
Why Dempster’s Fusion Rule is not a 
Generalization of Bayes Fusion Rule

Abstract—In this paper, we analyze Bayes fusion rule in
details from a fusion standpoint, as well as the emblematic
Dempster’s rule of combination introduced by Shafer in his
Mathematical Theory of evidence based on belief functions. We
propose a new interesting formulation of Bayes rule and point
out some of its properties. A deep analysis of the compatibility of
Dempster’s fusion rule with Bayes fusion rule is done. We show
that Dempster’s rule is compatible with Bayes fusion rule only in
the very particular case where the basic belief assignments (bba’s)
to combine are Bayesian, and when the prior information is
modeled either by a uniform probability measure, or by a vacuous
bba. We show clearly that Dempster’s rule becomes incompatible
with Bayes rule in the more general case where the prior is truly
informative (not uniform, nor vacuous). Consequently, this paper
proves that Dempster’s rule is not a generalization of Bayes fusion
rule.

Keywords—Information fusion, Probability theory, Bayes fusion
rule, Dempster’s fusion rule.

I. INTRODUCTION

In 1979, Lotfi Zadeh questioned in [1] the validity of the
Dempster’s rule of combination [2], [3] proposed by Shafer in
Dempster-Shafer Theory (DST) of evidence [4]. Since more
than 30 years many strong debates [5], [6], [7], [8], [9], [10],
[11], [12], [13], [14], [15] on the validity of foundations of
DST and Dempster’s rule have bloomed. The purpose of this
paper is not to discuss the validity of Dempster’s rule, nor
the foundations of DST which have been already addressed in
previous papers [16], [17], [18]. In this paper, we just focus
on the deep analysis of the real incompatibility of Dempster’s
rule with Bayes fusion rule. Our analysis supports Mahler’s
one briefly presented in [19].

This paper is organized as follows. In section II, we recall
basics of conditional probabilities and Bayes fusion rule with
its main properties. In section III, we recall the basics of belief
functions and Dempster’s rule. In section IV, we analyze in
details the incompatibility of Dempster’s rule with Bayes rule
in general and its partial compatibility for the very particular
case when prior information is modeled by a Bayesian uniform
basic belief assignment (bba). Section V concludes this paper.

II. CONDITIONAL PROBABILITIES AND BAYES FUSION

In this section, we recall the definition of conditional prob-
ability [20], [21] and present the principle and the properties of

Bayes fusion rule. We present the structure of this rule derived
from the classical definition of the conditional probability in a
new uncommon interesting form that will help us to analyze its
partial similarity with Dempster’s rule proposed by Shafer in
his mathematical theory of evidence [4]. We will show clearly
why Dempster’s rule fails to be compatible with Bayes rule in
general.

A. Conditional probabilities

Let us consider two random events X and Z . The condi-
tional probability mass functions (pmfs) P (X ∣Z) and P (Z∣X)
are defined1 (assuming P (X) > 0 and P (Z) > 0) by [20]:

P (X ∣Z) ≜
P (X ∩ Z)

P (Z)
and P (Z∣X) ≜

P (X ∩ Z)

P (X)
(1)

From Eq. (1), one gets P (X ∩ Z) = P (X ∣Z)P (Z) =
P (Z∣X)P (X), which yields to Bayes Theorem:

P (X ∣Z) =
P (Z∣X)P (X)

P (Z)
and P (Z∣X) =

P (X ∣Z)P (Z)

P (X)
(2)

where P (X) is called the a priori probability of X , and
P (Z∣X) is called the likelihood of X . The denominator P (Z)
plays the role of a normalization constant warranting that
∑N

i=1 P (X = xi∣Z) = 1. In fact P (Z) can be rewritten as

P (Z) =

N
∑

i=1

P (Z∣X = xi)P (X = xi) (3)

The set of the N possible exclusive and exhaustive outcomes
of X is denoted Θ(X) ≜ {xi, i = 1, 2, . . . , N}.

B. Bayes parallel fusion rule

In fusion applications, we are often interested in computing
the probability of an event X given two events Z1 and Z2

that have occurred. More precisely, one wants to compute
P (X ∣Z1 ∩ Z2) knowing P (X ∣Z1) and P (X ∣Z2), where X
can take N distinct exhaustive and exclusive states xi, i =
1, 2, . . . , N . Such type of problem is traditionally called a
fusion problem. The computation of P (X ∣Z1 ∩ Z2) from

1For convenience and simplicity, we use the notation P (X∣Z) instead of
P (X = x∣Z = z), and P (Z∣X) instead of P (Z = z∣X = x) where x and
z would represent precisely particular outcomes of the random variables X
and Z .
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P (X ∣Z1) and P (X ∣Z2) cannot be done in general without the
knowledge of the probabilities P (X) and P (X ∣Z1∪Z2) which
are rarely given. However, P (X ∣Z1 ∩ Z2) becomes easily
computable by assuming the following conditional statistical
independence condition expressed mathematically by:

(A1) : P (Z1 ∩ Z2∣X) = P (Z1∣X)P (Z2∣X) (4)

With such conditional independence condition (A1), then from
Eq. (1) and Bayes Theorem one gets:

P (X∣Z1 ∩ Z2) =
P (Z1 ∩ Z2 ∩X)

P (Z1 ∩ Z2)
=

P (Z1 ∩ Z2∣X)P (X)

P (Z1 ∩ Z2)

=
P (Z1∣X)P (Z2∣X)P (X)

∑N

i=1 P (Z1∣X = xi)P (Z2∣X = xi)P (X = xi)

Using again Eq. (2), we have:

P (Z1∣X) =
P (X ∣Z1)P (Z1)

P (X)
and P (Z2∣X) =

P (X ∣Z2)P (Z2)

P (X)

and the previous formula of conditional probability P (X ∣Z1∩
Z2) can be rewritten as:

P (X ∣Z1 ∩ Z2) =

P (X∣Z1)P (X∣Z2)
P (X)

∑N

i=1
P (X=xi∣Z1)P (X=xi∣Z2)

P (X=xi)

(5)

The rule of combination given by Eq. (5) is known as Bayes
parallel (or product) rule and dates back to Bernoulli [22]. In
the classification framework, this formula is also called the
Naive Bayesian Classifier because it uses the assumption (A1)
which is often considered as very unrealistic and too simplistic,
and that is why it is called a naive assumption. The Eq. (5)
can be rewritten as:

P (X ∣Z1 ∩ Z2) =
1

K(X,Z1, Z2)
⋅ P (X ∣Z1) ⋅ P (X ∣Z2) (6)

where the coefficient K(X,Z1, Z2) is defined by:

K(X,Z1, Z2) ≜ P (X) ⋅
N
∑

i=1

P (X = xi∣Z1)P (X = xi∣Z2)

P (X = xi)

(7)

C. Symmetrization of Bayes fusion rule

The expression of Bayes fusion rule given by Eq. (5)
can also be symmetrized in the following form that, quite
surprisingly, rarely appears in the literature:

P (X ∣Z1 ∩ Z2) =

P (X∣Z1)√
P (X)

⋅ P (X∣Z2)√
P (X)

∑N

i=1
P (X=xi∣Z1)√

P (X=xi)
⋅ P (X=xi∣Z2)√

P (X=xi)

(8)

or in an equivalent manner:

P (X ∣Z1 ∩ Z2) =
1

K ′(Z1, Z2)
⋅
P (X ∣Z1)
√

P (X)
⋅
P (X ∣Z2)
√

P (X)
(9)

where the normalization constant K ′(Z1, Z2) is given by:

K ′(Z1, Z2) ≜

N
∑

i=1

P (X = xi∣Z1)
√

P (X = xi)
⋅
P (X = xi∣Z2)
√

P (X = xi)
(10)

We call the quantity A2(X = xi) ≜
P (X=xi∣Z1)√

P (X=xi)
⋅

P (X=xi∣Z2)√
P (X=xi)

entering in Eq. (10) the Agreement Factor on

X = xi of order 2, because only two posterior pmfs are used
in the derivation. A2(X = xi) corresponds to the posterior
conjunctive consensus on the event X = xi taking into account
the prior pmf of X . The denominator of Eq. (8) measures
the level of the Global Agreement (GA) of the conjunctive
consensus taking into account the prior pmf of X . It is
denoted2 GA2.

GA2 ≜

N
∑

i1,i2=1∣i1=i2

P (X = xi1 ∣Z1)
√

P (X = xi1 )
⋅
P (X = xi2 ∣Z2)
√

P (X = xi2 )

=

N
∑

i=1

P (X = xi∣Z1)
√

P (X = xi)
⋅
P (X = xi∣Z2)
√

P (X = xi)
= K ′(Z1, Z2)

(11)

In fact, with assumption (A1), the probability P (X ∣Z1 ∩ Z2)
given in Eq. (9) is nothing but the simple ratio of the agreement
factor A2(X) (conjunctive consensus) on X over the global

agreement GA2 =
∑N

i=1 A2(X = xi), that is:

P (X ∣Z1 ∩ Z2) =
A2(X)

GA2
(12)

The quantity GC2 given in Eq. (13) measures the global
conflict (i.e. the total conjunctive disagreement) taking into
account the prior pmf of X .

GC2 ≜

N
∑

i1,i2=1∣i1 ∕=i2

P (X = xi1 ∣Z1)
√

P (X = xi1 )
⋅
P (X = xi2 ∣Z2)
√

P (X = xi2)
(13)

∙ Generalization to P (X ∣Z1 ∩ Z2 ∩ . . . ∩ Zs)

It can be proved that, when assuming conditional independence
conditions, Bayes parallel combination rule can be generalized
for combining s > 2 posterior pmfs as:

P (X ∣Z1 ∩ . . . ∩ Zs) =
1

K(X,Z1, . . . , Zs)
⋅

s
∏

k=1

P (X ∣Zk)

(14)

where the coefficient K(X,Z1, . . . , Zs) is defined by:

K(X,Z1, . . . , Zs) ≜ P (X)

N
∑

i=1

(
∏s

k=1 P (X = xi∣Zk))

P (X = xi)

(15)

The symmetrized form of Eq. (14) is:

P (X ∣Z1 ∩ . . . ∩ Zs) =
1

K ′(Z1, . . . , Zs)
⋅

s
∏

k=1

P (X ∣Zk)
s
√

P (X)

(16)

with the normalization constant K ′(Z1, . . . , Zs) given by:

K ′(Z1, . . . , Zs) ≜

N
∑

i=1

s
∏

k=1

P (X = xi∣Zk)
s
√

P (X = xi)
(17)

2The index 2 is introduced explicitly in the notations because we consider
only the fusion of two posterior pmfs.
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The generalization of A2(X), GA2, and GC2 provides the
agreement As(X) of order s, the global agreement GAs and
the global conflict GCs for s sources as follows:

As(X = xi) ≜

s
∏

k=1

P (X = xi∣Zk)
s
√

P (X = xi)

GAs ≜

N
∑

i1,...,is=1∣i1=...=is

P (X = xi1 ∣Z1)
s
√

P (X = xi1 )
. . .

P (X = xis ∣Zs)
s
√

P (X = xis)

GCs ≜

N
∑

i1,...,is=1

P (X = xi1 ∣Z1)
s
√

P (X = xi1)
. . .

