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Abstract

In 2013 Ayman A. Hazaymeh in his PhD thesis introduced the concept of time-
fuzzy soft set as a generalization of fuzzy soft set. In this paper and as a general-
ization of neutrosophic soft set we introduce the concept of time-neutrosophic soft
set and study some of its properties. We also, define its basic operations, comple-
ment, union intersection, ”AND” and “OR” and study their properties. Also, we
give hypothetical application of this concept in decision making problems.
Keywords. neutrosophic set; soft set; neutrosophic soft set; time-neutrosophic soft
set

1 General Introduction

In 1995, Smarandache [13] initiated the theory of neutrosophic set as new mathematical
tool for handling problems involving imprecise, indeterminacy,and inconsistent data.
Molodtsov [1] initiated the theory of soft set as a new mathematical tool for dealing
with uncertainties which traditional mathematical tools cannot handle. He has shown
several applications of this theory in solving many practical problems in economics, en-
gineering, social science, medical science, etc. Presently, work on the soft set theory is
progressing rapidly. Maji et al. [2] have also introduced the concept of fuzzy soft set, a
more general concept, which is a combination of fuzzy set and soft set and studied its
properties. Zou and Xian [10] introduced soft set and fuzzy soft set into the incomplete
environment respectively. Alkhazaleh et al. [3] introduced the concept of soft multiset
as a generalisation of soft set. They also defined the concepts of fuzzy parameterized
interval-valued fuzzy soft set [4] and possibility fuzzy soft set [S] and gave their applica-
tions in decision making and medical diagnosis. Alkhazaleh and Salleh [6] introduced
the concept of a soft expert set, where the user can know the opinion of all experts in one
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model without any operations. Even after any operation the user can know the opinion
of all experts. In 2011 Salleh [12] gave a brief survey from soft set to intuitionistic fuzzy
soft set. Majumdar and Samanta [8] introduced and studied generalised fuzzy soft set
where the degree is attached with the parameterization of fuzzy sets while defining a
fuzzy soft set. Yang et al. [9] presented the concept of interval-valued fuzzy soft set by
combining the interval-valued fuzzy set [7, 11] and soft set models. In 2009 Bhowmik
and Pal [15] studied the concept of intuitionistic neutrosophic set, and Maji [14] in-
troduced neutrosophic soft set, established its application in decision making, and thus
opened a new direction, new path of thinking to engineers, mathematicians, computer
scientists and many others in various tests. In 2013 Said and Smarandache [16] defined
the concept of intuitionistic neutrosophic soft set and introduced some operations on
intuitionistic neutrosophic soft set and some properties of this concept have been es-
tablished. In many real situations, immediate sensory data is insufficient for decision
making. Enriching the state with information about previous actions and situations can
disambiguate between situations that would otherwise appear identical, which makes it
possible to make correct decisions and also learn the correct decision. Moreover, knowl-
edge of the past can replace the need for unrealistic sensors, such as knowing the exact
location in a maze. Using historical information as part of the state representation give
us useful information to help us in making better decision, where the time value is not
taken into consideration and thus decision making is not very precise. If we want to
take the opinions of more than one time (periods), we need to do some operations like
union, intersection etc. To solve this problem In 2013 Ayman A. Hazaymeh [17] in his
PhD thesis considered a collection of time (periods) and generalized into time-fuzzy
soft set (TFSS) and studied some of its properties and explained this concept in decision
making problem. In this paper we introduce the concept of time-neutrosophic soft set
(TNSS) as a generalization of neutrosophic soft set. We also, define its basic operations,
complement, union intersection, ”AND” and "OR” and study their properties. Also, we
give an application of this concept in decision making problems.

2 Preliminary

In this section we recall some definitions and properties regarding neutrosophic set the-
ory, soft set theory time-fuzzy soft set and neutrosophic soft set theory required in this

paper.

Definition 2.1. [13] A neutrosophic set A on the universe of discourse X is defined as
A={<x;Tp(x);1a(x); Fo(x) >;x € X} where T; I, F : X —]70;17[and ~0 < Tx(x) +
Iy (x) + Fy(x) <3+,

Molodtsov defined soft set in the following way. Let U be a universe and E be a set of
parameters. Let P(U) denote the power set of U and A C E.

