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1. Introduction

The concept of neutrosophic set (NS) developed by Smarandache [5, 6, 7] is a
more general platform which extends the concepts of the classic set and fuzzy set,
intuitionistic fuzzy set and interval valued intuitionistic fuzzy set. Neutrosophic set
theory is applied to various part. For further particulars I refer readers to the site
http://fs.gallup.unm.edu/neutrosophy.htm. Agboola et al. [1] studied neutrosophic
ideals of neutrosophic BCI-algebras. Agboola et al. [2] also introduced the con-
cept of neutrosophic BCI/BCK-algebras, and presented elementary properties of
neutrosophic BCI/BCK-algebras.

In this paper, we introduce the notion of (Φ, Ψ)-neutrosophic subalgebra of a
BCK/BCI-algebra X for Φ,Ψ ∈ {∈, q,∈ ∨ q}, and investigate related properties.
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We provide characterizations of an (∈,∈)-neutrosophic subalgebra and an (∈,∈∨ q)-
neutrosophic subalgebra. Given special sets, so called neutrosophic ∈-subsets, neu-
trosophic q-subsets and neutrosophic ∈ ∨ q-subsets, we provide conditions for the
neutrosophic ∈-subsets, neutrosophic q-subsets and neutrosophic ∈ ∨ q-subsets to
be subalgebras. We consider conditions for a neutrosophic set to be a (q, ∈ ∨ q)-
neutrosophic subalgebra.

2. Preliminaries

By a BCI-algebra we mean an algebra (X, ∗, 0) of type (2, 0) satisfying the axioms:

(a1) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,
(a2) (x ∗ (x ∗ y)) ∗ y = 0,
(a3) x ∗ x = 0,
(a4) x ∗ y = y ∗ x = 0 ⇒ x = y,

for all x, y, z ∈ X. If a BCI-algebra X satisfies the axiom

(a5) 0 ∗ x = 0 for all x ∈ X,
then we say that X is a BCK-algebra. A nonempty subset S of a BCK/BCI-algebra
X is called a subalgebra of X if x ∗ y ∈ S for all x, y ∈ S.

We refer the reader to the books [3] and [4] for further information regarding
BCK/BCI-algebras.

Let X be a non-empty set. A neutrosophic set (NS) in X (see [6]) is a structure
of the form:

A := {〈x;AT (x), AI(x), AF (x)〉 | x ∈ X}

where AT : X → [0, 1] is a truth membership function, AI : X → [0, 1] is an
indeterminate membership function, and AF : X → [0, 1] is a false membership
function. For the sake of simplicity, we shall use the symbol A = (AT , AI , AF ) for
the neutrosophic set

A := {〈x;AT (x), AI(x), AF (x)〉 | x ∈ X}.

3. Neutrosophic subalgebras of several types

Given a neutrosophic set A = (AT , AI , AF ) in a set X, α, β ∈ (0, 1] and γ ∈ [0, 1),
we consider the following sets:

T∈(A;α) := {x ∈ X | AT (x) ≥ α},
I∈(A;β) := {x ∈ X | AI(x) ≥ β},
F∈(A; γ) := {x ∈ X | AF (x) ≤ γ},
Tq(A;α) := {x ∈ X | AT (x) + α > 1},
Iq(A;β) := {x ∈ X | AI(x) + β > 1},
Fq(A; γ) := {x ∈ X | AF (x) + γ < 1},
T∈∨ q(A;α) := {x ∈ X | AT (x) ≥ α or AT (x) + α > 1},
I∈∨ q(A;β) := {x ∈ X | AI(x) ≥ β or AI(x) + β > 1},
F∈∨ q(A; γ) := {x ∈ X | AF (x) ≤ γ or AF (x) + γ < 1}.
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We say T∈(A;α), I∈(A;β) and F∈(A; γ) are neutrosophic ∈-subsets; Tq(A;α), Iq(A;β)
and Fq(A; γ) are neutrosophic q-subsets; and T∈∨ q(A;α), I∈∨ q(A;β) and F∈∨ q(A; γ)
are neutrosophic ∈∨ q-subsets. For Φ ∈ {∈, q,∈∨ q}, the element of TΦ(A;α) (resp.,
IΦ(A;β) and FΦ(A; γ)) is called a neutrosophic TΦ-point (resp., neutrosophic IΦ-
point and neutrosophic FΦ-point) with value α (resp., β and γ). It is clear that

T∈∨ q(A;α) = T∈(A;α) ∪ Tq(A;α),(3.1)

I∈∨ q(A;β) = I∈(A;β) ∪ Iq(A;β),(3.2)

