for all 
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nii ,,2,1,  , then 

),,(),,,( ''
2

'
121 nn NNNNNGPANNNNNGPA   . 

Theorem 15. (Boundedness). 

Let IbaN iii  ),...,2,1( ni  be a set of NNs, If IbaN minmaxmax  and IbaN maxminmin  , 

then  

max21min ),,( NNNNNNGPAN n    

Theorem 16. (Commutativity). 

Let ),...,,( '
2
'

1
'

nNNN be any permutation of ),...,,( 21 nNNN , then 

),,,(),,( ''
2

'
121 nn NNNNNGPANNNNNGPA    

Definition 9. Let ),2,1(, niIbaN iii   be a set of NNs, and NNGPA:NNSn→NNS. We define 

NNWGPA(neutrosophic number weighted geometric power operator) as follows: 

                    

 

 









n

i
ii

ii

NT

NT

i

n

i
n NNNNNNWGPA 1

)(1

)(1

1
21 ),,,(





                       (36) 

Where ),( 21 n  is the weighting vector of the iN , and 
1 2

( , ,..., )
n

    is the weight 

vector of ),2,1( niNi  which satisfies ]1,0[i , ]1,0[iw , 1
1




n

i
iw . Specially, 

when )
1

,,
1

,
1

(
nnn

 , the NNWGPA operator will reduce to neutrosophic number geometric power 

averaging (NNGPA) operator. 

Theorem 17. Let ),2,1(, niIbaN iii  be a set of NNs, and Then the result obtained using Eq. (36) 

is still a NN and 

 

 
 

 

 

 

 
IabaaNNNNNWGPA

n

i
ii

ii
n

i
ii

ii
n

i
ii

ii

NT

NT

i

n

i

NT

NT

ii

n

i

NT

NT

i

n

i
n 











































111

)(1

)(1

1

)(1

)(1

1

)(1

)(1

1
21 ),,,(













     (37) 

The proof process is similar to theorem 2, so we can omit it here. 

Let 

                               
 

 
in

i
ii

ii u

NT

NT







1

)(1

)(1




                             (38) 

then the equation turns into: 

             IabaaNNNNNWGPA iii u
i

n

i

u
ii

n

i

u
i

n

i
n 









 111

21 ),,,(                   (39) 

Theorem 18. (Idempotency). 

Let IbaN iii  ),...,2,1( ni  be a set of NNs, if 0 ( 1,2,..., )iN N a bI i n    , then 

021 ),,,( NNNNNNWGPA n  . 
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3.3 The generalized neutrosophic number weighted power averaging operator 
Definition 10. Let IbaN iii  ),...,2,1( ni   be a set of NNs, and GNNPA:NNSn→NNS, If 

            

 





/1

1
21

)(1

)(1
),,(
























 



n

i
in

i
i

i
n N

NT

NT
NNNGNNPA                         (40) 

where ),...,,( 21 n  is the weight vector of ),,2,1( niNi  satisfying ),...,2,1(]1,0[ nii   

1
1




n

i
i , and ),0(  . Then GNNPA is called generalized neutrosophic number power operator. 

Definition 11. Let IbaN iii  ),...,2,1( ni   be a set of NNs, and GNNWPA:NNSn→NS, If 

                     /1

1
21 )(),,( 




n

i
iin NuNNNGNNWPA                           (41) 

where
 

 







n

i
ii

ii
i

NT

NT
u

1

)(1

)(1



 , ),...,,( 21 n  is the weight vector of ),,2,1( niNi 
 

satisfying ),,2,1](1,0[ nii  , 1
1




n

i
i and ),0(  . Then GNNWPA is called generalized 

neutrosophic number weighted power operator. 

Theorem 19. Let IbaN iii  ),...,2,1( ni  be a set of NNs, and  0,   . Then the result obtained 

by Eq. (41) is still an NN and 

   IaubauauNNNGNNWPA
n

i
ii

n

i
iii

n

i
iin

























 






 /1

1

/1

1

/1

1
21 )()()(),,,(         (42) 

The proof is similar to the theorem 2, it is omitted here. 