Definition 2.2. [1] A pair (F,A) is called a soft set over U, where F is a mapping
F:A—P(U).
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In other words, a soft set over U is a parameterized family of subsets of the universe U.
For € € A, F (¢) may be considered as the set of e-approximate elements of the soft set
(F,A).

Definition 2.3. [14] Let U be an initial universe set and E be a set of parameters. Con-
sider A C E. Let P(U) denotes the set of all neutrosophic sets of U. The collection
(F,A) is termed to be the soft neutrosophic set over U, where F is a mapping given by
F:A—PU,).

Definition 2.4. [14] Let (F,A) and (G, B) be two neutrosophic soft sets over the com-
mon universe U. (F,A) is said to be neutrosophic soft subset of (G,B) if A C B; and
Tr(e)(x) < Tg(e)(x); Ir(e)(x) < Ig(e)(x); Fr(e)(x) > Fg(e)(x); Ve € A;x € U. We de-
note it by (F,A) C (G,B). (F,A) is said to be neutrosophic soft super set of (G,B) if
(G, B) is a neutrosophic soft subset of (F,A). We denote it by (F,A) 2O (G, B).

Definition 2.5. [14] The complement of a neutrosophic soft set (F,A) denoted by (F;A)*
and is denoted as (F,A) = (F¢,]A); where F¢:]A — P(U) is a mapping given by
F¢(o) = neutrosophic soft complement with Tre(y) = Fp(y), Ipe(x) = Ip(x) and Fpe(y) =
TF(X)'

Definition 2.6. [14] Let (H,A) and (G, B) be two NSSs over the common universe U.
Then the union of (H,A) and (G,B) is denoted by ‘(H,A) U (G,B)‘ and is defined by
(H,A)U(G,B) = (K,C), where C = AUB and the truth-membership, indeterminacy-
membership and falsity-membership of (K,C) are as follows:

Tx(e)(m) = Ty(e)(m); ifecA—B;
= Tg(e)(m); ife€B—A;
— max(Ty (e)(m): Tg(e) (m)); ife € ANB.
Ix(e)(m) = Iy(e)(m); ifecA—B;
—Igle)(m); ife€B—A;

_ u(e)(m) +lale)(m) i 4 g
. : .

Fx(e)(m) = Fy(e)(m); ifecA—B;
=Fg(e)(m); ifeecB—A;

= min(Fy(e)(m);Fg(e)(m)); ife€ANB.

Definition 2.7. [14] Let (H,A) and (G, B) be two NSSs over the common universe U.
Then the intersection of (H,A) and (G, B) is denoted by ‘(H,A) U (G,B)* and is defined
by (H,A)U(G,B) = (K,C), where C = AUB and the truth-membership, indeterminacy-
membership and falsity-membership of (K 5 C) are as follows:



T (e)(m) = min(Tx (e)(m); Tg(e)(m));

) n) = )

Fx(e)(m) = min(Fy(e)(m);Fg(e)(m)); VeeC.
Definition 2.8. [14] Let (H,A) and (G, B) be two NSSs over the common universe U.
Then the ‘AND* operation on them is denoted by ‘(H,A)\/(G,B)‘ and is defined by

(H,A)\V(G,B) = (K,A x B), where the truth-membership, indeterminacy-membership
and falsity-membership of (K,A x B) are as follows:

T (o, B)(m) = min(Ty (o) (m); T (B) (m));

In () (m) +16(B) (m))

d
7 an

Ix(o, B)(m) =

Fx(at, B)(m) = max(Fy(a)(m): Fo(B)(m)); Vo € A,¥B € B.

Definition 2.9. [14] Let (H,A) and (G,B) be two NSSs over the common universe
U. Then the ‘OR* operation on them is denoted by ‘(H,A)\/(G,B)* and is defined by
(H,A)V(G,B) = (0,A x B), where the truth-membership, indeterminacy-membership
and falsity-membership of (O,A x B) are as follows:

To(a, B)(m) = max(Tu (o) (m); Tc(B)(m));

Iy () (m) +16(B)(m))

d
> an

lo(a, B)(m) =

Folat, B)(m) = min(Fy (o) (m); Fo(B)(m)); Vo € A,¥B € B.

Definition 2.10. [17] Let U be an initial universal set and let E be a set of parameters.
Let IV denote the power set of all fuzzy subsets of U, let A C E and T be a set of time
where T = {t1,1,...,1, } . A collection of pairs (F,E),Vt € T is called a time-fuzzy soft
set {T — FSS} over U where F is a mapping given by

F:A—1Y.