F∈∨ q(A; γ) = F∈(A; γ) ∪ Fq(A; γ).(3.3)

Proposition 3.1. For any neutrosophic set A = (AT , AI , AF ) in a set X, α, β ∈
(0, 1] and γ ∈ [0, 1), we have

α ∈ [0, 0.5] ⇒ T∈∨ q(A;α) = T∈(A;α),(3.4)

β ∈ [0, 0.5] ⇒ I∈∨ q(A;β) = I∈(A;β),(3.5)

γ ∈ [0.5, 1] ⇒ F∈∨ q(A; γ) = F∈(A; γ),(3.6)

α ∈ (0.5, 1] ⇒ T∈∨ q(A;α) = Tq(A;α),(3.7)

β ∈ (0.5, 1] ⇒ I∈∨ q(A;β) = Iq(A;β),(3.8)

γ ∈ [0, 0.5) ⇒ F∈∨ q(A; γ) = Fq(A; γ).(3.9)

Proof. If α ∈ [0, 0.5], then 1−α ∈ [0.5, 1] and α ≤ 1−α. It is clear that T∈(A;α) ⊆
T∈∨ q(A;α) by (3.1). If x /∈ T∈(A;α), then AT (x) < α ≤ 1 − α, i.e., x /∈ Tq(A;α).
Hence x /∈ T∈∨ q(A;α), and so T∈∨ q(A;α) ⊆ T∈(A;α). Thus (3.4) is valid. Similarly,
we have the result (3.5). If γ ∈ [0.5, 1], then 1 − γ ∈ [0, 0.5] and γ ≥ 1 − γ. It is
clear that F∈(A; γ) ⊆ F∈∨ q(A; γ) by (3.3). Let z ∈ F∈∨ q(A; γ). Then z ∈ F∈(A; γ)
or z ∈ Fq(A; γ). If z /∈ F∈(A; γ), then AF (z) > γ ≥ 1− γ, i.e., AF (z) + γ > 1. Thus
z /∈ Fq(A; γ), and so z /∈ F∈∨ q(A; γ). This is a contradiction. Hence z ∈ F∈(A; γ),
and therefore F∈∨ q(A; γ) ⊆ F∈(A; γ). Let β ∈ (0.5, 1]. Then β > 1 − β. Note
that Iq(A;β) ⊆ I∈∨ q(A;β) by (3.2). Let y ∈ I∈∨ q(A;β). Then y ∈ I∈(A;β) or
y ∈ Iq(A;β). If y /∈ Iq(A;β), then AI(y) + β ≤ 1 and so AI(y) ≤ 1 − β < β,
i.e., y /∈ I∈(A;β). Thus y /∈ I∈∨ q(A;β), a contradiction. Hence y ∈ Iq(A;β).
Therefore I∈∨ q(A;β) ⊆ Iq(A;β). This shows that (3.8) is true. The result (3.7) is
proved by the similar way. Let γ ∈ [0, 0.5) and z ∈ F∈∨ q(A; γ). Then 1 − γ > γ
and z ∈ F∈(A; γ) or z ∈ Fq(A; γ). If z /∈ Fq(A; γ), then AF (z) + γ ≥ 1 and so
AF (z) ≥ 1−γ > γ, i.e., z /∈ F∈(A; γ). Thus z /∈ F∈∨ q(A; γ), which is a contradiction.
Hence F∈∨ q(A; γ) ⊆ Fq(A; γ). The reverse inclusion is by (3.3). �

Definition 3.2. Given Φ,Ψ ∈ {∈, q,∈ ∨ q}, a neutrosophic set A = (AT , AI , AF )
in a BCK/BCI-algebra X is called a (Φ, Ψ)-neutrosophic subalgebra of X if the
following assertions are valid.

x ∈ TΦ(A;αx), y ∈ TΦ(A;αy) ⇒ x ∗ y ∈ TΨ(A;αx ∧ αy),

x ∈ IΦ(A;βx), y ∈ IΦ(A;βy) ⇒ x ∗ y ∈ IΨ(A;βx ∧ βy),

x ∈ FΦ(A; γx), y ∈ FΦ(A; γy) ⇒ x ∗ y ∈ FΨ(A; γx ∨ γy)

(3.10)

for all x, y ∈ X, αx, αy, βx, βy,∈ (0, 1] and γx, γy ∈ [0, 1).
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Theorem 3.3. A neutrosophic set A = (AT , AI , AF ) in a BCK/BCI-algebra X is
an (∈, ∈)-neutrosophic subalgebra of X if and only if it satisfies:

(∀x, y ∈ X)

 AT (x ∗ y) ≥ AT (x) ∧AT (y)