P (X = xis ∣Zs)
s
√

P (X = xis)
−GAs

∙ Symbolic representation of Bayes fusion rule

The (symmetrized form of) Bayes fusion rule of two posterior
probability measures P (X ∣Z1) and P (X ∣Z2), given in Eq. (9),
requires an extra knowledge of the prior probability of X . For
convenience, we denote symbolically this fusion rule as:

P (X ∣Z1 ∩ Z2) = Bayes(P (X ∣Z1), P (X ∣Z2);P (X)) (18)

Similarly, the (symmetrized) Bayes fusion rule of s ≥ 2
probability measures P (X ∣Zk), k = 1, 2, . . . , s given by Eq.
(16), which requires also the knowledge of P (X), will be
denoted as:

P (X ∣Z1∩. . .∩Zs) = Bayes(P (X ∣Z1), . . . , P (X ∣Zs);P (X))

∙ Particular case: Uniform a priori pmf

If the random variable X is assumed as a priori uniformly
distributed over the space of its N possible outcomes, then
the probability of X is equal to P (X = xi) = 1/N for i =
1, 2, . . . , N . In such particular case, all the prior probabilities

values
√

P (X = xi) =
√

1/N and s
√

P (X = xi) =
s
√

1/N
can be simplified in Bayes fusion formulas Eq. (9) and Eq.
(10). Therefore, Bayes fusion formula (9) reduces to:

P (X ∣Z1 ∩ Z2) =
P (X ∣Z1)P (X ∣Z2)

∑N

i=1 P (X = xi∣Z1)P (X = xi∣Z2)
(19)

By convention, Eq. (19) is denoted symbolically as:

P (X ∣Z1 ∩ Z2) = Bayes(P (X ∣Z1), P (X ∣Z2)) (20)

Similarly, Bayes(P (X ∣Z1), . . . , P (X ∣Zs)) rule defined with
an uniform a priori pmf of X will be given by:

P (X ∣Z1 ∩ . . . ∩ Zs) =

∏s

k=1 P (X ∣Zk)
∑N

i=1

∏s

k=1 P (X = xi∣Zk)
(21)

When P (X) is uniform and from Eq. (19), one can redefine
the global agreement and the global conflict as:

GAunif
2 ≜

N
∑

i,j=1∣i=j

P (X = xi∣Z1)P (X = xj ∣Z2) (22)

GCunif
2 ≜

N
∑

i,j=1∣i∕=j

P (X = xi∣Z1)P (X = xj ∣Z2) (23)

Because
∑N

i=1 P (X = xi∣Z1) = 1 and
∑N

j=1 P (X =
xj ∣Z2) = 1, then

1 = (

N
∑

i=1

P (X = xi∣Z1))(

N
∑

j=1

P (X = xj ∣Z2))

=

N
∑

i,j=1

P (X = xi∣Z1)P (X = xj ∣Z2)

=

N
∑

i,j=1∣i=j

P (X = xi∣Z1)P (X = xj ∣Z2)

+

N
∑

i,j=1∣i∕=j

P (X = xi∣Z1)P (X = xj ∣Z2)

Therefore, one has always GAunif
2 +GCunif

2 = 1 when P (X)
is uniform, and Eq. (19) can be expressed as:

P (X ∣Z1 ∩ Z2) =
P (X ∣Z1)P (X ∣Z2)

GAunif
2

=
P (X ∣Z1)P (X ∣Z2)

1−GCunif
2

(24)
By a direct extension, one will have:

P (X ∣Z1 ∩ . . . ∩ Zs) =

∏s

k=1 P (X ∣Zk)

GAunif
s

=

∏s

k=1 P (X ∣Zk)

1−GCunif
s

(25)

GAunif
s =

N
∑

i1,...,is=1∣i1=...=is

P (X = xi1 ∣Z1) . . . P (X = xis ∣Zs)

GCunif
s = 1−GAunif

s

Remark 1: The normalization coefficient corresponding to the
global conjunctive agreement GAunif

s can also be expressed
using belief function notations [4] as:

GAunif
s =

∑

xi1
,...,xis∈Θ(X)

xi1
∩...∩xis ∕=∅

P (X = xi1 ∣Z1) . . . P (X = xis ∣Zs)

and the global disagreement, or total conflict level, is given
by:

GCunif
s =

∑

xi1
,...,xis∈Θ(X)

xi1
∩...∩xis=∅

P (X = xi1 ∣Z1) . . . P (X = xis ∣Zs)

D. Properties of Bayes fusion rule

In this subsection, we analyze Bayes fusion rule (assuming
condition (A1) holds) from a pure algebraic standpoint. In
fusion jargon, the quantities to combine come from sources
of information which provide inputs that feed the fusion
rule. In the probabilistic framework, a source s to combine
corresponds to the posterior pmf P (X ∣Zs). In this subsection,
we establish five interesting properties of Bayes rule. Contrary
to Dempster’s rule, we prove that Bayes rule is not associative
in general.

∙ (P1) : The pmf P (X) is a neutral element of Bayes fusion
rule when combining only two sources.

Proof: A source is called a neutral element of a fusion
rule if and only if it has no influence on the fusion result.
P (X) is a neutral element of Bayes rule if and only if
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Bayes(P (X ∣Z1), P (X);P (X)) = P (X ∣Z1). It can be easily
verified that this equality holds by replacing P (X ∣Z2) by
P (X) and P (X = xi∣Z2) by P (X = xi) (as if the
conditioning term Z2 vanishes) in Eq. (5). One can also ver-
ify that Bayes(P (X), P (X ∣Z2);P (X)) = P (X ∣Z2), which
completes the proof.

Remark 2: When considering Bayes fusion of more than
two sources, P (X) doesn’t play the role of a neutral element
in general, except if P (X) is uniform. For example, let us
consider 3 pmfs P (X ∣Z1), P (X ∣Z2) and P (X ∣Z3) to combine
with formula (14) with P (X) not uniform. When Z3 vanishes
so that P (X ∣Z3) = P (X), we can easily check that:

Bayes(P (X ∣Z1), P (X ∣Z2), P (X);P (X))

∕= Bayes(P (X ∣Z1), P (X ∣Z2);P (X)) (26)

∙ (P2) : Bayes fusion rule is in general not idempotent.

Proof: A fusion rule is idempotent if the combination of all
same inputs is equal to the inputs. To prove that Bayes rule is
not idempotent it suffices to prove that in general:

Bayes(P (X ∣Z1), P (X ∣Z1);P (X)) ∕= P (X ∣Z1)

From Bayes rule (5), when P (X ∣Z2) = P (X ∣Z1) we clearly
get in general

1

P (X)

P (X ∣Z1)P (X ∣Z1)
∑N

i=1
P (X=xi∣Z1)P (X=xi∣Z1)

P (X=xi)

∕= P (X ∣Z1) (27)

but when Z1 and Z2 vanish, because in such case Eq. (27)
reduces to P (X) on its left and right sides.

Remark 3: In the particular (two sources) degenerate
case where Z1 and Z2 vanish, one has always:
Bayes(P (X), P (X);P (X)) = P (X). However, in
the more general degenerate case (when considering
more than 2 sources), one will have in general:
Bayes(P (X), P (X), . . . , P (X);P (X)) ∕= P (X), but
when P (X) is uniform, or when P (X) is a “deterministic”
probability measure such that P (X = xi) = 1 for a given
xi ∈ Θ(X) and P (X = xj) = 0 for all xj ∕= xi.

∙ (P3) : Bayes fusion rule is in general not associative.

Proof: A fusion rule f is called associative if and only if it
satisfies the associative law: f(f(x, y), z) = f(x, f(y, z)) =
f(y, f(x, z)) = f(x, y, z) for all possible inputs x, y and z.
Let us prove that Bayes rule is not associative from a very
simple example.

Example 1: Let us consider the simplest set of outcomes
{x1, x2} for X , with prior pmf:

P (X = x1) = 0.2 and P (X = x2) = 0.8

and let us consider the three given sets of posterior pmfs:
⎧

⎨

⎩

P (X = x1∣Z1) = 0.1 and P (X = x2∣Z1) = 0.9

P (X = x1∣Z2) = 0.5 and P (X = x2∣Z2) = 0.5

P (X = x1∣Z3) = 0.6 and P (X = x2∣Z3) = 0.4

Bayes fusion Bayes(P (X ∣Z1), )P (X ∣Z2), P (X ∣Z3);P (X))
of the three sources altogether according to Eq. (16) provides:
{

P (X = x1∣Z1 ∩ Z2 ∩ Z3) =
1

K123

0.1
3
√
0.2

0.5
3
√
0.2

0.6
3
√
0.2

= 0.40

P (X = x2∣Z1 ∩ Z2 ∩ Z3) =
1

K123

0.9
3√0.8

0.5
3√0.8

0.4
3√0.8

= 0.60

where the normalization constant K123 is given by:

K123 =
0.1
3
√
0.2

0.5
3
√
0.2

0.6
3
√
0.2

+
0.9
3
√
0.8

0.5
3
√
0.8

0.4
3
√
0.8

= 0.3750

Let us compute the fusion of P (X ∣Z1) with P (X ∣Z2) using
Bayes(P (X ∣Z1), P (X ∣Z2);P (X)). One has:

{

P (X = x1∣Z1 ∩ Z2) =
1

K12

0.1√
0.2

0.5√
0.2

≈ 0.3077

P (X = x2∣Z1 ∩ Z2) =
1

K12

0.9√
0.8

0.5√
0.8

≈ 0.6923

where the normalization constant K12 is given by:

K12 =
0.1
√
0.2

0.5
√
0.2

+
0.9
√
0.8

0.5
√
0.8

= 0.8125

Let us compute the fusion of P (X ∣Z2) with P (X ∣Z3) using
Bayes(P (X ∣Z2), P (X ∣Z3);P (X)). One has

{

P (X = x1∣Z2 ∩ Z3) =
1

K23

0.5√
0.2

0.6√
0.2

≈ 0.8571

P (X = x2∣Z2 ∩ Z3) =
1

K23

0.5√
0.8

0.4√
0.8

≈ 0.1429

where the normalization constant K23 is given by:

K23 =
0.5
√
0.2

0.6
√
0.2

+
0.5
√
0.8

0.4
√
0.8

= 1.75

Let us compute the fusion of P (X ∣Z1) with P (X ∣Z3) using
Bayes(P (X ∣Z1), P (X ∣Z3);P (X)). One has:

{

P (X = x1∣Z1 ∩ Z3) =
1

K13

0.1√
0.2

0.6√
0.2

= 0.4

P (X = x2∣Z1 ∩ Z3) =
1

K13

0.9√
0.8

0.4√
0.8

= 0.6

where the normalization constant K13 is given by:

K13 =
0.1
√
0.2

0.6
√
0.2

+
0.9
√
0.8

0.4
√
0.8

= 0.75

Let us compute the fusion of P (X ∣Z1 ∩ Z2) with P (X ∣Z3)
using Bayes(P (X ∣Z1 ∩ Z2), P (X ∣Z3);P (X)). One has
{

P (X = x1∣(Z1 ∩ Z2) ∩ Z3) =
1

K(12)3

0.3077√
0.2

0.6√
0.2

≈ 0.7273

P (X = x2∣(Z1 ∩ Z2) ∩ Z3) =
1

K(12)3

0.6923√
0.8

0.4√
0.8

≈ 0.2727

where the normalization constant K(12)3 is given by

K(12)3 =
0.3077
√
0.2

0.6
√
0.2

+
0.6923
√
0.8

0.4
√
0.8

≈ 1.26925

Let us compute the fusion of P (X ∣Z1) with P (X ∣Z2 ∩ Z3)
using Bayes(P (X ∣Z1), P (X ∣Z2 ∩ Z3);P (X)). One has
{