2.1 Time-Neutrosophic Soft Set (TNSS)

Definition 2.11. Let U be an initial universal set and let E be a set of parameters. Let
NU denote the power set of all neutrosophic subsets of U, let A C E and T be a set
of time where T = {t1,,...,1,} . A collection of pairs (F,E),Vt € T is called a time-
neutrosophic soft set {T — NSS} over U where F is a mapping given by

F:A—NY.
Example 2.1. Let U = {u;,up,u3} be a set of universe, E = {e],es,e3} a set of param-
eters and T = {t1,1,,13,} be a set of time. Define a function

F:A—NY.

follows:
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A), and (G,B), over U, (F,A), is called a T-NSS

o
-
o

Definition 2.12. For two T-NSSs (F,
subset of (G,B), if
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2. Vt € T,e € B, G;(¢) is neutrosophic soft subset of F; (€).

Definition 2.13. Two T-NSSs (F,A), and (G, B), over U, are said to be equal if (F,A),
is a T-NSS subset of (G,A), and (G,A), is a T-NSS subset of (F,A),.

Example 2.2. Consider Example 2.1 and suppose that the
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Therefore (G,E), C (F,E),.



Definition 2.14. A time neutrosophic soft set (F,A), over U is said to be semi-null
T-NSS denoted by 7.9, if Vr € T, F; (e) = ¢ for at least one e.

Definition 2.15. A time neutrosophic soft set (F,A), over U is said to be null T-NSS
denoted by Ty, if Vt € T, F; (e) = ¢ Ve.

Definition 2.16. A time neutrosophic soft set (F,A), over U is said to be semi-absolute
T-NSS denoted by 7. A, if V¢ € T, F; (¢) = 1 for at least one e.

Definition 2.17. A time neutrosophic soft set (F,A), over U is said to be absolute T-NSS
denoted by Ty, if V1 € T, F; (e) = 1 Ve.

Example 2.3. Consider Example 2.1. Let
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Then (F,A),

3 Basic Operations

In this section we introduce the definitions of complement, union and intersection of
T-NSS, derive some properties and give some examples.

3.1 Complement

Definition 3.1. The complement of T-NSS (F,A), is denoted by ¢(F,A), Vt € T where ¢
denotes a neutrosophic soft complement.

Example 3.1. Consider Example 2.1, we have
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Proposition 3.1. If (F,A), is a T-NSS over U, and by using the neutrosophic complement
we have:

1. ¢(c(F,A),) = (F,A),,

2. ¢(T.9) = (T A),

3. ¢(Ty) =

4. c(T.A) = ( ¢),

5. &) = (Ty).
Proof. The proof is straightforward from Definition 3.1. [
3.2 Union

Definition 3.2. The union of two T-NSSs (F,A), and (G,B), over U, is the T-NSS
(H,C), , denoted by (F,A),U(G,B),, such that C = AUB C E and is defined as fol-

lows
E<8)7 lfgeA_B7

H; (&) = Gi(¢), ifec€B—A,
8)0%(8), ife €ANB,



where U denoted the neutrosophic soft union.
Example 3.2. Consider Example 2.1. Suppose (F,A), and (G, B), are two time-neutrosophic

soft sets over U such that
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By using neutrosophic union we can easily verify that (F, A)t (G,B),
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Proposition 3.2. If (F,A),, (G,B), and (H,C), are three T-FSSs over U, then
1. (F,A)[O ((GaB)l G (Hac)t) = ((F7A)t O (GaB))t O (H7C)la
2. (F,A),U(F,A); = (F,A),.

Proof. The proof is straightforward from Definition 3.2. [
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3.3 Intersection

Definition 3.3. The intersection of two T-NSSs (F,A), and (G,B), over U, is the T-NSS
(H,C),, denoted by (F,A),N(G,B),, such that C = AUB C E and is defined as follows
Ft(8)7 ifSEA_Ba
H,(e) = Gi(e), ife € B—A,
F(e)NGi(e), ife€ANB,
where N denoted the neutrosophic soft intersection.