AI(x ∗ y) ≥ AI(x) ∧AI(y)

AF (x ∗ y) ≤ AF (x) ∨AF (y)

 .(3.11)

Proof. Assume that A = (AT , AI , AF ) is an (∈, ∈)-neutrosophic subalgebra of X.
If there exist x, y ∈ X such that AT (x ∗ y) < AT (x) ∧AT (y), then

AT (x ∗ y) < αt ≤ AT (x) ∧AT (y)

for some αt ∈ (0, 1]. It follows that x, y ∈ T∈(A;αt) but x ∗ y /∈ T∈(A;αt). Hence
AT (x ∗ y) ≥ AT (x) ∧AT (y) for all x, y ∈ X. Similarly, we show that

AI(x ∗ y) ≥ AI(x) ∧AI(y)

for all x, y ∈ X. Suppose that there exist a, b ∈ X and γf ∈ [0, 1] be such that
AF (a∗b) > γf ≥ AF (a)∨AF (b). Then a, b ∈ F∈(A; γf ) and a∗b /∈ F∈(A; γf ), which
is a contradiction. Therefore AF (x ∗ y) ≤ AF (x) ∨AF (y) for all x, y ∈ X.

Conversely, let A = (AT , AI , AF ) be a neutrosophic set in X which satisfies the
condition (3.11). Let x, y ∈ X be such that x ∈ T∈(A;αx) and y ∈ T∈(A;αy). Then
AT (x) ≥ αx and AT (y) ≥ αy, which imply that AT (x∗y) ≥ AT (x)∧AT (y) ≥ αx∧αy,
that is, x ∗ y ∈ T∈(A;αx ∧ αy). Similarly, if x ∈ I∈(A;βx) and y ∈ I∈(A;βy) then
x ∗ y ∈ I∈(A;βx ∧ βy). Now, let x ∈ F∈(A; γx) and y ∈ F∈(A; γy) for x, y ∈ X.
Then AF (x) ≤ γx and AF (y) ≤ γy, and so AF (x ∗ y) ≤ AF (x) ∨ AF (y) ≤ γx ∨ γy.
Hence x ∗ y ∈ F∈(A; γx ∨γy). Therefore A = (AT , AI , AF ) is an (∈, ∈)-neutrosophic
subalgebra of X. �

Theorem 3.4. If A = (AT , AI , AF ) is an (∈, ∈)-neutrosophic subalgebra of a
BCK/BCI-algebra X, then neutrosophic q-subsets Tq(A;α), Iq(A;β) and Fq(A; γ)
are subalgebras of X for all α, β ∈ (0, 1] and γ ∈ [0, 1) whenever they are nonempty.

Proof. Let x, y ∈ Tq(A;α). Then AT (x) +α > 1 and AT (y) +α > 1. It follows that

AT (x ∗ y) + α ≥ (AT (x) ∧AT (y)) + α

= (AT (x) + α) ∧ (AT (y) + α) > 1

and so that x ∗ y ∈ Tq(A;α). Hence Tq(A;α) is a subalgebra of X. Similarly,
we can prove that Iq(A;β) is a subalgebra of X. Now let x, y ∈ Fq(A; γ). Then
AF (x) + γ < 1 and AF (y) + γ < 1, which imply that

AF (x ∗ y) + γ ≤ (AF (x) ∨AF (y)) + γ

= (AF (x) + α) ∨ (AF (y) + α) < 1.

Hence x ∗ y ∈ Fq(A; γ) and Fq(A; γ) is a subalgebra of X. �

Theorem 3.5. If A = (AT , AI , AF ) is a (q, ∈ ∨ q)-neutrosophic subalgebra of a
BCK/BCI-algebra X, then neutrosophic q-subsets Tq(A;α), Iq(A;β) and Fq(A; γ)
are subalgebras of X for all α, β ∈ (0.5, 1] and γ ∈ [0, 0, 5) whenever they are
nonempty.
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Proof. Let x, y ∈ Tq(A;α). Then x ∗ y ∈ T∈∨ q(A;α), and so x ∗ y ∈ T∈(A;α) or
x∗y ∈ Tq(A;α). If x∗y ∈ T∈(A;α), then AT (x∗y) ≥ α > 1−α since α > 0.5. Hence
x ∗ y ∈ Tq(A;α). Therefore Tq(A;α) is a subalgebra of X. Similarly, we prove that
Iq(A;β) is a subalgebra of X. Let x, y ∈ Fq(A; γ). Then x ∗ y ∈ F∈∨ q(A; γ), and so
x ∗ y ∈ F∈(A; γ) or x ∗ y ∈ Fq(A; γ). If x ∗ y ∈ F∈(A; γ), then AF (x ∗ y) ≤ γ < 1− γ
since γ ∈ [0, 0, 5). Hence x ∗ y ∈ Fq(A; γ), and therefore Fq(A; γ) is a subalgebra of
X. �

We provide characterizations of an (∈, ∈∨ q)-neutrosophic subalgebra.