Obviously, there are some properties for the GNNWPA operator as follows. 

(1) When 0 ,  
















n

i

u
i

n

i

u
i

n

i

u
ii

n

i

u
i

n

i
iin

iiii NIabaaNuNNNGNNWPA
1111

/1

1
21 )()(),,,(   

So, the GNNWPA operator is degrated to the NNWGPA operator. 

(2) When 1 , 

 
 


n

i

n

i
iiii

n

i
ii

n

i
iin NuIbuauNuNNNGNNWPA

1 11

/1

1
21 )(),,,(   

So, the GNNWPA operator is degraded to the NNWPA operator. 

Theorem 20. (Idempotency). 

Let IbaN iii  ),...,2,1( ni  be a set of NNs, if 0 ( 1,2,..., )iN N a bI i n    , then 

021 ),,,( NNNNGNNWPA n   
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4. Multiple attribute group decision-making method based on 

GNNWPA operator 

In this section, we will provide an illustrative example by applying the power operator under 

neutrosophic numbers. Suppose that  mAAAA ,...,, 21 is a set of alternatives,  nCCCC ,...,, 21 is a 

set of attributes, and  sDDDD ,...,, 21 is the set of decision makers.  

We use neutrosophic number IbaN k
ij

k
ij

k
ij  , Rba k

ij
k
ij , ),...,2,1;,...,2,1;,...,2,1( minjsk  to 

express evaluation value came from the kth ),...,2,1( sk  decision maker for the alternative 

),...,2,1( miAi  under the attribute ),...,2,1( njC j  by using a scale from 1 (less fit) to 10 (more fit) 

with indeterminacy I . Thus, we can get the kth  neutrosophic number decision matrix kN : 























k
mn

k
m

k
m

k
n

kk

k
n

kk

k

NNN

NNN

NNN

N









21

22221

11211

 

    Because each attribute ),,2,1( njC j  has different importance, the attribute weight vector 

is ),,,( 21 n  with ),,2,1](1,0[ nii  and 1
1




n

i
i . Similarly, the weights of decision 

makers represent the different importance of each decision maker ),..,2,1( skDk  , and the weighting 

vector of decision makers is ),,,( 21 nwwww  with 0jw , 1
1




n

j
jw . 

The method of the decision making method involves the following steps: 

Step 1: Normalize decision matrix with equation (15), we have  

max( ) max( )
 i i

i

i i

a b
N I

a b
 

Step 2: Calculate )(),(),( k
ij

k
ij

k
if

k
ij NUNTNNd ， with equation (16) (24) (38), we have  

2 2[( ) ( ) ] [( ) ( ) ]1
( , )

2 2

        
 j i j i j i j i

i j

a a b b a a b b
d N N  

   
1

sup ,



 
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i i j
j
j i

T N N N  

 
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





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NT
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1

)(1

)(1



  

Step 3: Utilize the GNNWPA operator, we have 

),,,( 21
k
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k
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k
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k
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k
ij

k
ij NNNGNNWPAIbaN   

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 
 15

to obtain the comprehensive values of each decision maker: k
iN ),...,2,1;,...,2,1( skmi  . 

Step 4: Utilized the GNNWPA operator, we have 

                     ),,,( 21 s
iiiiii NNNGNNWPAIbaN   

to obtain the collective overall values of each alternatives: ),...,2,1( miNi  . 

Step 5: Calculate the possibility degree )( jiij NNPP  , we have 





















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




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
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)()()()(
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max1max)(





jjjjiiii

iijj
jiij

babababa

baba
NNPP  

Step 6: Calculate the values of ),...,2,1( miqi  for ranking the orders, we have   

)1(

1
21











 




nn

n
P

q

n

j
ij

i  

Step 7: Rank the values of ),...,2,1( miqi  in descending order according, and then the best alternative 

is obtained. 

