Smarandache Idempotents in Loop Rings $Z_tL_n(m)$ of the Loops $L_n(m)$:

W.B. Vasantha and Moon K. Chetry
Department of Mathematics
I.I.T. Madras, Chennai

Abstract

In this paper we establish the existance of S-idempotents in case of loop rings $Z_tL_n(m)$ for a special class of loops $L_n(m)$; over the ring of modulo integers Z_t for a specific value of t. These loops satisfy the conditions $g_i^2 = 1$ for every $g_i \in L_n(m)$. We prove $Z_tL_n(m)$ has an S-idempotent when t is a perfect number or when t is of the form 2^ip or 3^ip (where p is an odd prime) or in general when $t = p_1^ip_2$ (p_1 and p_2 are distinct odd primes). It is important to note that we are able to prove only the existance of a single S-idempotent; however we leave it as an open problem wheather such loop rings have more than one S-idempotent.

This paper has three sections. In section one, we give the basic notions about the loops $L_n(m)$ and recall the definition of S-idempotents in rings. In section two, we establish the existence of S-idempotents in the loop ring $Z_tL_n(m)$. In the final section, we suggest some interesting problems based on our study.

$\S 1$: Basic Results

Here we just give the basic notions about the loops $L_n(m)$ and the definition of S-idempotents in rings.

Definition 1.1 [4]: Let R be a ring. An element $x \in R \setminus \{0\}$ is said to be a Smarandache idempotent (S-idempotent) of R if $x^2 = x$ and there exist $a \in R \setminus \{x, 0\}$ such that

$$i. \ a^2 = x$$
 $ii. \ xa = x \quad or \ ax = a.$

For more about S-idempotent please refer [4].

Definition 1.2 [2]: A positive integer n is said to be a perfect number if n is equal to the sum of all its positive divisors, excluding n itself. e.g. 6 is a perfect number. As

6 = 1 + 2 + 3.

Definition 1.3 [1]: A non-empty set L is said to form a loop, if in L is defined a binary operation, called product and denoted by '.' such that

- 1. For $a, b \in L$ we have $a.b \in L$. (closure property.)
- 2. There exists an element $e \in L$ such that a.e = e.a = a for all $a \in L$. (e is called the identity element of L.)
- 3. For every ordered pair $(a, b) \in L \times L$ there exists a unique pair $(x, y) \in L \times L$ such that ax = b and ya = b.

Definition 1.4 [3]: Let $L_n(m) = \{e, 1, 2, 3..., n\}$ be a set where n > 3, n is odd and m is a positive integer such that (m, n) = 1 and (m - 1, n) = 1 with m < n. Define on $L_n(m)$, a binary operation '.' as follows:

i.
$$e.i = i.e = i$$
 for all $i \in L_n(m) \setminus \{e\}$
ii. $i^2. = e$ for all $i \in L_n(m)$
iii. $i.j = t$, where $t \equiv (mj - (m-1)i)(mod n)$ for all $i, j \in L_n(m)$, $i \neq e$ and $j \neq e$.

Then $L_n(m)$ is a loop. This loop is always of even order; further for varying m, we get a class of loops of order n+1 which we denote by

$$L_n = \{L_n(m) | n > 3, n \text{ is odd and } (m, n) = 1, (m - 1, n) = 1 \text{ with } m < n\}.$$

Example 1.1 [3]: Consider $L_5(2) = \{e, 1, 2, 3, 4, 5\}$. The composition table for $L_5(2)$ is given below:

	e	1	2	3	4	5
e	e	1	2	3	4	5
1	1	e	3	5	2	4
2	2	5	e	4	1	3
3	3	4	1	e	5	2
4	4	3	5	2	e	1
5	5	1 e 5 4 3 2	4	1	3	e

This loop is non-commutative and non-associative and of order 6.

§ 2: Existence of S-idempotents in the Loop Rings $Z_tL_n(m)$:

In this section we will prove the existence of an S-idempotent for the loop ring $Z_tL_n(m)$ when t is an even perfect number. Also we will prove that the loop ring $Z_tL_n(m)$ has an S-idempotent when t is of the form 2^ip or 3^ip (where p is an odd prime) or in general when $t = p_1^ip_2$ (p_1 and p_2 are distinct odd primes).

Theorem 2.1: Let $Z_tL_n(m)$ be a loop ring, where t is an even perfect number of the form $t = 2^s(2^{s+1}-1)$ for some s > 1, then $\alpha = 2^s + 2^s g_i \in Z_tL_n(m)$ is an S-idempotent.