P (X = x1∣Z1 ∩ (Z2 ∩ Z3)) =
1

K1(23)

0.1√
0.2

0.8571√
0.2

≈ 0.7273

P (X = x2∣Z1 ∩ (Z2 ∩ Z3)) =
1

K1(23)

0.9√
0.8

0.1429√
0.8

≈ 0.2727

where the normalization constant K1(23) is given by

K1(23) =
0.1
√
0.2

0.8571
√
0.2

+
0.9
√
0.8

0.1429
√
0.8

≈ 0.58931

Let us compute the fusion of P (X ∣Z1 ∩ Z3) with P (X ∣Z2)
using Bayes(P (X ∣Z1 ∩ Z3), P (X ∣Z2);P (X)). One has
{

P (X = x1∣(Z1 ∩ Z3) ∩ Z2) =
1

K(13)2

0.4√
0.2

0.5√
0.2

≈ 0.7273

P (X = x2∣(Z1 ∩ Z3) ∩ Z2) =
1

K(13)2

0.6√
0.8

0.5√
0.8

≈ 0.2727
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where the normalization constant K(13)2 is given by

K(13)2 =
0.4
√
0.2

0.5
√
0.2

+
0.6
√
0.8

0.5
√
0.8

= 1.375

Therefore, one sees that even if in our example one has
f(x, f(y, z)) = f(f(x, y), z) = f(y, f(x, z)) because
P (X ∣(Z1 ∩ Z2) ∩ Z3) = P (X ∣Z1 ∩ (Z2 ∩ Z3)) = P (X ∣Z2 ∩
(Z1 ∩ Z3)), Bayes fusion rule is not associative since:

⎧

⎨

⎩

P (X ∣(Z1 ∩ Z2) ∩ Z3) ∕= P (X ∣Z1 ∩ Z2 ∩ Z3)

P (X ∣Z1 ∩ (Z2 ∩ Z3)) ∕= P (X ∣Z1 ∩ Z2 ∩ Z3)

P (X ∣Z2 ∩ (Z1 ∩ Z3)) ∕= P (X ∣Z1 ∩ Z2 ∩ Z3)

∙ (P4) : Bayes fusion rule is associative if and only if P (X)
is uniform.

Proof: If P (X) is uniform, Bayes fusion rule is given by Eq.
(21) which can be rewritten as:

P (X∣Z1 ∩ . . .∩Zs) =
P (X∣Zs)

∏s−1
k=1 P (X∣Zk)

∑N

i=1 P (X = xi∣Zs)
∏s−1

k=1 P (X = xi∣Zk)

By introducing the term 1/
∑N

i=1

∏s−1
k=1 P (X = xi∣Zk) in

numerator and denominator of the previous formula, it comes:

P (X∣Z1∩ . . .∩Zs) =

∏s−1
k=1

P (X∣Zk)
∑N

i=1

∏s−1
k=1

P (X=xi∣Zk)
P (X∣Zs)

∑N

i=1

∏s−1
k=1

P (X=xi∣Zk)
∑N

i=1

∏s−1
k=1

P (X=xi∣Zk)
P (X = xi∣Zs)

which can be simply rewritten as:

P (X∣Z1 ∩ . . . ∩ Zs) =
P (X∣Z1 ∩ . . . ∩ Zs−1)P (X∣Zs)

∑N
i=1 P (X = xi∣Z1 ∩ . . . ∩ Zs−1)P (X = xi∣Zs)

Therefore when P (X) is uniform, one has:

Bayes(P (X ∣Z1), . . . , P (X ∣Zs)) =

Bayes(Bayes(P (X ∣Z1), . . . , P (X ∣Zs−1)), P (X ∣Zs))

The previous relation was based on the decomposition of
∏s

k=1 P (X ∣Zk) as P (X ∣Zs)
∏s−1

k=1 P (X ∣Zk). This choice of
decomposition was arbitrary and chosen only for convenience.
In fact

∏s

k=1 P (X ∣Zk) can be decomposed in s different
manners, as P (X ∣Zj)

∏s

k=1∣k ∕=j P (X ∣Zk), j = 1, 2, . . . s and

the similar analysis can be done. In particular, when s = 3,
we will have:

Bayes(P (X ∣Z1), P (X ∣Z2), P (X ∣Z3)) =

Bayes(Bayes(P (X ∣Z1), P (X ∣Z2)), P (X ∣Z3))

= Bayes(P (X ∣Z1), Bayes(P (X ∣Z2), P (X ∣Z3)))

which completes the proof.

∙ (P5) : The levels of global agreement and global conflict
between the sources do not matter in Bayes fusion rule.

Proof: This property seems surprising at first glance, but,
since the results of Bayes fusion is nothing but the ratio
of the agreement on xi (i = 1, 2, . . . , N ) over the global
agreement factor, many distinct sources with different global
agreements (and thus with different global conflicts) can yield
same Bayes fusion result. Indeed, the ratio is kept unchanged
when multiplying its numerator and denominator by same non
null scalar value. Consequently, the absolute levels of global
agreement between the sources (and therefore of global conflict

also) do not matter in Bayes fusion result. What really matters
is only the proportions of relative agreement factors.

Example 2: To illustrate this property, let us consider
Bayes fusion rule applied to two distinct sets3 of sources
represented by Bayes(P (X ∣Z1), P (X ∣Z2);P (X)) and by
Bayes(P ′(X ∣Z1), P

′(X ∣Z2);P (X)) with the following prior
and posterior pmfs:

P (X = x1) = 0.2 and P (X = x2) = 0.8
{

P (X = x1∣Z1) ≈ 0.0607 and P (X = x2∣Z1) ≈ 0.9393

P (X = x1∣Z2) ≈ 0.6593 and P (X = x2∣Z2) ≈ 0.3407
{

P ′(X = x1∣Z1) ≈ 0.8360 and P ′(X = x2∣Z1) ≈ 0.1640

P ′(X = x1∣Z2) ≈ 0.0240 and P ′(X = x2∣Z2) ≈ 0.9760

Applying Bayes fusion rule given by Eq. (5), one gets for
Bayes(P (X ∣Z1), P (X ∣Z2);P (X)):

{

P (X = x1∣Z1 ∩ Z2) =
0.2

0.2+0.4 = 1/3

P (X = x2∣Z1 ∩ Z2) =
0.4

0.2+0.4 = 2/3
(28)

Similarly, one gets for Bayes(P ′(X ∣Z1), P
′(X ∣Z2);P (X))

{

P ′(X = x1∣Z1 ∩ Z2) =
0.1

0.1+0.2 = 1/3

P ′(X = x2∣Z1 ∩ Z2) =
0.2

0.1+0.2 = 2/3
(29)

Therefore, one sees that Bayes(P (X ∣Z1), P (X ∣Z2);P (X)) =
Bayes(P ′(X ∣Z1), P

′(X ∣Z2);P (X)) even if the levels of
global agreements (and global conflicts) are different. In this
particular example, one has:

{

(GA2 = 0.60) ∕= (GA′
2 = 0.30)

(GC2 = 1.60) ∕= (GC′
2 = 2.05)

(30)

In summary, different sets of sources to combine (with differ-
ent levels of global agreement and global conflict) can provide
exactly the same result once combined with Bayes fusion
rule. Hence the different levels of global agreement and global
conflict do not really matter in Bayes fusion rule. What really
matters in Bayes fusion rule is only the distribution of all the
relative agreement factors defined as As(X = xi)/GAs.

III. BELIEF FUNCTIONS AND DEMPSTER’S RULE

The Belief Functions (BF) have been introduced in 1976 by
Glenn Shafer in his mathematical theory of evidence [4], also
known as Dempster-Shafer Theory (DST) in order to reason
under uncertainty and to model epistemic uncertainties. We
will not present in details the foundations of DST, but only
the basic mathematical definitions that are necessary for the
scope of this paper. The emblematic fusion rule proposed by
Shafer to combine sources of evidences characterized by their
basic belief assignments (bba) is Dempster’s rule that will be
analyzed in details in the sequel. In the literature over the years,
DST has been widely defended by its proponents in arguing
that: 1) Probability measures are particular cases of Belief

3The values chosen for P (X∣Z1), P (X∣Z2), P ′(X∣Z1), P ′(X∣Z2) here
have been approximated at the fourth digit. They can be precisely determined
such that the expressions for P (X∣Z1∩Z2) and P ′(X∣Z1∩Z2) as given in
Eqs. (28) and (29) hold. For example, the exact value of P (x1∣Z2) is obtained
by solving a polynomial equation of degree 2 having as a possible solution

P (x1∣Z2) = 1
2
(0.72 +

√
0.722 − 4× 0.04) = 0.659332590941915 ≈

0.6593, etc.
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functions; and 2) Dempster’s fusion rule is a generalization
of Bayes fusion rule. Although the statement 1) is correct
because Probability measures are indeed particular (additive)
Belief functions (called as Bayesian belief functions), we will
explain why the second statement about Dempster’s rule is
incorrect in general.

A. Belief functions

Let Θ be a frame of discernment of a problem under
consideration. More precisely, the set Θ = {�1, �2, . . . , �N}
consists of a list of N exhaustive and exclusive elements �i,
i = 1, 2, . . . , N . Each �i represents a possible state related to
the problem we want to solve. The exhaustivity and exclusivity
of elements of Θ is referred as Shafer’s model of the frame
Θ. A basic belief assignment (bba), also called a belief mass
function, m(.) : 2Θ → [0, 1] is a mapping from the power set
of Θ (i.e. the set of subsets of Θ), denoted 2Θ, to [0, 1], that
verifies the following conditions [4]:

m(∅) = 0 and
∑

X∈2Θ

m(X) = 1 (31)

The quantity m(X) represents the mass of belief exactly
committed to X . An element X ∈ 2Θ is called a focal element
if and only if m(X) > 0. The set ℱ(m) ≜ {X ∈ 2Θ∣m(X) >
0} of all focal elements of a bba m(.) is called the core of
the bba. A bba m(.) is said Bayesian if its focal elements
are singletons of 2Θ. The vacuous bba characterizing the total
ignorance denoted4 It = �1 ∪ �2 ∪ . . . ∪ �N is defined by
mv(.) : 2Θ → [0; 1] such that mv(X) = 0 if X ∕= Θ, and
mv(It) = 1.

From any bba m(.), the belief function Bel(.) and the
plausibility function Pl(.) are defined for ∀X ∈ 2Θ as:

{

Bel(X) =
∑

Y ∈2Θ∣Y⊆X m(Y )

Pl(X) =
∑

Y ∈2Θ∣X∩Y ∕=∅ m(Y )
(32)

Bel(X) represents the whole mass of belief that comes from
all subsets of Θ included in X . It is interpreted as the
lower bound of the probability of X , i.e. Pmin(X). Bel(.)
is a subadditive measure since

∑

�i∈Θ Bel(�i) ≤ 1. Pl(X)
represents the whole mass of belief that comes from all
subsets of Θ compatible with X (i.e., those intersecting X).
Pl(X) is interpreted as the upper bound of the probability
of X , i.e. Pmax(X). Pl(.) is a superadditive measure since
∑

�i∈Θ Pl(�i) ≥ 1. Bel(X) and Pl(X) are classically seen
[4] as lower and upper bounds of an unknown probability
P (.), and one has the following inequality satisfied ∀X ∈ 2Θ:
Bel(X) ≤ P (X) ≤ Pl(X). The belief function Bel(.) (and
the plausibility function Pl(.)) built from any Bayesian bba
m(.) can be interpreted as a (subjective) conditional probability
measure provided by a given source of evidence, because if
the bba m(.) is Bayesian the following equality always holds
[4]: Bel(X) = Pl(X) = P (X).