Example 3.3. Consider Example 3.2. By using basic neutrosophic intersection we can
easily verify that (F,A),N(G,B), = (H,C), where

(H,C), = e ' uy'
e "70.1;0.4;0.6) {0.1;0.5;0.6) " (0.3; 035 0.6)

ulll uzl‘]
e
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Proposition 3.3. If (F,A),, (G,B), and (H,C), are three T-NSSs over U, then
1. (F,A),N((G,B);N(H,C),) = ((F,A),N(G,B));N(H,C),,

2. (F,A)N(F,A); = (F,A),.
Proof. The proof is straightforward from Definition 3.3. [
Proposition 3.4. If (F,A),, (G,B), and (H,C), are three T-NSSs over U, then

1. (F,A),U((G,B),N(H,C),) = ((F,A),U(G,B),) N ((F,A),U(H,C),),

2. (F,A),N((G,B),U(H,C),) = ((F,A),N(G,B),)U((F,A),N(H,C),).
Proof. The proof is straightforward from Definitions 3.3 and 3.2. [
Proposition 3.5. If (F,A), and (G,B), are two T-NSSs over U, then

1. ((F,A),U(G,B),)" = (F,A){N(G,B);,

2. ((F,A),N(G,B),)" = (F,A){ U(G,B);.

Proof. The proof is straightforward from Dgﬁnitions 3.3 and 3.2. [
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4 AND and OR Operations

In this section, we introduce the definitions of AND and OR operations for T-NSS,
derive their properties, and give some examples.

Definition 4.1. If (F,A), and (G, B), are two T-NSSs over U then ”(F,A), AND (G,B),”
denoted by (F,A), A (G,B),, is defined by

(F,A),\N(G,B), = (H,AXB),

such that H (a, ), = F (a), ﬁG(B), Y (a,B) € A x B, where () is time-neutrosophic
soft intersection.

Example 4.1. Consider Example 2.1. Let (F,A), and (G,B), are two T-NSSs over U
such that
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Definition 4.2. If (F,A), and (G, B), are two T-NSSs over U then ”(F,A), OR (G,B),”
denoted by (F,A), V (G,B),, is defined by

(F,A),V(G,B), = (0,AXB),

such that O (o, ), = F(a)lOG(ﬁ)t ,V(a,B) € A x B, where |J is time-neutrosophic
soft union.

Example 4.2. Consider Example 4.1 we have U Then we can easily verify that (F,A) V
(G,B) = (0,A x B) where:

1,1 w11 u311,1
OA B — [] t[ ul 2 ,
(0,4 <B) {<( “roe )’{(0.1;0.4;0.6>’<0.1;0.5;0.6>’(O.3;O.35;O.6>

uzfl,z
(¢¢5) 0103506 )7(0.4;0.5;0.4)" ( 020407 })

uy'3
(¢¢5) 0.1; 05 0.6)” (0.1;0.4;0.8)" (0.3; 04 0.6) })

uzt 12

0603 0.3)(0.4;0.6;0.3)" (0.2; 0450 )

62,63

82 ,63

/\/—\/—\/\/\

AR l11
l‘] up
CR {0403506 )7 (0.1;0.6;0.6) " { 040404 })
{ 507

11% uzlm 112
(0.7, 045 0.3)’(0.1;0.5;0.8) " (0.8; 045 0.1 })
14



ullz 1 uzlz 1 u312 1
(0.1;0.4;0.7)° (0.1;0.65;0.6)’(05'0 3-04) ’

uy 22 uy22
(0.1;0.35;0.7)” (0.4;0.65;0.3) <02035 07)})

u B3 U3

(0.4;0.25;0.6) " (0.1;0.5;0.6) " 0103 0.9) })’
)

ull3,2 u2f3,2

(0.5:0.2;0.4)" (0.3;0.5;0.6) (0.1; 035 0.9) }

{
{
{<01u5?o7> <01L52t52208> 08; ossow})
{
{

ultza u2”3
(€5,€5) :
3073 (0.5;0.35;0.4) (0.1;0.4;0.8) " (0.2; O 35;0.7)
Proposition 4.1. If (F,A) and (G,B) are two T-NSSs over U, then

1. ((FaA)l A (GaB)t)C = (F,A)[C\/ (GaB)tC
2. ((FaA)t Vv (G7B)I)C = (F,A)[C/\ (GvB)lc

Proof. The proof is straightforward from Definitions 4.1, 4.2 and 3.1. [
Proposition 4.2. If (F,A), (G,B) and (H,C) are three T-NSSs over U, then