5. A numerical example 

     We use the generalized neutrosophic number weighted power averaging operator to deal with 

multiple attribute group decision making problems. An investment company wants to choose a best 

investment project from four possible alternatives: (1) 1A is a car company; (2) 2A is a food company; 

(3) 3A is a computer company; (4) 4A is an arms company. There are three attributes that the investment 

company wants to take into consideration: (1) 1C is the risk factor; (2) 2C is the growth factor; (3) 3C is 

the environmental factor. The weighting vector of the attributes is )4.0,25.0,35.0( . The company 

invites three experts 321 ,, DDD to evaluate the four alternatives. The expert weight vector is 

)3.0,33.0,37.0(w . The )3,2,1( kkth expert evaluates these four potential alternatives in terms of 

these three attributes by the form of neutrosophic number k
ij

k
ij

k
ij baN   for Rba k

ij
k
ij , , )3,2,1(k  

)3,2,1()4,3,2,1(  ji  and the evaluation values are shown in tables 1-3. 

  Then we can make the best alternative for this investment. 

 

Table 1 The evaluation values of four alternatives with respect to the three attributes by the expert 1D  

 C1 C2 C3 

A1 4+I 5 3+I 

A2 6 6 5 

A3 3 5+I 6 

A4 7 6 4+I 

 

Table 2 The evaluation values of four alternatives with respect to the three attributes by the expert 2D  

 C1 C2 C3 

A1 5 4 4 
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A2 5+I 6 6 

A3 4 5 5+I 

A4 6+I 6 5 

 

Table 3 The evaluation values of four alternatives with respect to the three attributes by the expert 3D  

 C1 C2 C3 

A1 4 5+I 4 

A2 6 7 5+I 

A3 4+I 5 6 

A4 8 6 4+I 

5.1 The evaluation steps of the new MAGDM method based on GNNWPA 
operator 
(1) Normalize the decision matrix by equation (15), we can get the normalized decision matrix shown 

as follows (Tables 4-6). 

Table 4 The evaluation values of four alternatives with respect to the three attributes by experts 1D . 
D1 C1 C2 C3 

A1 0.8+I 1 0.6+I 

A2 1 1 0.83333 

A3 0.5 0.83333+I 1 

A4 1 0.8571 0.5714+I 

Table5 The evaluation values of four alternatives with respect to the three attributes by experts 2D . 

D2 C1 C2 C3 

A1 1 0.8 0.8 

A2 0.83333+I 1 1 

A3 0.8 1 1+I 

A4 1+I 1 0.83333 

Table 6 The evaluation values of four alternatives with respect to the three attributes by experts 3D . 

D3 C1 C2 C3 

A1 0.8 1+I 0.8 

A2 0.8571 1 0.7143 

A3 0.6667+I 0.83333 1 

A4 1 0.75 0.5+I 

(2) Calculate )()(),( k
ij

k
ij

k
if

k
ij NUNTNNd ，，  (24) and (38) 

(i) Calculate ( , )k k
ij ifd N N  by equation (16), we have the results shown in tables 7-9. 

 Table 7 Results from calculating ),( 11
ifij NNd  

i  ),( 1
2

1
1 ii NNd  ),( 1

3
1
1 ii NNd  ),( 1

3
1
2 ii NNd  

1i  0.0851 0.1 0.1851 

2i  0 0.08333 0.83333 
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3i  0.1817 0.25 0.0685 

4i  0.0714 0.1993 0.1280 

Table 8 Results from calculating ),( 22
ifij NNd  

i  ),( 2
2

2
1 ii NNd  ),( 2

3
2
1 ii NNd  ),( 2

3
2
2 ii NNd  

1i  0.1 0.1 0 

2i  0.0685 0.0685 0 

3i  0.1 0.1151 0.0158 

4i  0.0158 0.0985 0.08333 

Table 9 Results from calculating ),( 33
ifij NNd  

i  ),( 3
2

3
1 ii NNd  ),( 3

3
3
1 ii NNd  ),( 3

3
3
2 ii NNd  

1i  0.1151 0 0.1151 

2i  0.0714 0.0567 0.1280 

3i  0.0685 0.1517 0.08333 

4i  0.125 0.2351 0.1101 

 (ii) Calculate ( ) ( )k k
ij ijT N U N，  by equations (24) and (38), we have  

 