Theorem 3.6. A neutrosophic set A = (AT , AI , AF ) in a BCK/BCI-algebra X is
an (∈, ∈∨ q)-neutrosophic subalgebra of X if and only if it satisfies:

(∀x, y ∈ X)

 AT (x ∗ y) ≥
∧
{AT (x), AT (y), 0.5}

AI(x ∗ y) ≥
∧
{AI(x), AI(y).0.5}

AF (x ∗ y) ≤
∨
{AF (x), AF (y), 0.5}

 .(3.12)

Proof. Suppose that A = (AT , AI , AF ) is an (∈, ∈∨ q)-neutrosophic subalgebra of
X and let x, y ∈ X. If AT (x) ∧AT (y) < 0.5, then AT (x ∗ y) ≥ AT (x) ∧AT (y). For,
assume that AT (x ∗ y) < AT (x) ∧AT (y) and choose αt such that

AT (x ∗ y) < αt < AT (x) ∧AT (y).

Then x ∈ T∈(A;αt) and y ∈ T∈(A;αt) but x ∗ y /∈ T∈(A;αt). Also AT (x ∗ y) +αt <
1, i.e., x ∗ y /∈ Tq(A;αt). Thus x ∗ y /∈ T∈∨ q(A;αt), a contradiction. Therefore
AT (x ∗ y) ≥

∧
{AT (x), AT (y), 0.5} whenever AT (x) ∧ AT (y) < 0.5. Now suppose

that AT (x)∧AT (y) ≥ 0.5. Then x ∈ T∈(A; 0.5) and y ∈ T∈(A; 0.5), which imply that
x∗y ∈ T∈∨ q(A; 0.5). Hence AT (x∗y) ≥ 0.5. Otherwise, AT (x∗y)+0.5 < 0.5+0.5 = 1,
a contradiction. Consequently, AT (x ∗ y) ≥

∧
{AT (x), AT (y), 0.5} for all x, y ∈ X.

Similarly, we know that AI(x ∗ y) ≥
∧
{AI(x), AI(y), 0.5} for all x, y ∈ X. Suppose

that AF (x)∨AF (y) > 0.5. If AF (x∗y) > AF (x)∨AF (y) := γf , then x, y ∈ F∈(A; γf ),
x ∗ y /∈ F∈(A; γf ) and AF (x ∗ y) + γf > 2γf > 1, i.e., x ∗ y /∈ Fq(A; γf ). This is a
contradiction. Hence AF (x∗y) ≤

∨
{AF (x), AF (y), 0.5} whenever AF (x)∨AF (y) >

0.5. Now, assume that AF (x) ∨ AF (y) ≤ 0.5. Then x, y ∈ F∈(A; 0.5) and so
x∗y ∈ F∈∨ q(A; 0.5). Thus AF (x∗y) ≤ 0.5 or AF (x∗y)+0.5 < 1. If AF (x∗y) > 0.5,
then AF (x ∗ y) + 0.5 > 0.5 + 0.5 = 1, a contradiction. Thus AF (x ∗ y) ≤ 0.5, and
so AF (x ∗ y) ≤

∨
{AF (x), AF (y), 0.5} whenever AF (x) ∨ AF (y) ≤ 0.5. Therefore

AF (x ∗ y) ≤
∨
{AF (x), AF (y), 0.5} for all x, y ∈ X.

Conversely, let A = (AT , AI , AF ) be a neutrosophic set in X which satisfies the
condition (3.12). Let x, y ∈ X and αx, αy, βx, βy, γx, γy ∈ [0, 1]. If x ∈ T∈(A;αx)
and y ∈ T∈(A;αy), then AT (x) ≥ αx and AT (y) ≥ αy. If AT (x ∗ y) < αx ∧αy, then
AT (x) ∧AT (y) ≥ 0.5. Otherwise, we have