1. (F,A)AN((G,B): A(H,C)) =((F,A) A (G,B):) A(H,C);,
2. (F,A) v ((G,B) Vv (H,C)) = ((F,A) v (G,B))V (H,C),
3. (F,A) vV ((G,B) A(H,C)) = ((F,A) vV (G,B)i) AN((F,A) v (H,C)y),
4. (F,A) AN((G,B);V (H,C);) = ((F,A): N (G,B):) V (F,A) A (H,C)s).
Proof. The proof is straightforward from Definitions 4.1 and 4.2. [

4.1 An Application of Time-Neutrosophic Soft in Decision Making

In this section, we provide hypothetical application of the time-neutrosophic soft set
theory in a decision making problem which demonstrate that this method can be suc-
cessfully applied to problems of many fields that contain uncertainty. We suggest the
following algorithm to solving time-neutrosophic soft based decision making problems.
We note here that we will use the abbreviation (MA) for Maji’s Algorithm.

Definition 4.3. [14] Comparison Matrix. It is a matrix whose rows are labeled by the
object names h1;hy;...,h, and the columns are labeled by the parameters ey;es;...,e;:
The entries ¢;; are calculated by ¢;; = a+ b — ¢, where ‘a’ is the integer calculated as
‘how many times 7}, (e;) exceeds or equalﬁo Ty, (ej)’, for h; # hy, Yhy € U, ‘b’is the



integer calculated as ‘how many times I,(e;) exceeds or equal to I, (e;)’, for h; # hy,
Vhi € U, and ‘¢’ is the integer ‘how many times Fj, (e;) exceeds or equal to Fj, (e;)’, for
hi # hy, Yh, € U,.

Definition 4.4. [14] Score of an Object. The score of an object A; is S; and is calculated
as S,’ = Zci j
J

Example 4.3. Suppose that the Ministry of Agriculture want to evaluate agricultural
lands for the establishment of certain agricultural project in one of these lands through
specific parameters for five previous time periods and these parameters are mentioned
below. Let U = {uy, uy, usus}, be a set of lands, there may be five parameters. Let
E = {ey,ez,e3,e4,e5} be a set of decision parameters to evaluate lands. Fori = 1, 2,
3, 4, 5, the parameters ¢; (i = 1,2,3,4,5,6) stand for "Humidity rate”, ”Rainfall”, "’soil
pH”, ”Groundwater rate”, "Temperature” and let T = {¢t1,t,,¢3}. From the findings of
this study, it will be clear to identify the best land which satisfies the above mentioned
parameters. We note that when evaluating the soil pH 1 means that the acidity in the
lower levels and O means that the acidity in the highest levels
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4.2 Algorithm

Our goal is to convert the time-neutrosophic soft set to neutrosophic soft set then we
apply Maji’s algorithm to find the optimal decision. We can use the following algorithm
to convert the time-neutrosophic soft set to neutrosophic soft set and find the decision.
We can satisfy our goal as follows:

1. Input the tabular representation of (F,E),.

2. Find the tabular representation of F (E), where F (E) is defined as follows:

PO ={ mare <k @
such that
Z o, Ty, (e)
T(e) = —l_ ,
nrflalxai(e)
Z oy, 11, (e)
I(e) = ’7—,
nrln:afcai(e)
i atiFl‘i(e)
F(e) = l—v
nmalxocl( e)

where n = |T| and o, the weight of #;.

3. Use Maji’s algorithm for F (E).

e Input the Neutrosophic Soft Set F (E).

e Input P, the choice parameters of Ministry of Agriculture which is a subset
of A

e Consider the NSS (H, P) and write it in tabular form.
e Compute the comparison matrii<7of the NSS (H, P).



e Compute the score S; of u;; Vi.

e Find S, = max;S;.

e If k has more than one value then any one of u; could be the preferable
choice.

Then we have the following results shown in Table 1.