4The set {�1, �2, . . . , �N} and the complete ignorance �1 ∪ �2 ∪ . . .∪ �N
are both denoted Θ in DST.

B. Dempster’s rule of combination

Dempster’s rule of combination, denoted DS rule5 is a
mathematical operation, represented symbolically by ⊕, which
corresponds to the normalized conjunctive fusion rule. Based
on Shafer’s model of Θ, the combination of s > 1 independent
and distinct sources of evidences characterized by their bba
m1(.), . . . , ms(.) related to the same frame of discernment
Θ is denoted mDS(.) = [m1 ⊕ . . . ⊕ ms](.). The quantity

mDS(.) is defined mathematically as follows: mDS(∅) ≜ 0
and ∀X ∕= ∅ ∈ 2Θ

mDS(X) ≜
m12...s(X)

1−K12...s
(33)

where the conjunctive agreement on X is given by:

m12...s(X) ≜
∑

X1,X2,...,Xs∈2Θ

X1∩X2∩...∩Xs=X

m1(X1)m2(X2) . . .ms(Xs)

(34)
and where the global conflict is given by:

K12...s ≜
∑

X1,X2,...,Xs∈2Θ

X1∩X2∩...∩Xs=∅

m1(X1)m2(X2) . . .ms(Xs) (35)

When K12...s = 1, the s sources are in total conflict and their
combination cannot be computed with DS rule because Eq.
(33) is mathematically not defined due to 0/0 indeterminacy
[4]. DS rule is commutative and associative which makes it
very attractive from engineering implementation standpoint.

It has been proved in [4] that the vacuous bba mv(.)
is a neutral element for DS rule because [m ⊕ mv](.) =
[mv ⊕ m](.) = m(.) for any bba m(.) defined on 2Θ. This
property looks reasonable since a total ignorant source should
not impact the fusion result because it brings no information
that can be helpful for the discrimination between the elements
of the power set 2Θ.

IV. ANALYSIS OF COMPATIBILITY OF DEMPSTER’S RULE

WITH BAYES RULE

To analyze the compatibility of Dempster’s rule with
Bayes rule, we need to work in the probabilistic framework
because Bayes fusion rule has been developed only in this
theoretical framework. So in the sequel, we will manipulate
only probability mass functions (pmfs), related with Bayesian
bba’s in the Belief Function framework. This perfectly justifies
the restriction of singleton bba as a prior bba since we want
to manipulate prior probabilities to make a fair comparison
of results provided by both rules. If Dempster’s rule is a true
(consistent) generalization of Bayes fusion rule, it must provide
same results as Bayes rule when combining Bayesian bba’s,
otherwise Dempster’s rule cannot be fairly claimed to be a
generalization of Bayes fusion rule. In this section, we analyze
the real (partial or total) compatibility of Dempster’s rule with
Bayes fusion rule. Two important cases must be analyzed
depending on the nature of the prior information P (X) one
has in hands for performing the fusion of the sources. These

5We denote it DS rule because it has been proposed historically by Dempster
[2], [3], and widely promoted by Shafer in the development of DST [4].
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sources to combine will be characterized by the following
Bayesian bba’s:

⎧



⎨



⎩

m1(.) ≜ {m1(�i) = P (X = xi∣Z1), i = 1, 2, . . . , N}
...

...
...

ms(.) ≜ {ms(�i) = P (X = xi∣Zs), i = 1, 2, . . . , N}
(36)

The prior information is characterized by a given bba denoted
as m0(.) that can be defined either on 2Θ, or only on Θ if
we want to deal for the needs of our analysis with a Bayesian
prior. In the latter case, if m0(.) ≜ {m0(�i) = P (X = xi), i =
1, 2, . . . , N} then m0(.) plays the same role as the prior pmf
P (X) in the probabilistic framework.

When considering a non vacuous prior m0(.) ∕= mv(.), we
denote Dempster’s combination of s sources symbolically as:

mDS(.) = DS(m1(.), . . . ,ms(.);m0(.))

When the prior bba is vacuous m0(.) = mv(.) then m0(.)
has no impact on Dempster’s fusion result, and so we denote
symbolically Dempster’s rule as:

mDS(.) = DS(m1(.), . . . ,ms(.);mv(.))

= DS(m1(.), . . . ,ms(.))

A. Case 1: Uniform Bayesian prior

It is important to note that Dempster’s fusion formula
proposed by Shafer in [4] and recalled in Eq. (33) makes no
real distinction between the nature of sources to combine (if
they are posterior or prior information). In fact, the formula
(33) reduces exactly to Bayes rule given in Eq. (25) if the bba’s
to combine are Bayesian and if the prior information is either
uniform or vacuous. Stated otherwise the following functional
equality holds

DS(m1(.), . . . ,ms(.);m0(.)) ≡

Bayes(P (X ∣Z1), . . . , P (X ∣Zs);P (X)) (37)

as soon as all bba’s mi(.), i = 1, 2, . . . , s are Bayesian and
coincide with P (X ∣Zi), P (X) is uniform, and either the prior
bba m0(.) is vacuous (m0(.) = mv(.)), or m0(.) is the uniform
Bayesian bba.

Example 3: Let us consider Θ(X) = {x1, x2, x3} with two
distinct sources providing the following Bayesian bba’s

⎧

⎨

⎩

m1(x1) = P (X = x1∣Z1) = 0.2

m1(x2) = P (X = x2∣Z1) = 0.3

m1(x3) = P (X = x3∣Z1) = 0.5

and

⎧

⎨

⎩

m2(x1) = 0.5

m2(x2) = 0.1

m2(x3) = 0.4

∙ If we choose as prior m0(.) the vacuous bba, that is m0(x1∪
x2 ∪ x3) = 1, then one will get
⎧

















⎨

















⎩

mDS(x1) = 1
1−Kvacuous

12
m1(x1)m2(x1)m0(x1 ∪ x2 ∪ x3)

= 1
1−0.670.2 ⋅ 0.5 ⋅ 1 = 0.10

0.33 ≈ 0.3030

mDS(x2) = 1
1−Kvacuous

12
m1(x2)m2(x2)m0(x1 ∪ x2 ∪ x3)

= 1
1−0.670.3 ⋅ 0.1 ⋅ 1 = 0.03

0.33 ≈ 0.0909

mDS(x3) = 1
1−Kvacuous

12
m1(x3)m2(x3)m0(x1 ∪ x2 ∪ x3)

= 1
1−0.670.5 ⋅ 0.4 ⋅ 1 = 0.20

0.33 ≈ 0.6061

with

Kvacuous
12 = 1−m1(x1)m2(x1)m0(x1 ∪ x2 ∪ x3)

−m1(x2)m2(x2)m0(x1 ∪ x2 ∪ x3)

−m1(x3)m2(x3)m0(x1 ∪ x2 ∪ x3) = 0.67

∙ If we choose as prior m0(.) the uniform Bayesian bba given
by m0(x1) = m0(x2) = m0(x3) = 1/3, then we get

⎧



















⎨



















⎩

mDS(x1) = 1

1−K
uniform
12

m1(x1)m2(x1)m0(x1)

= 1
1−0.890.2 ⋅ 0.5 ⋅ 1/3 = 0.10/3

0.11 ≈ 0.3030

mDS(x2) = 1

1−K
uniform
12

m1(x2)m2(x2)m0(x2)

= 1
1−0.890.3 ⋅ 0.1 ⋅ 1/3 = 0.03/3

0.11 ≈ 0.0909

mDS(x3) = 1

1−K
uniform
12

m1(x3)m2(x3)m0(x3)

= 1
1−0.890.5 ⋅ 0.4 ⋅ 1/3 = 0.20/3

0.11 ≈ 0.6061

where the degree of conflict when m0(.) is Bayesian and

uniform is now given by Kuniform
12 = 0.89.

Clearly Kuniform
12 ∕= Kvacuous

12 , but the fusion results
obtained with two distinct priors m0(.) (vacuous or uniform)
are the same because of the algebraic simplification by 1/3 in
Dempster’s fusion formula when using uniform Bayesian bba.
When combining Bayesian bba’s m1(.) and m2(.), the vacuous
prior and uniform prior m0(.) have therefore no impact on the
result. Indeed, they contain no information that may help to
prefer one particular state xi with respect to the other ones,
even if the level of conflict is different in both cases. So, the
level of conflict doesn’t matter at all in such Bayesian case.
As already stated, what really matters is only the distribution
of relative agreement factors. It can be easily verified that we
obtain same results when applying Bayes Eq. (14), or (16).

Only in such very particular cases (i.e. Bayesian bba’s,
and vacuous or Bayesian uniform priors), Dempster’s rule is
fully consistent with Bayes fusion rule. So the claim that
Dempster’s is a generalization of Bayes rule is true in this
very particular case only, and that is why such claim has been
widely used to defend Dempster’s rule and DST thanks to its
compatibility with Bayes fusion rule in that very particular
case. Unfortunately, such compatibility is only partial and not
general because it is not longer valid when considering the
more general cases involving non uniform Bayesian prior bba’s
as shown in the next subsection.

B. Case 2: Non uniform Bayesian prior

Let us consider Dempster’s fusion of Bayesian bba’s with
a Bayesian non uniform prior m0(.). In such case it is easy
to check from the general structures of Bayes fusion rule
(16) and Dempster’s fusion rule (33) that these two rules are
incompatible. Indeed, in Bayes rule one divides each posterior

source mi(xj) by s
√

m0(xj), i = 1, 2, . . . s, whereas the prior
source m0(.) is combined in a pure conjunctive manner by
Dempster’s rule with the bba’s mi(.), i = 1, 2, . . . s, as if m0(.)
was a simple additional source. This difference of processing
prior information between the two approaches explains clearly
the incompatibility of Dempster’s rule with Bayes rule when
Bayesian prior bba is not uniform. This incompatibility is
illustrated in the next simple example. Mahler and Fixsen
have already proposed in [23], [24], [25] a modification of

Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 4

201



Dempster’s rule to force it to be compatible with Bayes
rule when combining Bayesian bba’s. The analysis of such
modified Dempster’s rule is out of the scope of this paper.