AT (x ∗ y) ≥
∧
{AT (x), AT (y), 0.5} = AT (x) ∧AT (y) ≥ αx ∧ αy,

a contradiction. It follows that

AT (x ∗ y) + αx ∧ αy > 2AT (x ∗ y) ≥ 2
∧
{AT (x), AT (y), 0.5} = 1

and so that x ∗ y ∈ Tq(A;αx ∧ αy) ⊆ T∈∨ q(A;αx ∧ αy). Similarly, if x ∈ I∈(A;βx)
and y ∈ I∈(A;βy), then x ∗ y ∈ I∈∨ q(A;βx ∧ βy). Now, let x ∈ F∈(A; γx) and
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y ∈ F∈(A; γy). Then AF (x) ≤ γx and AF (y) ≤ γy. If AF (x ∗ y) > γx ∨ γy, then
AF (x) ∨AF (y) ≤ 0.5 because if not, then

AF (x ∗ y) ≤
∨
{AF (x), AF (y), 0.5} ≤ AF (x) ∨AF (y) ≤ γx ∨ γy,

which is a contradiction. Hence

AF (x ∗ y) + γx ∨ γy < 2AF (x ∗ y) ≤ 2
∨
{AF (x), AF (y), 0.5} = 1,

and so x ∗ y ∈ Fq(A; γx ∨ γy) ⊆ F∈∨ q(A; γx ∨ γy). Therefore A = (AT , AI , AF ) is an
(∈, ∈∨ q)-neutrosophic subalgebra of X. �

Theorem 3.7. If A = (AT , AI , AF ) is an (∈, ∈ ∨ q)-neutrosophic subalgebra of a
BCK/BCI-algebra X, then neutrosophic q-subsets Tq(A;α), Iq(A;β) and Fq(A; γ)
are subalgebras of X for all α, β ∈ (0.5, 1] and γ ∈ [0, 0.5) whenever they are
nonempty.

Proof. Assume that Tq(A;α), Iq(A;β) and Fq(A; γ) are nonempty for all α, β ∈
(0.5, 1] and γ ∈ [0, 0.5). Let x, y ∈ Tq(A;α). Then AT (x)+α > 1 and AT (y)+α > 1.
It follows from Theorem 3.6 that

AT (x ∗ y) + α ≥
∧
{AT (x), AT (y), 0.5}+ α

=
∧
{AT (x) + α,AT (y) + α, 0.5 + α}

> 1,

that is, x ∗ y ∈ Tq(A;α). Hence Tq(A;α) is a subalgebra of X. By the similar way,
we can induce that Iq(A;β) is a subalgebra of X. Now, let x, y ∈ Fq(A; γ). Then
AF (x) + γ < 1 and AF (y) + γ < 1. Using Theorem 3.6, we have

AF (x ∗ y) + γ ≤
∨
{AF (x), AF (y), 0.5}+ γ

=
∨
{AF (x) + γ,AF (y) + γ, 0.5 + γ}

< 1,

and so x ∗ y ∈ Fq(A; γ). Therefore Fq(A; γ) is a subalgebra of X. �

Theorem 3.8. For a neutrosophic set A = (AT , AI , AF ) in a BCK/BCI-algebra
X, if the nonempty neutrosophic ∈∨ q-subsets T∈∨ q(A;α), I∈∨ q(A;β) and F∈∨ q(A; γ)
are subalgebras of X for all α, β ∈ (0, 1] and γ ∈ [0, 1), then A = (AT , AI , AF ) is an
(∈, ∈∨ q)-neutrosophic subalgebra of X.

Proof. Let T∈∨ q(A;α) be a subalgebra of X and assume that

AT (x ∗ y) <
∧
{AT (x), AT (y), 0.5}

for some x, y ∈ X. Then there exists α ∈ (0, 0.5] such that

AT (x ∗ y) < α ≤
∧
{AT (x), AT (y), 0.5}.

It follows that x, y ∈ T∈(A;α) ⊆ T∈∨ q(A;α), and so that x ∗ y ∈ T∈∨ q(A;α). Hence
AT (x ∗ y) ≥ α or AT (x ∗ y) + α > 1. This is a contradiction, and so

AT (x ∗ y) ≥
∧
{AT (x), AT (y), 0.5}
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for all x, y ∈ X. Similarly, we show that

AI(x ∗ y) ≥
∧
{AI(x), AI(y), 0.5}

for all x, y ∈ X. Now let F∈∨ q(A; γ) be a subalgebra of X and assume that

AF (x ∗ y) >
∨
{AF (x), AF (y), 0.5}

for some x, y ∈ X. Then

AF (x ∗ y) > γ ≥
∨
{AF (x), AF (y), 0.5},(3.13)

for some γ ∈ [0.5, 1), which implies that x, y ∈ F∈(A; γ) ⊆ F∈∨ q(A; γ). Thus
x∗y ∈ F∈∨ q(A; γ). From (3.13), we have x∗y /∈ F∈(A; γ) and AF (x∗y)+γ > 2γ ≥ 1,
i.e., x ∗ y /∈ Fq(A; γ). This is a contradiction, and hence