Table 1: Representation of (F,E),

U ui up u3 Ug

(e1,11) | (0.5;0.2;0.4) (0.3;0.1;0.5) (0.4;0.2;0.3) (0.4;0.2;0.3)
(e2,11) | (0.7;0.1;0.2)  (0.6;0.4;0.2) (0.2:0.2;0.6) (0.4;0.2;0.3)
(e3,11) | (0.8;0.2;0.1) (0.6;0.4;0.1) (0.3;0.3;0.5) (0.4;0.2;0.3)
(es,t1) | (0.4;0.4;0.4) (0.1;0.3;0.4) (0.5:0.6;0.4) (0.5;0.3;0.4)
(es,11) | (0.9;0.1;0.1) (0.4;0.4;0.1) (0.6;0.3;0.2) (0.3;0.2;0.7)
(e1,12) | (0.7:0.2;0.3) (0.5:0.1;0.2) (0.5;0.3;0.4) (0.5;0.3;0.4)
(e2,1) | (0.6;0.1;0.4) (0.5;0.3;0.5) (0.3;0.3;0.4) (0.7;0.3;0.1)
(e3,82) | (0.5:0.3;0.6) (0.3;0.4;0.6) (0.1;0.3;0.5) (0.4;0.2;0.3)
(es,1) | (0.4;0.2;0.7) (0.5;0.4;0.3) (0.4;0.3;0.3) (0.7;0.2;0.1)
(es,12) | (0.2:0.4;0.6) (0.7;0.4;0.2) (0.4;0.3;0.5) (0.3;0.3;0.5)
(e1,13) | (0.7;0.1;0.1) (0.8;0.2;0.1) (0.7;0.1;0.3) (0.4;0.2;0.3)
(e2,13) | (0.1;0.5;0.5) (0.5;0.3;0.2) (0.4;0.2;0.3) (0.4;0.2;0.3)
(e3,13) | (0.9;0.4;0.1) (0.7;0.3;0.1) (0.5;0.5;0.1) (0.4;0.2;0.3)
(es,13) | (0.3;0.5;0.4)  (0.6;0.3;0.1) (0.5;0.2;0.2) (0.5;0.3;0.3)
(es,13) | (0.1;0.6;0.6) (0.6;0.2;0.3) (0.5;0.3;0.4) (0.5;0.3;0.4)

Next by using relation 1 and suppose that o, = 0.3, o4, = 0.5 and oy, = 0.8, we compute
the F (E) to convert the time-neutrosophic soft set to neutrosophic soft set, to illustrate
this step we calculate F (e} ) for u; as show below.

Where

Fute) ={ e

ui

0.3x0.5+0.5%0.740.8x0.7

T(e)=

= 1.06,2.4

= 0.44.

3*max{0.3,0.5,0.8}

0.3%0.24+0.5%0.2+0.8%0.1

1(81) =

=0.24,2.4

3+max{0.3,0.5,0.8}

18

(61),F(€1)>}

)



=0.1.

0.3%x0.44+0.5%x0.34+0.8x0.1
3+max{0.6,0.7,0.9}

=0.35,2.4
—0.14.

F(e1) =

Then

Fy (e1) = { <o,44,(§t.11,0.14> }

The converting for u; with all parameters can be done by similar way. The results of
converting are shown in Table 2.

Table 2: Representation of F (E)

U ui uj us Uqg

e; | (0.44,0.1,0.14)  (0.41,0.1,0.14)  (0.39,0.12,0.22) (0.29,0.15,0.22)
e | (0.24,0.2,0.28)  (0.35,0.21,0.2)  (0.22,0.15,0.26) (0.33,0.15,0.16)
e3 | (0.5,0.22,0.17)  (0.37,0.23,0.17)  (0.23,0.27,0.2)  (0.27,0.13,0.2)
es | (0.23,0.26,0.33) (0.32,0.22,0.15)  (0.31,0.2,0.18)  (0.38,0.15,0.17)
es | (0.19,0.3,0.34)  (0.4,0.2,0.15)  (0.33,0.2,0.26)  (0.27,0.19,0.33)

The comparison-matrix of the above resultant-time neutrosophic soft are shown below
in Table 3.

Table 3: Comparison Matrix of TNSS

Ule e e3 e ey
uy |3 0 3 0 O
u | 2 5 3 4 5
uz | 0 -1 0 O

ug | 0 2 2 -1

Next we compute the score for each u; as shown below, (Table 4)

Table 4: Score table of TNSS

U S
ui 3
Uy 19
us 2
Uq 2

From the above score table, clearly that the maximum score is 19, scored by u5.

Decision Ministry of Agriculture will selectgthe land u,.
1



5 Conclusion

In this chapter we have introduced the concept of time-neutrosophic soft set and studied
some of its properties. The complement, union and intersection operations have been
defined on the time-neutrosophic soft set. A application of this theory in solving a
decision making problem is given.
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