Proof: As t is an even perfect number, t must be of the form

$$t = 2^{s}(2^{s+1} - 1)$$
, for some $s > 1$

where $2^{s+1} - 1$ is a prime.

Consider

$$\alpha = 2^s + 2^s g_i \in Z_t L_n(m).$$

Choose

$$\beta = (t - 2^s) + (t - 2^s)g_i \in Z_t L_n(m).$$

Clearly

$$\alpha^{2} = (2^{s} + 2^{s} g_{i})^{2}$$

$$= 2.2^{2s} (1 + g_{i})$$

$$\equiv 2^{s} (1 + g_{i}) \quad [\because 2^{s}.2^{s+1} \equiv 2^{s} \pmod{t}]$$

$$= \alpha.$$

Now

$$\beta^{2} = [(t - 2^{s}) + (t - 2^{s})g_{i}]^{2}$$

$$= 2.(t - 2^{s})^{2}(1 + g_{i})$$

$$\equiv 2^{s}(1 + g_{i})$$

$$= \alpha.$$

Also

$$\alpha\beta = [2^s + 2^s g_i][(t - 2^s) + (t - 2^s)g_i]$$
$$= 2^s (1 + g_i)(t - 2^s)(1 + g_i)$$

$$\equiv -2.2^{s}.2^{s}(1+g_{i})$$

$$\equiv (t-2^{s})(1+g_{i})$$

$$= \beta.$$

So we get

$$\alpha^2 = \alpha$$
, $\beta^2 = \alpha$ and $\alpha\beta = \beta$.

Therefore $\alpha = 2^s + 2^s g_i$ is an S-idempotent.

Example:2.1 Take the loop ring $Z_6L_n(m)$. Here 6 is an even perfect number. As $6 = 2.(2^2 - 1)$, so $\alpha = 2 + 2g_i$ is an S-idempotent. For

$$\alpha^2 = (2 + 2g_i)^2$$
$$\equiv 2 + 2g_i$$
$$= \alpha.$$

Choose now

$$\beta = (6-2) + (6-2)g_i$$

then

$$\beta^2 = (4 + 4g_i)^2$$
$$\equiv 2 + 2g_i$$
$$= \alpha.$$

And

$$\alpha\beta = (2 + 2g_i)(4 + 4g_i)$$
$$= 8 + 8g_i + 8g_i + 8$$
$$\equiv 4 + 4g_i$$
$$= \beta.$$

So $\alpha = 2 + 2g_i$ is an S-idempotent.

Theorem 2.2: Let $Z_{2p}L_n(m)$ be a loop ring where p is an odd prime such that $p|2^{t_0+1}-1$ for some $t_0 \geq 1$, then $\alpha = 2^{t_0} + 2^{t_0}g_i \in Z_{2p}L_n(m)$ is an S-idempotent.

Proof: Suppose $p|2^{t_0+1}-1$ for some $t_0 \ge 1$. Take $\alpha = 2^{t_0} + 2^{t_0}g_i \in Z_{2p}L_n(m)$ and $\beta = (2p-2^{t_0}) + (2p-2^{t_0})g_i \in Z_{2p}L_n(m)$. Clearly

$$\alpha^2 = (2^{t_0} + 2^{t_o}g_i)^2$$

$$= 2.2^{2t_o}(1+g_i)$$

$$= 2^{t_o+1}.2^{t_0}(1+g_i)$$

$$\equiv 2^{t_0}(1+g_i)$$

$$= \alpha.$$

As

$$2^{t_0} \cdot 2^{t_{n_0+1}} \equiv 2^{t_0} \pmod{2p}$$
.

Since

$$2^{t_0+1} \equiv 1 \pmod{p}$$

 $\Leftrightarrow 2^{t_0}.2^{t_0+1} \equiv 2^{t_0} \pmod{2p}$ for gcd $(2^{t_0}, 2p) = 2, t_0 \ge 1$.

Also

$$\beta^{2} = [(2p - 2^{t_{0}}) + (2p - 2^{t_{0}})g_{i}]^{2}$$

$$= 2(2p - 2^{t_{0}})^{2}(1 + g_{i})$$

$$\equiv 2 \cdot 2^{2t_{0}}(1 + g_{i})$$

$$= 2^{t_{0+1}}2^{t_{0}}(1 + g_{i})$$

$$\equiv 2^{t_{0}}(1 + g_{i})$$

$$= \alpha.$$

And

$$\alpha\beta = [2^{t_0} + 2^{t_0}g_i].[(2p - 2^{t_0}) + (2p - 2^{t_0})g_i]^2$$

$$\equiv -2^{t_0}(1 + g_i)2^{t_0}(1 + g_i)$$

$$= -2.2^{2t_0}(1 + g_i)$$

$$\equiv (2p - 2^{t_0})(1 + g_i)$$

$$= \beta.$$

So we get

$$\alpha^2 = \alpha$$
, $\beta^2 = \alpha$ and $\alpha\beta = \beta$.