AF (x ∗ y) ≤
∨
{AF (x), AF (y), 0.5}

for all x, y ∈ X. Using Theorem 3.6, we know that A = (AT , AI , AF ) is an (∈,
∈∨ q)-neutrosophic subalgebra of X. �

Theorem 3.9. If A = (AT , AI , AF ) is an (∈, ∈ ∨ q)-neutrosophic subalgebra of
a BCK/BCI-algebra X, then nonempty neutrosophic ∈ ∨ q-subsets T∈∨ q(A;α),
I∈∨ q(A;β) and F∈∨ q(A; γ) are subalgebras of X for all α, β ∈ (0, 0.5] and γ ∈ [0.5, 1).

Proof. Assume that T∈∨ q(A;α), I∈∨ q(A;β) and F∈∨ q(A; γ) are nonempty for all
α, β ∈ (0, 0.5] and γ ∈ [0.5, 1). Let x, y ∈ I∈∨ q(A;β). Then

x ∈ I∈(A;β) or x ∈ Iq(A;β),

and

y ∈ I∈(A;β) or y ∈ Iq(A;β).

Hence we have the following four cases:

(i) x ∈ I∈(A;β) and y ∈ I∈(A;β),
(ii) x ∈ I∈(A;β) and y ∈ Iq(A;β),

(iii) x ∈ Iq(A;β) and y ∈ I∈(A;β),
(iv) x ∈ Iq(A;β) and y ∈ Iq(A;β).

The first case implies that x ∗ y ∈ I∈∨ q(A;β). For the second case, y ∈ Iq(A;β)
induces AI(y) > 1−β ≥ β, that is, y ∈ I∈(A;β). Thus x∗y ∈ I∈∨ q(A;β). Similarly,
the third case implies x∗y ∈ I∈∨ q(A;β). The last case induces AI(x) > 1−β ≥ β and
AI(y) > 1−β ≥ β, that is, x ∈ I∈(A;β) and y ∈ I∈(A;β). Hence x∗y ∈ I∈∨ q(A;β).
Therefore I∈∨ q(A;β) is a subalgebra of X for all β ∈ (0, 0.5]. By the similar way, we
show that T∈∨ q(A;α) is a subalgebra of X for all α ∈ (0, 0.5]. Let x, y ∈ F∈∨ q(A; γ).
Then

AF (x) ≤ γ or AF (x) + γ < 1,

and

AF (y) ≤ γ or AF (y) + γ < 1.

If AF (x) ≤ γ and AF (y) ≤ γ, then

AF (x ∗ y) ≤
∨
{AF (x), AF (y), 0.5} ≤

∨
{γ, 0.5} = γ
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by Theorem 3.6, and so x∗y ∈ F∈(A; γ) ⊆ F∈∨ q(A; γ). If AF (x) ≤ γ and AF (y)+γ <
1, then

AF (x ∗ y) ≤
∨
{AF (x), AF (y), 0.5} ≤

∨
{γ, 1− γ, 0.5} = γ

by Theorem 3.6. Thus x ∗ y ∈ F∈(A; γ) ⊆ F∈∨ q(A; γ). Similarly, if AF (x) + γ < 1
and AF (y) ≤ γ, then x ∗ y ∈ F∈∨ q(A; γ). Finally, assume that AF (x) + γ < 1 and
AF (y) + γ < 1. Then

AF (x ∗ y) ≤
∨
{AF (x), AF (y), 0.5} ≤

∨
{1− γ, 0.5} = 0.5 < γ

by Theorem 3.6. Hence x ∗ y ∈ F∈(A; γ) ⊆ F∈∨ q(A; γ). Consequently, F∈∨ q(A; γ) is
a subalgebra of X for all γ ∈ [0.5, 1). �

Theorem 3.10. If A = (AT , AI , AF ) is a (q, ∈ ∨ q)-neutrosophic subalgebra of
a BCK/BCI-algebra X, then nonempty neutrosophic ∈ ∨ q-subsets T∈∨ q(A;α),
I∈∨ q(A;β) and F∈∨ q(A; γ) are subalgebras of X for all α, β ∈ (0.5, 1] and γ ∈ [0, 0.5).

Proof. Assume that T∈∨ q(A;α), I∈∨ q(A;β) and F∈∨ q(A; γ) are nonempty for all
α, β ∈ (0.5, 1] and γ ∈ [0, 0.5). Let x, y ∈ T∈∨ q(A;α). Then

x ∈ T∈(A;α) or x ∈ Tq(A;α).

and

y ∈ T∈(A;α) or y ∈ Tq(A;α).