Example 4: Let us consider the same frame Θ(X), and same
bba’s m1(.) and m2(.) as in the Example 3. Suppose that
the prior information is Bayesian and non uniform as follows:
m0(x1) = P (X = x1) = 0.6, m0(x2) = P (X = x2) = 0.3
and m0(x3) = P (X = x3) = 0.1. Applying Bayes rule (12)
yields:
⎧



⎨



⎩

P (x1∣Z1 ∩ Z2) = A2(x1)
GA2

= 0.2⋅0.5/0.6
2.2667 = 0.1667

2.2667 ≈ 0.0735

P (x2∣Z1 ∩ Z2) = A2(x2)
GA2

= 0.3⋅0.1/0.3
2.2667 = 0.1000

2.2667 ≈ 0.0441

P (x3∣Z1 ∩ Z2) = A2(x3)
GA2

= 0.5⋅0.4/0.1
2.2667 = 2.0000

2.2667 ≈ 0.8824

Applying Dempster’s rule yields mDS(xi) ∕= P (xi∣Z1 ∩ Z2)
because:
⎧



⎨



⎩

mDS(x1) = 1
1−0.9110 ⋅ 0.2 ⋅ 0.5 ⋅ 0.6 = 0.060

0.089 ≈ 0.6742

mDS(x2) = 1
1−0.9110 ⋅ 0.3 ⋅ 0.1 ⋅ 0.3 = 0.009

0.089 ≈ 0.1011

mDS(x3) = 1
1−0.9110 ⋅ 0.5 ⋅ 0.4 ⋅ 0.1 = 0.020

0.089 ≈ 0.2247

Therefore, one has in general6:

DS(m1(.), . . . ,ms(.);m0(.)) ∕=

Bayes(P (X ∣Z1), . . . , P (X ∣Zs);P (X)) (38)

V. CONCLUSIONS

In this paper, we have analyzed in details the expression
and the properties of Bayes rule of combination based on
statistical conditional independence assumption, as well as the
emblematic Dempster’s rule of combination of belief functions
introduced by Shafer in his Mathematical Theory of evidence.
We have clearly explained from a theoretical standpoint, and
also on simple examples, why Dempster’s rule is not a gen-
eralization of Bayes rule in general. The incompatibility of
Dempster’s rule with Bayes rule is due to its impossibility to
deal with non uniform Bayesian priors in the same manner
as Bayes rule does. Dempster’s rule turns to be compatible
with Bayes rule only in two very particular cases: 1) if all the
Bayesian bba’s to combine (including the prior) focus on same
state (i.e. there is a perfect conjunctive consensus between the
sources), or 2) if all the bba’s to combine (excluding the prior)
are Bayesian, and if the prior bba cannot help to discriminate a
particular state of the frame of discernment (i.e. the prior bba is
either vacuous, or Bayesian and uniform). Except in these two
very particular cases, Dempster’s rule is totally incompatible
with Bayes rule. Therefore, Dempster’s rule cannot be claimed
to be a generalization of Bayes fusion rule, even when the bba’s
to combine are Bayesian.

ACKNOWLEDGMENT

This study was co-supported by Grant for State Key Pro-
gram for Basic Research of China (973) (No. 2013CB329405),
National NSF of China (No.61104214, No. 61203222), and
also partly supported by the project AComIn, grant 316087,
funded by the FP7 Capacity Programme.
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On the Consistency of PCR6 with the Averaging Rule and 
its Application to Probability Estimation

Florentin Smarandache
Jean Dezert

Abstract—Since the development of belief function theory
introduced by Shafer in seventies, many combination rules have
been proposed in the literature to combine belief functions
specially (but not only) in high conflicting situations because
the emblematic Dempster’s rule generates counter-intuitive and
unacceptable results in practical applications. Many attempts
have been done during last thirty years to propose better rules
of combination based on different frameworks and justifications.
Recently in the DSmT (Dezert-Smarandache Theory) frame-
work, two interesting and sophisticate rules (PCR5 and PCR6
rules) have been proposed based on the Proportional Conflict
Redistribution (PCR) principle. These two rules coincide for the
combination of two basic belief assignments, but they differ in
general as soon as three or more sources have to be combined
altogether because the PCR used in PCR5 and in PCR6 are
different. In this paper we show why PCR6 is better than PCR5
to combine three or more sources of evidence and we prove
the coherence of PCR6 with the simple Averaging Rule used
classically to estimate the probability based on the frequentist
interpretation of the probability measure. We show that such
probability estimate cannot be obtained using Dempster-Shafer
(DS) rule, nor PCR5 rule.

Keywords: Information fusion, belief functions, PCR6,
PCR5, DSmT, frequentist probability.

I. I NTRODUCTION

In this paper, we work with belief functions [1] defined
from the finite and discrete frame of discernmentΘ =
{θ1, θ2, . . . , θn}. In Dempster-Shafer Theory (DST) frame-
work, basic belief assignments (bba’s) provided by the dis-
tinct sources of evidence are defined on the fusion space
2Θ = (Θ,∪) consisting in the power-set ofΘ, that is the set
of elements ofΘ and those generated fromΘ with the union
set operator. Such fusion space assumes that the elements of
Θ are non-empty, exhaustive and exclusive, which is called
Shafer’s model ofΘ. More generally, in Dezert-Smarandache
Theory (DSmT) [2], the fusion space denotedGΘ can also
be either the hyper-power setDΘ = (Θ,∪,∩) (Dedekind’s
lattice), or super-power set1 SΘ = (Θ,∪,∩, c(.)) depending on
the underlying model of the frame of discernment we choose
to fit with the nature of the problem. Details on DSm models
are given in [2], Vol. 1.

We assume thats ≥ 2 basic belief assignments (bba’s)
mi(.), i = 1, 2, . . . , s provided by s distinct sources of
evidences defined on the fusion spaceGΘ are available and
we need to combine them for a final decision-making purpose.

1
∩ andc(.) are respectively the set intersection and complement operators.

For doing this, many rules of combination have been proposed
in the literature, the most emblematic ones being the simple
Averaging Rule, Dempster-Shafer (DS) rule, and more recently
the PCR5 and PCR6 fusion rules.

The contribution of this paper is to analyze in deep the
behavior of PCR5 and PCR6 fusion rules and to explain why
we consider more preferable to use PCR6 rule rather than
PCR5 rule for combining several distinct sources of evidence
altogether. We will show in details the strong relationship be-
tween PCR6 and the averaging fusion rule which is commonly
used to estimate the probabilities in the classical frequentist
interpretation of probabilities.

This paper is organized as follows. In section II, we
briefly recall the background on belief functions and the main
fusion rules used in this paper. Section III demonstrates the
consistency of PCR6 fusion rule with the Averaging Rule
for binary masses in total conflict as well as the ability of
PCR6 to discriminate asymmetric fusion cases for the fusion
of Bayesian bba’s. Section IV shows that PCR6 can also
be used to estimate empirical probability in a simple (coin
tossing) random experiment. Section V will conclude and
open challenging problem about the recursivity of fusion rules
formulas that are sought for efficient implementations.

II. BACKGROUND ON BELIEF FUNCTIONS

A. Basic belief assignment

Lets’ consider a finite discrete frame of discernmentΘ =
{θ1, θ2, . . . , θn}, n > 1 of the fusion problem under considera-
tion and its fusion spaceGΘ which can be chosen either as2Θ,
DΘ or SΘ depending on the model that fits with the problem.
A basic belief assignment (bba) associated with a given source
of evidence is defined as the mappingm(.) : GΘ → [0, 1]
satisfying m(∅) = 0 and

∑
A∈GΘ m(A) = 1. The quantity

m(A) is called mass of belief ofA committed by the source
of evidence. Ifm(A) > 0 then A is called a focal element
of the bbam(.). When all focal elements are singletons and
GΘ = 2Θ then m(.) is called a Bayesian bba [1] and it is
homogeneous to a (possibly subjective) probability measure.
The vacuous bba representing a totally ignorant source is
defined asmv(Θ) = 1. Belief and plausibility functions are
defined by

Bel(A) =
∑

B⊆A
B∈GΘ

m(B) and Pl(A) =
∑

B∩A 6=∅
B∈GΘ

m(B) (1)

Originally published as Smarandache F., Dezert J., On the consistency of PCR6 with the averaging rule and 
its application to probability estimation, Proc. of Fusion 2013 Int. Conference on Information Fusion, 

Istanbul, Turkey, July 9-12, 2013, and reprinted with permission. (with typos corrections).
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B. Fusion rules

The main information fusion problem in the belief function
frameworks (DST or DSmT) is how to combine efficiently
several distinct sources of evidence represented bym1(.),
m2(.), . . . , ms(.) (s ≥ 2) bba’s defined onGΘ. Many rules
have been proposed for such task – see [2], Vol. 2, for a
detailed list of fusion rules – and we focus here on the
following ones: 1) the Averaging Rule because it is the simplest
one and it is used to empirically estimate probabilities in
random experiment, 2) DS rule because it was historically
proposed in DST, and 3) PCR5 and PCR6 rules because they
were proposed in DSmT and have shown to provide better
results than the DS rule in all applications where they have
been tested so far. So we just briefly recall how these rules are
mathematically defined.

• Averaging fusion rulemAverage
1,2,...,s (.)

For anyX in GΘ, mAverage
1,2,...,s (X) is defined by

mAverage
1,2,...,s (X) = Average(m1,m2, . . . ,ms) ,

1

s

s∑

i=1

mi(X)

(2)
Note that the vacuous bbamv(Θ) = 1 is not a neutral element
for this rule. This Averaging Rule is commutative but it is not
associative because in general

mAverage
1,2,3 (X) =

1

3
[m1(X) +m2(X) +m3(X)]

is different from

mAverage
(1,2),3 (X) =

1

2
[
m1(X) +m2(X)

2
+m3(X)]

which is also different from

mAverage
1,(2,3) (X) =

1

2
[m1(A) +

m2(X) +m3(X)

2
]

and also from

mAverage
(1,3),2 (X) =

1

2
[
m1(X) +m3(X)

2
+m2(X)]

In fact, it is easy to prove that the following recursive formula
holds

mAverage
1,2,...,s (X) =

s− 1

s
mAverage

1,2,...,s−1(X) +
1

s
ms(X) (3)

This simple averaging fusion rule has been used since more
than two centuries for estimating empirically the probability
measure in random experiments [3], [4].

• Dempster-Shafer fusion rulemDS
1,2,...,s(.)

In DST framework, the fusion spaceGΘ equals the power-
set 2Θ because Shafer’s model of the frameΘ is assumed.
The combination ofs ≥ 2 distinct sources of evidences
characterized by the bba’smi(.), i = 1, 2, . . . , s, is done with
DS rule as follows [1]:mDS

1,2,...,s(∅) = 0 and for allX 6= ∅ in
2Θ

mDS
1,2,...,s(X) , 1

K1,2,...,s

∑

X1,X2,...,Xs∈2Θ

X1∩X2∩...∩Xs=X

s∏

i=1

mi(Xi) (4)

where the numerator of (4) is the mass of belief on the conjunc-
tive consensus onX , and whereK1,2,...,s is a normalization
constant defined by

K1,2,...,s =
∑

X1,X2,...,Xs∈2Θ

X1∩X2∩...∩Xs 6=∅

s∏

i=1

mi(Xi) = 1−m1,2,...,s(∅)

The total degree of conflict between thes sources of evidences
is defined by

m1,2,...,s(∅) =
∑

X1,X2,...,Xs∈2Θ

X1∩X2∩...∩Xs=∅

s∏

i=1

mi(Xi)

The sources are said in total conflict whenm1,2,...,s(∅) = 1.

The vacuous bbamv(Θ) = 1 is a neutral element for DS
rule and DS rule is commutative and associative. It remains
the milestone fusion rule of DST. The doubts on the validity
of such fusion rule has been discussed by Zadeh in 1979
[5]–[7] based on a very simple example with two highly
conflicting sources of evidence. Since 1980’s, many criticisms
have been done about the behavior and justification of such
DS rule. More recently, Dezert et al. in [8], [9] have put
in light other counter-intuitive behaviors of DS rule even in
low conflicting cases and showed serious flaws in logical
foundations of DST.