Hence $\alpha = 2^{t_0} + 2^{t_0}g_i$ is an S-idempotent.

Example:2.2 Consider the loop ring $Z_{10}L_n(m)$. Here $5|2^{3+1}-1$, so $t_0=3$. Take

$$\alpha = 2^3 + 2^3 g_i \quad \text{and} \quad \beta = 2 + 2g_i.$$

Now

$$\alpha^2 = (8 + 8q_i)^2$$

$$= 64 + 128g_i + 64$$

$$\equiv 8 + 8g_i$$

$$= \alpha.$$

And

$$\beta^2 = (2 + 2g_i)^2$$
$$= 4 + 8g_i + 4$$
$$\equiv 8 + 8g_i$$
$$= \alpha.$$

Also

$$\alpha\beta = (8 + 8g_i)(2 + 2g_i)$$
$$= 16 + 16g_i + 16g_i + 16$$
$$\equiv 2 + 2g_i$$
$$= \beta.$$

So $\alpha = 8 + 8g_i$ is an S-idempotent.

Theorem 2.3: Let $Z_{2^ip}L_n(m)$ be the loop ring where p is an odd prime such that $p|2^{t_0+1}-1$ for some $t_0 \geq i$, then $\alpha = 2^{t_0} + 2^{t_0}g_i \in Z_{2^ip}L_n(m)$ is an S-idempotent.

Proof: Note that $p|2^{t_0+1}-1$ for some $t_0 \ge i$.

Therefore

$$2^{t_0+1} \equiv 1 \pmod{p}$$
 for some $t_0 \ge i$
 $\Leftrightarrow 2^{t_0}.2^{t_0+1} \equiv 2^{t_0} \pmod{2^i p}$ as $\gcd(2^{t_0}, 2^i p) = 2^i, t_0 \ge i$.

Now take $\alpha = 2^{t_0} + 2^{t_0}g_i \in Z_{2^ip}L_n(m)$ and $\beta = (2^ip - 2^{t_0}) + (2^ip - 2^{t_0})g_i \in Z_{2^ip}L_n(m)$.

Then it is easy to see that

$$\alpha^2 = \alpha$$
, $\beta^2 = \alpha$ and $\alpha\beta = \beta$.

Hence $\alpha = 2^{t_0} + 2^{t_0}g_i$ is an S-idempotent.

Example:2.3 Take the loop ring $Z_{2^3,7}L_n(m)$. Here $7|2^{5+1}-1$, so $t_0=5$.

Take

$$\alpha = 2^5 + 2^5 g_i$$
 and $\beta = (2^3 \cdot 7 - 2^5) + (2^3 \cdot 7 - 2^5) g_i$.

Now

$$\alpha^2 = (32 + 32q_i)^2$$

$$= 1024 + 2048g_i + 1024$$
$$\equiv 32 + 32g_i$$
$$= \alpha.$$

And

$$\beta^{2} = (24 + 24g_{i})^{2}$$

$$= 576 + 1152g_{i} + 576$$

$$\equiv 24 + 24g_{i}$$

$$= \alpha.$$

Also

$$\alpha\beta = (32 + 32g_i)(24 + 24g_i)$$
$$\equiv 24 + 24g_i$$
$$= \beta.$$

So $\alpha = 32 + 32g_i$ is an S-idempotent.

Theorem 2.4: Let $Z_{3^{i}p}L_n(m)$ be the loop ring where p is an odd prime such that $p|2.3^{t_0}-1$ for some $t_0 \geq i$, then $\alpha = 3^{t_0} + 3^{t_0}g_i \in Z_{3^{i}p}L_n(m)$ is an S-idempotent.

Proof: Suppose $p|2.3^{t_0}-1$ for some $t_0 \geq i$.