If x ∈ Tq(A;α) and y ∈ Tq(A;α), then obviously x ∗ y ∈ T∈∨ q(A;α). Suppose that
x ∈ T∈(A;α) and y ∈ Tq(A;α). Then AT (x) + α ≥ 2α > 1, i.e., x ∈ Tq(A;α). It
follows that x ∗ y ∈ T∈∨ q(A;α). Similarly, if x ∈ Tq(A;α) and y ∈ T∈(A;α), then
x ∗ y ∈ T∈∨ q(A;α). Now, let x, y ∈ F∈∨ q(A; γ). Then

x ∈ F∈(A; γ) or x ∈ Fq(A; γ),

and

y ∈ F∈(A; γ) or y ∈ Fq(A; γ).

If x ∈ Fq(A; γ) and y ∈ Fq(A; γ), then clearly x ∗ y ∈ F∈∨ q(A; γ). If x ∈ F∈(A; γ)
and y ∈ Fq(A; γ), then AF (x)+γ ≤ 2γ < 1, i.e., x ∈ Fq(A; γ). It follows that x∗y ∈
F∈∨ q(A; γ). Similarly, if x ∈ Fq(A; γ) and y ∈ F∈(A; γ), then x ∗ y ∈ F∈∨ q(A; γ).
Finally, assume that x ∈ F∈(A; γ) and y ∈ F∈(A; γ). Then AF (x) + γ ≤ 2γ < 1
and AF (y) + γ ≤ 2γ < 1, that is, x ∈ Fq(A; γ) and y ∈ Fq(A; γ). Therefore x ∗ y ∈
F∈∨ q(A; γ). Consequently, T∈∨ q(A;α), I∈∨ q(A;β) and F∈∨ q(A; γ) are subalgebras
of X for all α, β ∈ (0.5, 1] and γ ∈ [0, 0.5). �

Given a neutrosophic set A = (AT , AI , AF ) in a set X, we consider:

X1
0 := {x ∈ X | AT (x) > 0, AI(x) > 0, AF (x) < 1}.

Theorem 3.11. If a neutrosophic set A = (AT , AI , AF ) in a BCK/BCI-algebra
X is an (∈,∈)-neutrosophic subalgebra of X, then the set X1

0 is a subalgebra of X.
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Proof. Let x, y ∈ X1
0 . Then AT (x) > 0, AI(x) > 0, AF (x) < 1, AT (y) > 0,

AI(y) > 0 and AF (y) < 1. Suppose that AT (x∗y) = 0. Note that x ∈ T∈(A;AT (x))
and y ∈ T∈(A;AT (y)). But x ∗ y /∈ T∈(A;AT (x) ∧ AT (y)) because AT (x ∗ y) =
0 < AT (x) ∧ AT (y). This is a contradiction, and thus AT (x ∗ y) > 0. By the
similar way, we show that AI(x ∗ y) > 0. Note that x ∈ F∈(A;AF (x)) and y ∈
F∈(A;AF (y)). If AF (x ∗ y) = 1, then AF (x ∗ y) = 1 > AF (x) ∨ AF (y), and so
x ∗ y /∈ F∈(A;AF (x) ∨AF (y)). This is impossible. Hence x ∗ y ∈ X1

0 , and therefore
X1

0 is a subalgebra of X. �

Theorem 3.12. If a neutrosophic set A = (AT , AI , AF ) in a BCK/BCI-algebra
X is an (∈, q)-neutrosophic subalgebra of X, then the set X1

0 is a subalgebra of X.

Proof. Let x, y ∈ X1
0 . Then AT (x) > 0, AI(x) > 0, AF (x) < 1, AT (y) > 0,

AI(y) > 0 and AF (y) < 1. If AT (x ∗ y) = 0, then

AT (x ∗ y) +AT (x) ∧AT (y) = AT (x) ∧AT (y) ≤ 1.

Hence x∗y /∈ Tq(A;AT (x)∧AT (y)), which is a contradiction since x ∈ T∈(A;AT (x))
and y ∈ T∈(A;AT (y)). Thus AT (x∗y) > 0. Similarly, we get AI(x∗y) > 0. Assume
that AF (x ∗ y) = 1. Then

AF (x ∗ y) +AF (x) ∨AF (y) = 1 +AF (x) ∨AF (y) ≥ 1,

that is, x ∗ y /∈ Fq(A;AF (x) ∨ AF (y)). This is a contradiction because of x ∈
F∈(A;AF (x)) and y ∈ F∈(A;AF (y)). Hence AF (x∗y) < 1. Consequently, x∗y ∈ X1

0

and X1
0 is a subalgebra of X. �

Theorem 3.13. If a neutrosophic set A = (AT , AI , AF ) in a BCK/BCI-algebra
X is a (q,∈)-neutrosophic subalgebra of X, then the set X1

0 is a subalgebra of X.