• PCR5 and PCR6 fusion rules

To work in general fusion spacesGΘ and to provide better
fusion results in all (low or high conflicting) situations, several
fusion rules have been developed in DSmT framework [2].
Among them, two fusion rules called PCR5 and PCR6 based
on the proportional conflict redistribution (PCR) principle have
been proved to work efficiently in all different applications
where they have been used so far. The PCR principle transfers
the conflicting mass only to the elements involved in the
conflict and proportionally to their individual masses, so that
the specificity of the information is entirely preserved.

The general principle of PCR consists:

1) to apply the conjunctive rule;
2) calculate the total or partial conflicting masses;
3) then redistribute the (total or partial) conflicting mass

proportionally on non-empty sets according to the
integrity constraints one has for the frameΘ.

Because the proportional transfer can be done in two different
ways, this has yielded to two different fusion rules. The PCR5
fusion rule has been proposed by Smarandache and Dezert in
[2], Vol. 2, Chap. 1, and PCR6 fusion rule has been proposed
by Martin and Osswald in [2], Vol. 2, Chap. 2.

We will not present in deep these two fusion rules since
they have already been discussed in details with many exam-
ples in the aforementioned references but we only give their
expressions for convenience here.
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The general formula of PCR5 for the combination ofs ≥ 2
sources isgiven bymPCR5

1,2,...,s(∅) = 0 and forX 6= ∅ in GΘ

mPCR5
1,2,...,s(X) = m1,2,...,s(X)+

∑

2≤t≤s
1≤r1,...,rt≤s

1≤r1<r2<...<rt−1<(rt=s)

∑

Xj2 ,...,Xjt
∈GΘ\{X}

{j2,...,jt}∈Pt−1({1,...,n})
X∩Xj2∩...∩Xjs=∅

{i1,...,is}∈Ps({1,...,s})

(
∏r1

k1=1 mik1
(X)2) · [

∏t
l=2(

∏rl
kl=rl−1+1 mikl

(Xjl)]

(
∏r1

k1=1 mik1
(X)) + [

∑t
l=2(

∏rl
kl=rl−1+1 mikl

(Xjl)]
(5)

where i, j, k, r, s and t in (5) are integers.m1,2,...,s(X)
corresponds to the conjunctive consensus onX between
s sources and where all denominators are different from
zero. If a denominator is zero, that fraction is discarded;
Pk({1, 2, . . . , n}) is the set of all subsets ofk elements from
{1, 2, . . . , n} (permutations ofn elements taken byk), the
order of elements doesn’t count.

The general formula of PCR6 proposed by Martin and
Osswald for the combination ofs ≥ 2 sources is given by
mPCR6

1,2,...,s(∅) = 0 and forX 6= ∅ in GΘ

mPCR6
1,2,...,s(X) = m1,2,...,s(X)+

s∑

i=1

mi(X)2
∑

s−1
∩

k=1
Yσi(k)∩X≡∅

(Yσi(1)
,...,Yσi(s−1))∈(GΘ)s−1










s−1∏

j=1

mσi(j)(Yσi(j))

mi(X)+

s−1∑

j=1

mσi(j)(Yσi(j))










(6)

whereσi counts from 1 tos avoiding i:
{

σi(j) = j if j < i,
σi(j) = j + 1 if j ≥ i,

(7)

Since Yi is a focal element of expert/sourcei,

mi(X)+

s−1∑

j=1

mσi(j)(Yσi(j)) 6= 0.

The general PCR5 and PCR6 formulas (5)–(6) are
rather complicate and not very easy to understand. From
the implementation point of view, PCR6 is much simple
to implement than PCR5. For convenience, very basic (not
optimized) Matlab codes of PCR5 and PCR6 fusion rules can
be found in [2], [10] and from the toolboxes repository on the
web [11]. The PCR5 and PCR6 fusion rules are commutative
but not associative, like the averaging fusion rule, but the
vacuous belief assignment is a neutral element for these PCR
fusion rules.

The PCR5 and PCR6 fusion rules simplify greatly and
coincide for the combination of two sources (s = 2). In such
simplest case, one always gets the resulting bbamPCR5/6(.) =
mPCR6

1,2 (.) = mPCR5
1,2 (.) expressed asmPCR5/6(∅) = 0 and

for all X 6= ∅ in GΘ

mPCR5/6(X) =
∑

X1,X2∈GΘ

X1∩X2=X

m1(X1)m2(X2)+

∑

Y ∈GΘ\{X}
X∩Y=∅

[
m1(X)2m2(Y )

m1(X) +m2(Y )
+

m2(X)2m1(Y )

m2(X) +m1(Y )
] (8)

where all denominators in (8) are different from zero.
If a denominator is zero, that fraction is discarded. All
propositions/sets are in a canonical form.

Example 1: See [2], Vol.2, Chap. 1 for more examples.

Let’s consider the frame of discernmentΘ = {A,B} of
exclusive elements. Here Shafer’s model holds so thatGΘ =
2Θ = {∅, A,B,A∪B}. We consider two sources of evidences
providing the following bba’s

m1(A) = 0.6 m1(B) = 0.3 m1(A ∪B) = 0.1

m2(A) = 0.2 m2(B) = 0.3 m2(A ∪B) = 0.5

Then the conjunctive consensus yields :

m12(A) = 0.44 m12(B) = 0.27 m12(A ∪B) = 0.05

with the conflicting mass

m12(A ∩B = ∅) = m1(A)m2(B) +m1(B)m2(A)

= 0.18 + 0.06 = 0.24

One sees that onlyA and B are involved in the derivation
of the conflicting mass, but notA ∪ B. With PCR5/6, one
redistributes the partial conflicting mass 0.18 toA and B
proportionally with the massesm1(A) and m2(B) assigned
to A andB respectively, and also the partial conflicting mass
0.06 toA andB proportionally with the massesm2(A) and
m1(B) assigned toA andB respectively, thus one gets two
weighting factors of the redistribution for each corresponding
setA andB respectively. Letx1 be the conflicting mass to be
redistributed toA, andy1 the conflicting mass redistributed to
B from the first partial conflicting mass 0.18. This first partial
proportional redistribution is then done according

x1

0.6
=

y1
0.3

=
x1 + y1
0.6 + 0.3

=
0.18

0.9
= 0.2

whencex1 = 0.6 · 0.2 = 0.12, y1 = 0.3 · 0.2 = 0.06. Now
let x2 be the conflicting mass to be redistributed toA, and
y2 the conflicting mass redistributed toB from the second the
partial conflicting mass 0.06. This second partial proportional
redistribution is then done according

x2

0.2
=

y2
0.3

=
x2 + y2
0.2 + 0.3

=
0.06

0.5
= 0.12
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whencex2 = 0.2 · 0.12 = 0.024, y2 = 0.3 · 0.12 = 0.036.
Thus one finally gets:

mPCR5/6(A) = 0.44 + 0.12 + 0.024 = 0.584

mPCR5/6(B) = 0.27 + 0.06 + 0.036 = 0.366

mPCR5/6(A ∪B) = 0.05 + 0 = 0.05

• The difference between PCR5 and PCR6 fusion rules

For the two sources case, PCR5 and PCR6 fusion rules
coincide. As soon as three (or more) sources are involved
in the fusion process, PCR5 and PCR6 differ in the way the
proportional conflict redistribution is done. For example, let’s
consider three sources with bba’sm1(.), m2(.) and m3(.),
A ∩ B = ∅ for the model of the frameΘ, andm1(A) = 0.6,
m2(B) = 0.3, m3(B) = 0.1.

– With PCR5, the massm1(A)m2(B)m3(B) = 0.6·0.3·0.1 =
0.018 corresponding to a conflict is redistributed back toA and
B only with respect to the following proportions respectively:
xPCR5
A = 0.01714 and xPCR5

B = 0.00086 because the
proportionalization requires

xPCR5
A

m1(A)
=

xPCR5
B

m2(B)m3(B)
=

m1(A)m2(B)m3(B)

m1(A) +m2(B)m3(B)

that is

xPCR5
A

0.6
=

xPCR5
B

0.03
=

0.018

0.6 + 0.03
≈ 0.02857

Thus {
xPCR5
A = 0.60 · 0.02857 ≈ 0.01714

xPCR5
B = 0.03 · 0.02857 ≈ 0.00086

– With the PCR6 fusion rule, the partial conflicting mass
m1(A)m2(B)m3(B) = 0.6 · 0.3 · 0.1 = 0.018 is redistributed
back toA andB only with respect to the following proportions
respectively:xPCR6

A = 0.0108 andxPCR6
B = 0.0072 because

the PCR6 proportionalization is done as follows:

xPCR6
A

m1(A)
=

xPCR6
B

m2(B) +m3(B)
=

m1(A)m2(B)m3(B)

m1(A) + (m2(B) +m3(B))

that is

xPCR6
A

0.6
=

xPCR6
B

0.3 + 0.1
=

0.018

0.6 + (0.3 + 0.1)
= 0.018

and therefore with PCR6, one gets finally the following
redistributions toA andB:

{
xPCR6
A = 0.6 · 0.018 = 0.0108

xPCR6
B = (0.3 + 0.1) · 0.018 = 0.0072

In [2], Vol. 2, Chap. 2, Martin and Osswald have proposed
PCR6 based on intuitive considerations and the authors have
shown through simulations that PCR6 is more stable than
PCR5 in term of decision for combinings > 2 sources of
evidence. Based on these results and the relative ”simplicity”
of implementation of PCR6 over PCR5, PCR6 has been
considered more interesting/efficient than PCR5 for combining
3 (or more) sources of evidences.

III. C ONSISTENCY OFPCR6WITH THE AVERAGING RULE

In this section we show why we also consider PCR6
as better than PCR5 for combining bba’s. But here, our
argumentation is not based on particular simulation results
and decision-making as done by Martin and Osswald, but on
a theoretical analysis of the structure of PCR6 fusion rule
itself. In particular, we show the full consistency of PCR6 rule
with the averaging fusion rule used to empirically estimate
probabilities in random experiments. For doing this, it is
necessary to simplify the original PCR6 fusion formula (6).
Such simplification has already been proposed in [12] and the
PCR6 fusion rule can be in fact rewritten as

m
PCR6
1,2,...,s(X) = m1,2,...,s(X)+

s−1
∑

k=1

∑

Xi1
,Xi2

,...,Xik
∈GΘ\X

(
⋂k

j=1 Xij
)∩X=∅

∑

(i1,i2,...,ik)∈Ps({1,...,s})

[mi1(X) +mi2(X) + . . .+mik (X)]·

·
mi1(X) . . .mik (X)mik+1(Xik+1) . . .mis(Xis)

mi1(X) + . . .+mik (X) +mik+1(Xik+1) + . . .+mis(Xis)
(9)

where Ps({1, . . . , s}) is the set of all permutations of
the elements{1, 2, . . . , s}. It should be observed thatXi1 ,
Xi2 ,. . .,Xis may be different from each other, or some of them
equal and others different, etc.

We wrote this PCR6 general formula (9) in the style of
PCR5, different from Arnaud Martin & Christophe Oswald’s
notations, but actually doing the same thing. In order not
to complicate the formula of PCR6, we did not use more
summations or products after the third Sigma.