 















































6548.17649.16399.1

7649.18482.17797.1

8154.18006.18719.1

8849.17698.18849.1

8182.19009.18857.1

8691.18842.17849.1

9315.19315.18630.1

9000.19000.18000.1

6727.18006.17292.1

6815.17497.15683.1

8333.19167.19167.1

7149.17298.18149.1

T               















































2966.03397.03637.0

2965.03359.03676.0

2983.03264.03753.0

3040.03211.03749.0

2945.03335.03720.0

3028.03348.03624.0

3026.03329.03645.0

3039.03343.03619.0

2931.03378.03691.0

3022.03409.03570.0

2939.03329.03732.0

2954.03268.03778.0

U  

(3) Calculate the comprehensive values )3,2,1;4,3,2,1(  kiN k
i of each expert kD by the equation (42) 

(suppose 1 ), we have: 

ININNIN 2931.08261.03409.07647.09510.06732.08063.0 1
4

1
3

1
2

1
1    

INININN 3720.095093028.09275.03645.09392.08724.0 2
4

2
3

2
2

2
1   
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ININININ 2966.07668.03676.08215.02983.08612.03211.08642.0 3
4

3
3

3
2

3
1   

(4) Calculate the overall values, we can get: 

 ININININ 3197.08488.03364.08354.02108.09198.03453.08457.0 4321   

(5) Calculate the possibility degree )( jiij NNPP  using equation (21) (suppose ]04.002.0[ ，I ), we 

can get. 





















5000.00000.00000.04135.0

5000.00000.10000.06754.0

0000.10000.15000.00000.1

3246.00000.10000.05000.0

P  

(6) Calculate the values of ),...,2,1( miqi  using equation (22), we can get. 

                     2646.01250.03750.02354.0 4321  qqqq  

(7) Rank the four alternatives. 

Since 3142 qqqq  , the ranking order of the four alternatives is 3142 AAAA  . So the best 

choice is 2A . 

5.2 The influence of the parameter and the indeterminate range for I on the 
ordering of the alternatives 

Different values of parameter are used to express different level of the mentality of decision 

makers, because the bigger is, more optimistic decision makers are. In this section, in order to check 

to which degree different parameter  influences decision making results, different values of are used 

to analyze the ordering results shown in table 11. (suppose ]04.002.0[ ，I ). 

Table 11 Ordering of the alternatives by utilizing the different  in GNNWPA operator 

                      iq                                  Ranking 

 0.1               
2083.0125.0

375.02917.0

43

21




qq

qq
                 3412 AAAA    

 7.0              
2457.0125.0

375.02543.0

43

21




qq

qq
                3412 AAAA   

 1.0               
2646.0125.0

375.02354.0

43

21




qq

qq
                3142 AAAA      

 3.1              
2800.0125.0

375.02200.0

43

21




qq

qq
                3142 AAAA     

 5.1              
2886.01333.0

375.02030.0

43

21




qq

qq
              3142 AAAA   

 8.1              
2917.01476.0

375.01858.0

43

21




qq

qq
              3142 AAAA   

 0.2              
2917.01556.0

375.01778.0

43

21




qq

qq
              3142 AAAA   

 5.2              
2917.01716.0

375.01617.0

43

21




qq

qq
              1342 AAAA   

 3.0               
2917.01831.0

375.01502.0

43

21




qq

qq
              1342 AAAA   

 10                
2790.02183.0

375.01277.0

43

21




qq

qq
              1342 AAAA   
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 30               
2846.02389.0

2987.01776.0

43

21




qq

qq
              1342 AAAA   

    From Table 11, we can get the different values of  may lead to different sequence in GNNWPA 

operator.  

(1) When 10   , the order of the alternatives is 3142 AAAA  , and the best choice is 2A . 

(2) When 21   , the order of the alternatives is 3412 AAAA  , and the best choice is 2A . 

(3) When 305.2   , the order of the alternatives is 1342 AAAA  , and the best choice is 2A . 