Take $\alpha = 3^{t_0} + 3^{t_0}g_i \in Z_{3^ip}L_n(m)$ and $\beta = (3^ip - 3^{t_0}) + (3^ip - 3^{t_0})g_i \in Z_{3^ip}L_n(m)$. Then

$$\alpha^{2} = (3^{t_0} + 3^{t_0}g_i)^{2}$$

$$= 2.3^{2t_0}(1 + g_i)$$

$$= 2.3^{t_0}3^{t_0}(1 + g_i)$$

$$\equiv 3^{t_0}(1 + g_i)$$

$$= \alpha.$$

As

$$2.3^{t_0} \equiv 1 \pmod{p}$$
 for some $t_0 \ge i$.
 $\Leftrightarrow 2.3^{t_0}.3^{t_0} \equiv 3^{t_0} \pmod{3^i p}$ as $\gcd(3^{t_0}, 3^i p) = 3^i, t_0 \ge i$.

Similarly

$$\beta^2 = \alpha$$
 and $\alpha\beta = \beta$.

So $\alpha = 3^{t_0} + 3^{t_0}g_i$ is an S-idempotent.

Example:2.4 Take the loop ring $Z_{3^2.5}L_n(m)$. Here $5|2.3^5-1$, so $t_0=5$.

Take

$$\alpha = 3^5 + 3^5 g_i$$
 and $\beta = (3^2.5 - 3^5) + (3^2.5 - 3^5)g_i$

Now

$$\alpha^2 = (18 + 18g_i)^2$$
$$\equiv 18 + 18g_i$$
$$= \alpha.$$

And

$$\beta^2 = (27 + 27g_i)^2$$
$$\equiv 18 + 18g_i$$
$$= \alpha.$$

Also

$$\alpha\beta = \beta$$

So $\alpha = 3^5 + 3^5 g_i$ is an S-idempotent.

We can generalize Theorem 2.3 and Theorem 2.4 as follows:

Theorem 2.5: Let $Z_{p_1^i p_2} L_n(m)$ be a loop ring where p_1 and p_2 are distinct odd primes and $p_2 | 2.p_1^{t_0} - 1$ for some $t_0 \ge i$, then $\alpha = p_1^{t_0} + p_1^{t_0} g_i \in Z_{p_1^i p_2} L_n(m)$ is an S-idempotent.

Proof: Suppose $p_2|2.p_1^{t_0}-1$ for some $t_0\geq i$.

Take $\alpha = p_1^{t_0} + p_1^{t_0} g_i \in Z_{p_1^i p_2} L_n(m)$ and $\beta = (p_1^i p_2 - p_1^{t_0}) + (p_1^i p_2 - p_1^{t_0}) \in Z_{p_1^i p_2} L_n(m)$. Then

$$\alpha^{2} = (p_{1}^{t_{0}} + p_{1}^{t_{0}} g_{i})^{2}$$

$$= 2.p_{1}^{2t_{0}} (1 + g_{i})$$

$$= 2.p_{1}^{t_{0}} p_{1}^{t_{0}} (1 + g_{i})$$

$$\equiv p_{1}^{t_{0}} (1 + g_{i})$$

$$= \alpha.$$

As

$$2.p_1^{t_0} \equiv 1 \pmod{p_2}$$
 for some $t_0 \geq i$.
 $\Leftrightarrow 2.p_1^{t_0}.p_1^{t_0} \equiv p_1^{t_0} \pmod{p_1^i p_2}$ as $\gcd(p_1^{t_0}, p_1^i p_2) = p_1^i$, $t_0 \geq i$.

Similarly

$$\beta^2 = \alpha$$
 and $\alpha\beta = \beta$.

So $\alpha = p_1^{t_0} + p_1^{t_0} g_2$ is an S-idempotent.

$\S 3$: Conclusions:

We see in all the 5 cases described in the Theorem 2.1 to 2.5 we are able to establish the existence of one non-trivial S-idempotent. However we are not able to prove the uniqueness of this S-idempotent. Hence we suggest the following problems:

- Does the loop rings described in the Theorems 2.1 to 2.5 can have more than one S-idempotent ?
- Does the loop rings $Z_tL_n(m)$ have S-idempotents when t is of the form $t = p_1p_2...p_s$ where $p_1, p_2, ...p_s$ are distinct odd primes?.

References

- [1] Bruck R.H. A survey of binary system, Springer Verlag (1958).
- [2] Burton David. Elementary Number Theory, Universal Book Stall, New Delhi (1998).
- [3] SINGH S.V. On a new class of loops and loop rings, PhD thesis, IIT Madras, (1994).
- [4] VASANTHA KANDASAMY, W.B., Smarandache Rings, American Research Press, Rehoboth (2002).