We now are able to establish the consistency of general
PCR6 formula with the Averaging fusion rule for the case of
binary bba’s through the following theorem 1.

Theorem 1: Whens ≥ 2 sources of evidences provide binary
bba’s onGΘ whose total conflicting mass is 1, then the PCR6
fusion rule coincides with the averaging fusion rule. Otherwise,
PCR6 and the averaging fusion rule provide in general different
results.

Proof 1: All s ≥ 2 bba’s are assumed binary, i.e.m(X) = 0
or 1 (two numerical values 0 and 1 only are allowed) for any
bba m(.) and for any setX in the focal elements. A focal
element in this case is an elementX such that at least one of
the s binary sources assigns a mass equals to 1 toX . Let’s
suppose the focal elements areF1, F2,. . . , Fn.. Then the set
of bba’s to combine can be expressed as in the Table I. where

Table I. LIST OF BBA’ S TO COMBINE.

bba’s\ Focal elem. F1 F2 . . . Fn

m1(.) ⋆ ⋆ . . . ⋆
m2(.) ⋆ ⋆ . . . ⋆

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
ms(.) ⋆ ⋆ . . . ⋆

• all ⋆ are 0’s or 1’s;

• on eachrow there is only a 1 (since the sum of
all masses of a bba is equal to 1) and all the other
elements are 0’s;

Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 4

206



• also each column has at least an 1 (since all elements
are focals; and if there was a column corresponding
for example to the setFp having only 0’s, then it
would result that the setFp is not focal, i.e. that all
m(Fp) = 0).

Using PCR6, we first need to apply the conjunctive rule
to all s sources, and the result is a sum of products of the
form m1(X1)m2(X2) . . .ms(Xs) whereX1, X2,. . . ,Xs, are
the focal elementsF1, F2,. . . ,Fn in various permutations, with
s ≥ n. If s > n some focal elementsXi are repeated in
the productm1(X1)m2(X2) . . .ms(Xs). But there is only one
product of the formm1(X1)m2(X2) . . .ms(Xs) = 1 which
is not equal to zero, i.e. that product which has each factor
equals to ”1” (i.e. the product that collects from each row the
existing single 1). Since the total conflicting mass is equal to
1, it means that this product represents the total conflict. In
this case the PCR6 formula (9) becomes

m
PCR6
1,2,...,s(X) = 0+

s−1
∑

k=1

∑

Xi1
,Xi2

,...,Xik
∈GΘ\X

(
⋂k

j=1 Xij
)∩X=∅

∑

(i1,i2,...,ik)∈Ps({1,...,s})

[1 + 1 + . . .+ 1] ·
1 · 1 · . . . · 1 · 1 · . . . · 1

1 + 1 + . . .+ 1 + 1 + . . .+ 1
(10)

The previous expression can be rewritten as

m
PCR6
1,2,...,s(X) =

s−1
∑

k=1

∑

Xi1
,Xi2

,...,Xik
∈GΘ\X

(
⋂k

j=1 Xij
)∩X=∅

∑

(i1,i2,...,ik)
∈Ps({1,...,s})

k ·
1

s

which is equal to k/s since there is only one possible non-
null product of the formm1(X1)m2(X2) . . .ms(Xs), and all
other products are equal to zero. Therefore, we finally get:

mPCR6
1,2,...,s(X) =

k

s
(11)

where ”k” is the number of bba’sm(.) which givem(X) = 1.
Therefore PCR6 in this case reduces to the average of masses,
which completes the proof 1 of the theorem.

Proof 2: A second method of proving this theorem can also be
done as follows. Letm1(.), m2(.), . . . , ms(.), for s ≥ 3, be
bba’s of the sources of information to combine and denoteF =
{F1, F2, . . . , Fn}, for n ≥ 2, the set of all focal elements. All
sources give only binary masses, i.e.mk(Fl) = 0 or mk(Fl) =
1 for any k ∈ {1, 2, . . . , s} and anyl ∈ {1, 2, . . . , n}. Since
eachFi, 1 ≤ i ≤ n, is a focal element, there exists at least
a bbamio(.) such thatmio(Fi) = 1, otherwise (i.e. if all
sources gave the mass ofFi be equal to zero)Fi would not be
focal. Without reducing the generality of the theorem, we can
regroup the masses (since we combine all of them at once, so
their order doesn’t matter), as in Table II. Of coursei1 + i2 +
. . .+ in = s, since thes bba’s are the same but reordered, and
i1 ≥ 1, i2 ≥ 1, . . . , andin ≥ 1. The total conflicting mass
according to the theorem hypothesism1,2,...,s(∅) is 1. With
the PCR6 fusion rule we transfer the conflict mass back to
focal elementsF1, F2, . . .Fn respectively according to PCR

Table II. LIST OF REORDERED BINARY BBA’ S.

bba’s\ Focal elem. F1 F2 . . . Fn ∅
mr1(.) 1 0 . . . 0 0
mr2(.) 1 0 . . . 0 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

mri1
(.) 1 0 . . . 0 0

ms1(.) 0 1 . . . 0 0
ms2(.) 0 1 . . . 0 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

msi2
(.) 0 1 . . . 0 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

mu1 (.) 0 0 . . . 1 0
mu2 (.) 0 0 . . . 1 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

muin
(.) 0 0 . . . 1 0

m1,2,...,s(.) 0 0 . . . 0 1

principle such that:

xF1

1 + 1 + . . .+ 1
︸ ︷︷ ︸

i1 times

=
xF2

1 + 1 + . . .+ 1
︸ ︷︷ ︸

i2 times

= . . .

=
xFn

1 + 1 + . . .+ 1
︸ ︷︷ ︸

in times

=
m1,2,...,s(∅)

i1 + i2 + . . .+ in
=

1

s

whence xF1 = i1/s, xF2 = i2/s, . . . , xFn
= in/s.

Therefore mPCR6
1,2,...,s(F1) = i1/s, mPCR6

1,2,...,s(F2) = i2/s,
. . .mPCR6

1,2,...,s(Fn) = in/s. But averaging the massesm1(.),
m2(.), . . . , ms(.) is equivalent to averaging each column of
F1, F2, . . .Fn. Hence average of columnF1 is i1/s, average
of column F2 is i2/s, . . . , average of columnFn is in/s.
Therefore, in case of binary bba’s which are globally totally
conflicting, PCR6 rule is equal to the Averaging Rule. This
completes the proof 2 of the theorem.

Note that using PCR5 fusion rule, we also transfer the
total conflicting mass that is equal to 1 toF1, F2, . . . ,
Fn respectively, but we replace the addition ”+” with the
multiplication ”·” in the above proportionalizations:

xF1

1 · 1 · . . . · 1
︸ ︷︷ ︸

i1 times

=
xF2

1 · 1 · . . . · 1
︸ ︷︷ ︸

i2 times

= . . . =
xFn

1 · 1 · . . . · 1
︸ ︷︷ ︸

in times

=
m1,2,...,s(∅)

1 + 1 + . . . + 1
︸ ︷︷ ︸

n times

=
1

n

so thatxF1 = 1/n, xF2 = 1/n, . . . , xFn
= 1/n and therefore

mPCR5
1,2,...,s(F1) = mPCR5

1,2,...,s(F2) = . . . = mPCR5
1,2,...,s(Fn) = 1/n

Corollary 1 : Whens ≥ 2 sources of evidences provide binary
bba’s onGΘ with at least two focal elements, and all focal
elements are disjoint two by two, then PCR6 fusion rule
coincides with the Averaging Rule.

This Corollary is true because if all focal elements are
disjoint two by two then the total conflict is equal to 1.

Examples 2: where PCR6 rule equals the Averaging Rule.

Let’s consider the frameΘ = {A,B} with Shafer’s model
and the bba’s to combine as given in Table III.
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Table III. LIST OF BBA’ S TO COMBINE FOREXAMPLE 2.

bba’s\ Focal elem. A B A ∪ B A ∩ B = ∅
m1(.) 1 0 0
m2(.) 0 1 0
m3(.) 0 0 1

m1,2,3(.) 0 0 0 1

Since we have binary masses, and their total conflict is 1, we
expect getting the same result for PCR6 and the Averaging
Rule according to our Theorem 1. The PCR principle gives us

xA

1
=

yB
1

=
zA∪B

1
=

m1,2,3(∅)

1 + 1 + 1
=

1

3

HencexA = yB = zA∪B = 1
3 , so that

m
PCR6
1,2,3 (A) = m1,2,3(A) + xA = 0 +

1

3
=

1

3

m
PCR6
1,2,3 (B) = m1,2,3(B) + yB = 0 +

1

3
=

1

3

m
PCR6
1,2,3 (A ∪ B) = m1,2,3(A ∪ B) + zA∪B = 0 +

1

3
=

1

3

Interestingly, PCR5 gives the same result as PCR6 in this case
since one makes the same proportionalizations as for PCR6.
Using the Averaging Rule (2), we get

m
Average
1,2,3 (A) =

1

3
· (1 + 0 + 0) =

1

3

m
Average
1,2,3 (B) =

1

3
· (0 + 1 + 0) =

1

3

m
Average
1,2,3 (A ∪B) =

1

3
· (0 + 0 + 1) =

1

3

So we see that PCR6 rule equals the Averaging Rule
as proved in the theorem because the bba’s are binary
and the intersection of all focal elements is empty since
A ∩ B ∩ (A ∪ B) = ∅ ∩ (A ∪ B) = ∅ becauseA ∩ B = ∅
since Shafer’s model has been assumed for the frameΘ.

Examples 3: where PCR6 differs from the Averaging Rule.

Let’s consider the frameΘ = {A,B,C} with Shafer’s
model and the bba’s to combine as given in Table IV.

Table IV. LIST OF BBA’ S TO COMBINE FOREXAMPLE 3.

bba’s\ Focal elem. A A ∪ B A ∪B ∪ C ∅
m1(.) 1 0 0
m2(.) 0 1 0
m3(.) 0 0 1

m1,2,3(.) 1 0 0

Clearly, in this case the focal elements are nested and the
conditionon emptiness of intersection of all focal elements is
not satisfied because one hasA ∩ (A ∪ B) ∩ (A ∪ B ∪ C) =
A 6= ∅, so that the theorem cannot be applied in such case. The
total conflicting mass is not 1. One can verify in such example
that PCR6 rule differs from the Averaging Rule because one
gets

m
PCR6
1,2,3 (A) = m1,2,3(A) = 1

m
PCR6
1,2,3 (A ∪ B) = m1,2,3(A ∪B) = 0

m
PCR6
1,2,3 (A ∪ B ∪ C) = m1,2,3(A ∪B ∪ C) = 0

since there is no conflicting mass to redistribute to apply PCR
principle, whereas the averaging fusion rule gives

m
Average
1,2,3 (A) =

1

3
· (1 + 0 + 0) =

1

3

m
Average
1,2,3 (A ∪ B) =

1

3
· (0 + 1 + 0) =

1

3

m
Average
1,2,3 (A ∪ B ∪ C) =

1

3
· (0 + 0 + 1) =

1

3

Examples 4 (Bayesian non-binary bba’s): where PCR6
differs from the Averaging Rule.

Let’s consider the frameΘ = {A,B} with Shafer’s model
and the Bayesian bba’s to combine as given in Table V.