Similar to the parameter  , with the purpose of checking to which degree different 

parameter I influences decision making results, the different ranges of I are used to calculate the 

ordering results shown in table 12. (suppose 1  ) 

Table 12 Ordering of the alternatives by different indeterminate ranges for I in NNGWPA operator 

   I                      iq                                 Ranking 

 0I                         /                             3142 AAAA    

 ]2.00[ ，I             
1938.02444.0

3674.01944.0

43

21




qq

qq
               4132 AAAA    

 [0,0.4]I              
2262.02488.0

3041.02210.0

43

21




qq

qq
               1432 AAAA      

 [0,0.6]I              
2393.02497.0

2783.02327.0

43

21




qq

qq
               1432 AAAA      

 [0,0.8]I              
2458.02498.0

2656.02388.0

43

21




qq

qq
               1432 AAAA   

 [0,1]I                
2497.02496.0

2580.02427.0

43

21




qq

qq
              1342 AAAA   

    From Table 12, we can get the different values of I may lead to different sequence in GNNWPA 

operator. 

(1) When 0I , the order of the alternatives is 3142 AAAA  , so the best choice is 2A . 

(2) When ]2.00[ ，I , the order of the alternatives is 4132 AAAA  , so the best choice is 2A . 

(3) When ]8.00[]4.00[ ，，，  II , the order of the alternatives is 3142 AAAA  , so the best choice 

is 2A . 

(4) When  0,1I , the order of the alternatives is 1342 AAAA  and the best alternative is 2A . 

    In order to demonstrate the effectiveness of the new method in this paper, we compare the 

ordering results of the new method with the ordering results of the method proposed by [31]. From the 

table 12 and the table 13, we can find that the two methods produce different ranking results. What’s 

more, the best choice is different too. 

Table 13 The ordering results produced by the old method (proposed by Ye[31]). 

I                       
iq                                 Ranking 

     0I                          /                           2 4 3 1A A A A     

     [0,0.2]I             1 2

3 4

0.1250, 0.3368

0.2083, 0.3298

q q

q q

 
 

                2 4 3 1A A A A     

 [0,0.4]I             1 2

3 4

0.1250, 0.3301

0.2083, 0.3366

q q

q q

 
 

                2 4 3 1A A A A       
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 [0,0.6]I             1 2

3 4

0.1250, 0.3279

0.2083, 0.3388

q q

q q

 
 

                4 2 3 1A A A A       

 [0,0.8]I             1 2

3 4

0.1250, 0.3267

0.2083, 0.3399

q q

q q

 
 

                4 2 3 1A A A A      

 [0,1]I               1 2

3 4

0.1250, 0.3261

0.2083, 0.3406

q q

q q

 
 

                4 2 3 1A A A A    

    The method proposed by Ye[31] is based on de-neutrosophication process, it doesn’t realize the 

importance of the rules of powering operation. The new method proposed in this paper is based on the 

neutrosophic number generalized weighted power averaging operators. Even the value of I is same, 

when we change the value of , the result is different. The example identifies the validity of the 

multiple attribute group decision making measure, and it provides the more general and flexible 

features as andI are assigned different values.  

6. Conclusions 

    In this paper, we firstly use neutrosophic number to express uncertain or inaccurate evaluation 

information. Then we propose generalized neutrosophic number weighted power averaging (GNNWPA) 

operator as a new method to deal with multiple attribute group decision making problems, which can 

take the relationship between the decision arguments and the mentality of the decision makers into 

consideration. Since the decision makers have their interest and the actual need, they can assign the 

different value , which makes the result more flexible and reliable. Finally, we use the possibility 

degree ranking method to choose the best choice. Afterward, we give a numerical example to reveal the 

practicability of the new method. Especially, we use the different values of  and different 

indeterminate ranges for I to analyze the effectiveness. The significance of the paper is that we 

combine neutrosophic number with power aggregation operators to cope with multiple attribute group 

decision making problems. For further research, other aggregation operators can be applied to combine 

with neutrosophic number to obtain the best alternative. 
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