Table V. LIST OF BBA’ S TO COMBINE FOREXAMPLE 4.

bba’s\ Focal elem. A B A ∩ B = ∅
m1(.) 0.2 0.8 0
m2(.) 0.6 0.4 0
m3(.) 0.7 0.3 0

m1,2,3(.) 0.084 0.096 0.820

The total conflicting massm1,2,3(A∩B = ∅) = 0.82 = 1−
m1(A)m2(A)m3(A) − m1(B)m2(B)m3(B) equals the sum
of partial conflicting masses that will be redistributed through
PCR principle in PCR6

m1,2,3(A ∩B = ∅) = m1(A)m2(B)m3(B)
︸ ︷︷ ︸

0.024

+m2(A)m1(B)m3(B)
︸ ︷︷ ︸

0.144

+m3(A)m1(B)m2(B)
︸ ︷︷ ︸

0.224

+m1(B)m2(A)m3(A)
︸ ︷︷ ︸

0.336

+m2(B)m1(A)m3(A)
︸ ︷︷ ︸

0.056

+m3(B)m1(A)m2(A)
︸ ︷︷ ︸

0.036

= 0.82

Applying PCR principle for each of these six partial conflicts,
one gets:

• for m1(A)m2(B)m3(B) = 0.2 · 0.4 · 0.3 = 0.024

x1(A)

0.2
=

y1(B)

0.4 + 0.3
=

0.024

0.2 + 0.3 + 0.4

whence x1(A) ≈ 0.005333 andy1(B) ≈ 0.018667.

• for m2(A)m1(B)m3(B) = 0.6 · 0.8 · 0.3 = 0.144

x2(A)

0.6
=

y2(B)

0.8 + 0.3
=

0.144

0.6 + 0.8 + 0.3

whence x2(A) ≈ 0.050824 andy2(B) ≈ 0.093176.

• for m3(A)m1(B)m2(B) = 0.7 · 0.8 · 0.4 = 0.224

x3(A)

0.7
=

y3(B)

0.8 + 0.4
=

0.224

0.7 + 0.8 + 0.4

whence x3(A) ≈ 0.082526 andy3(B) ≈ 0.141474.

• for m1(B)m2(A)m3(A) = 0.8 · 0.6 · 0.7 = 0.336

x4(A)

0.6 + 0.7
=

y4(B)

0.8
=

0.336

0.8 + 0.6 + 0.7

whence x4(A) ≈ 0.208000 andy4(B) ≈ 0.128000.
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• for m2(B)m1(A)m3(A) = 0.4 · 0.2 · 0.7 = 0.056

x5(A)

0.2 + 0.7
=

y5(B)

0.4
=

0.056

0.4 + 0.2 + 0.7

whence x5(A) ≈ 0.038769 andy5(B) ≈ 0.017231.

• for m3(B)m1(A)m2(A) = 0.3 · 0.2 · 0.6 = 0.036

x6(A)

0.2 + 0.6
=

y6(B)

0.3
=

0.036

0.3 + 0.2 + 0.6

whence x6(A) ≈ 0.026182 andy6(B) ≈ 0.009818.

Therefore, with PCR6 one finally gets

mPCR6
1,2,3 (A) = 0.084 +

6∑

i=1

xi(A) = 0.495634

mPCR6
1,2,3 (B) = 0.096 +

6∑

i=1

yi(A) = 0.504366

whereas the Averaging Rule (2) will give us

mAverage
1,2,3 (A) =

1

3
· (0.2 + 0.6 + 0.7) =

1.5

3
= 0.5

mAverage
1,2,3 (B) =

1

3
· (0.8 + 0.4 + 0.3) =

1.5

3
= 0.5

In this example, the intersection of focal elements is empty
but the bba’s to combine are not binary. Therefore the total
conflict between sources is not total and the theorem doesn’t
apply and so PCR6 results differ from the Averaging Rule.

It however can happen that in some very particular sym-
metric cases PCR6 coincides with the Averaging Rule. For
example, if we consider the bba’s as given in the Table VI.
In such case the opinion of source #1 totally balances opinion
of source #3, and the opinion of source #2 cannot supportA
more thanB (and reciprocally), so that the fusion problem
is totally symmetrical. In this example, it is expected that the
final fusion result should commit an equal mass of belief toA
and toB. And indeed, it can be easily verified that one gets
in such case

mPCR6
1,2,3 (A) = mAverage

1,2,3 (A) = 0.5

mPCR6
1,2,3 (B) = mAverage

1,2,3 (B) = 0.5

which makes perfectly sense. Note that the Averaging Rule
provides same result on example 4 which is somehow ques-
tionable because example 4 doesn’t present an inherent sym-
metrical structure. In our opinion PCR6 presents the advantage
to respond more adequately to the change of inherent internal
structure (asymmetry) of bba’s to combine, which is not well
captured by the simple averaging fusion rule.

Table VI. A BAYESIAN NON-BINARY SYMMETRIC EXAMPLE .

bba’s\ Focal elem. A B A ∩ B = ∅
m1(.) 0.2 0.8 0
m2(.) 0.5 0.5 0
m3(.) 0.8 0.2 0

m1,2,3(.) 0.08 0.08 0.84

IV. A PPLICATION TO PROBABILITY ESTIMATION

Let’s review a simple coin tossing random experiment.
When we flip a coin [13], there are two possible outcomes. The
coin could land showing a head (H) or a tail (T). The list of all
possible outcomes is called the sample space and correspond
to the frameΘ = {H,T }. There exist many interpretations
of probability [14] that are out of the scope of this paper. We
focus here on the estimation of the probability measureP (H)
of a given coin (biased or not) based onn outcomes of a coin
tossing experiment. The long-run frequentist interpretation of
probability [15] considers that the probability of an event
A is its relative frequency of occurrence over time after
repeating the experiment a large number of times under similar
circumstances, that is

P (A) = lim
n→∞

n(A)

n
(12)

wheren(A) denotes the number of occurrences of an event
A in n > 0 trials. In practice however, we usually estimate
the probability of an eventA based only on a limited number
of data (observations) that are available, and so we estimate
the idealisticP (A) defined in (12), by classical Laplace’s
probability definition

P̂ (A|n(A), n) =
n(A)

n
(13)

Naturally, P̂ (A) ≥ 0 becausen(A) ≥ 0 and n > 0, and
P̂ (A) ≤ 1 because we cannot getn(A) > n in a series of
n trials. P (A) + P (Ā) = 1 becausen(A)

n + n(Ā)
n = n(A)

n +
n−n(A)

n = 1 whereĀ is the complement ofA in the sample
space.

It is interesting to note that the classical estimation of the
probability measure given by (13) corresponds in fact to the
simple averaging fusion rule of distinct pieces of evidence
represented by binary masses. For example, let’s take a coin
and flip itn = 8 times and assume for instance that we observe
the following series of outcomes{o1 = H, o2 = H, o3 =
T, o4 = H, o5 = T, o6 = H, o7 = H, o8 = T }, so that
n(H) = 5 and n(T ) = 3. Then these observations can be
associated with distinct sources of evidences providing to the
following basic (binary) belief assignments:

Table VII. OUTCOMES OF A COIN TOSSING EXPERIMENT.

bba’s\ Focal elem. H T
m1(.) 1 0
m2(.) 1 0
m3(.) 0 1
m4(.) 1 0
m5(.) 0 1
m6(.) 1 0
m7(.) 1 0
m8(.) 0 1

It is clear that the probability estimate in (13) equals the
averagingfusion rule (2) and in such example because

P̂ (H |{o1, o2, . . . , o8}) =
n(H)

n
=

5

8
by eq. (13)

=
1

8
(1 + 1 + 0 + 1 + 0 + 1 + 1 + 0)

= mAverage
1,2,...,8 (H) by eq. (2)
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P̂ (T |{o1, o2, . . . , o8}) =
n(T )

n
=

3

8
by eq. (13)

=
1

8
(0 + 0 + 1 + 0 + 1 + 0 + 0 + 1)

= mAverage
1,2,...,8 (T ) by eq. (2)

Because all the bba’s to combine here are binary and are in
total conflict, our theorem 1 of Section III applies, and PCR6
fusion rule in this case coincides with the averaging fusion
rule. Therefore we can use PCR6 to estimate the probabilities
that the coin will land onH or T at the next toss given the
series of observations. More precisely,
{
mPCR6

1,2,...,8(H) = mAverage
1,2,...,8 (H) = P̂ (H |{o1, o2, . . . , o8})

mPCR6
1,2,...,8(T ) = mAverage

1,2,...,8 (T ) = P̂ (T |{o1, o2, . . . , o8})

We must insist on the fact that Dempster-Shafer (DS) rule
of combination (4) cannot be used at all in such very simple
case to estimate correctly the probability measure because
DS rule doesn’t work (because of division by zero) in total
conflicting situations. PCR5 rule can be applied to combine
these 8 bba’s but is unable to provide a consistent result with
the classical probability estimates because one will get

xH

1 · 1 · 1 · 1 · 1
=

yT

1 · 1 · 1
=

m1,2,...,8(∅)

(1 · 1 · 1 · 1 · 1) + (1 · 1 · 1)
=

1

1 + 1
= 0.5

and therefore the PCR5 fusion result is
{
mPCR5

1,2,...,8(H) = xH = 0.5 6= (mPCR6
1,2,...,8(H) = 5/8)

mPCR5
1,2,...,8(T ) = yT = 0.5 6= (mPCR6

1,2,...,8(T ) = 3/8)

Remark: The PCR6 fusion result is valid if and only if
PCR6 rule is applied globally, and not sequentially. If PCR6
is sequentially applied, it becomes equivalent with PCR5
sequentially applied and it will generate incorrect results for
combinings > 2 sources of evidence. Because of the ability
of PCR6 to estimate frequentist probabilities in a random
experiment, we strongly recommend PCR6 rather than PCR5
as soon ass ≥ 2 bba’s have to be combined altogether.

V. CONCLUSIONS AND CHALLENGE

In this paper, we have proved that PCR6 fusion rule
coincides with the Averaging Rule when the bba’s to combine
are binary and in total conflict. Because of such nice property,
PCR6 is able to provide a frequentist probability measure
of any event occurring in a random experiment, contrariwise
to other fusion rules like DS rule, PCR5 rule, etc. Except
the Averaging Rule of course since it is the basis of the
frequentist probability interpretation. In a more general context
with non-binary bba’s, PCR6 is quite complicate to apply to
combine globallys > 2 sources of evidences, and a general
recursive formula of PCR6 would be very convenient. It can
be mathematically reformulated as follows: LetR be a fusion
rule and assume we haves sources that providem1, m2, . . . ,
ms−1, ms respectively on a fusion spaceGΘ. Find a function
(or an operator)T such that:T (R(m1,m2, . . .ms−1),ms) =
R(m1,m2, . . . ,ms−1,ms), or by simplifying the notations
T (Rs−1,ms) = Rs, whereRi means the fusion ruleR applied
to i masses all together. For example, ifR equals the Averaging
Rule, the functionT is defined according to the relation (3)
by T (Rs−1,ms) =

s−1
s Rs−1 +

1
sms = Rs, and if R equals

DS rule one hasT (Rs−1,ms) = DS(Rs−1,ms) because of
the associativity of DS rule. What is theT operator associated
with PCR6? Such very important open challenging question is
left for future research works.
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