Proof. Let x, y ∈ X1
0 . Then AT (x) > 0, AI(x) > 0, AF (x) < 1, AT (y) > 0, AI(y) >

0 and AF (y) < 1. It follows that AT (x)+1 > 1, AT (y)+1 > 1, AI(x)+1 > 1, AI(y)+
1 > 1, AF (x) + 0 < 1 and AF (y) + 0 < 1. Hence x, y ∈ Tq(A; 1)∩ Iq(A; 1)∩Fq(A; 0).
If AT (x∗y) = 0 or AI(x∗y) = 0, then AT (x∗y) < 1 = 1∧1 or AI(x∗y) < 1 = 1∧1.
Thus x∗y /∈ Tq(A; 1∧1) or x∗y /∈ Iq(A; 1∧1), a contradiction. Hence AT (x∗y) > 0
and AI(x∗y) > 0. If AF (x∗y) = 1, then x∗y /∈ Fq(A; 0∨0) which is a contradiction.
Thus AF (x ∗ y) < 1. Therefore x ∗ y ∈ X1

0 and the proof is complete. �

Theorem 3.14. If a neutrosophic set A = (AT , AI , AF ) in a BCK/BCI-algebra
X is a (q, q)-neutrosophic subalgebra of X, then the set X1

0 is a subalgebra of X.

Proof. Let x, y ∈ X1
0 . Then AT (x) > 0, AI(x) > 0, AF (x) < 1, AT (y) > 0, AI(y) >

0 and AF (y) < 1. Hence AT (x)+1 > 1, AT (y)+1 > 1, AI(x)+1 > 1, AI(y)+1 > 1,
AF (x) + 0 < 1 and AF (y) + 0 < 1. Hence x, y ∈ Tq(A; 1) ∩ Iq(A; 1) ∩ Fq(A; 0). If
AT (x ∗ y) = 0 or AI(x ∗ y) = 0, then

AT (x ∗ y) + 1 ∧ 1 = 0 + 1 = 1

or

AI(x ∗ y) + 1 ∧ 1 = 0 + 1 = 1,

and so x ∗ y /∈ Tq(A; 1 ∧ 1) or x ∗ y /∈ Iq(A; 1 ∧ 1). This is impossible, and thus
AT (x ∗ y) > 0 and AI(x ∗ y) > 0. If AF (x ∗ y) = 1, then AF (x ∗ y) + 0 ∨ 0 = 1, that
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is, x ∗ y /∈ Fq(A; 0 ∨ 0). This is a contradiction, and so AF (x ∗ y) < 1. Therefore
x ∗ y ∈ X1

0 and the proof is complete. �

Theorem 3.15. If a neutrosophic set A = (AT , AI , AF ) in a BCK/BCI-algebra
X is a (q, q)-neutrosophic subalgebra of X, then A = (AT , AI , AF ) is neutrosophic
constant on X1

0 , that is, AT , AI and AF are constants on X1
0 .

Proof. Assume that AT is not constant on X1
0 . Then there exist y ∈ X1

0 such
that αy = AT (y) 6= AT (0) = α0. Then either αy > α0 or αy < α0. Suppose
αy < α0 and choose α1, α2 ∈ (0, 1] such that 1 − α0 < α1 ≤ 1 − αy < α2. Then
AT (0) + α1 = α0 + α1 > 1 and AT (y) + α2 = αy + α2 > 1, which imply that
0 ∈ Tq(A;α1) and y ∈ Tq(A;α2). Since

AT (y ∗ 0) + α1 ∧ α2 = AT (y) + α1 = αy + α1 ≤ 1,

we get y ∗ 0 /∈ Tq(A;α1 ∧ α2), which is a contradiction. Next assume that αy > α0.
Then AT (y) + (1− α0) = αy + 1− α0 > 1 and so y ∈ Tq(A; 1− α0). Since

AT (y ∗ y) + (1− α0) = AT (0) + 1− α0 = α0 + 1− α0 = 1,

we have y ∗ y /∈ Tq(A; (1 − α0) ∧ (1 − α0)). This is impossible. Therefore AT is
constant on X1

0 . Similarly, AI is constant on X1
0 . Finally, suppose that AF is not

constant on X1
0 . Then γy = AF (y) 6= AF (0) = γ0 for some y ∈ X1

0 , and we have
two cases:

(i) γy < γ0 and (ii) γy > γ0.

The first case implies that AF (y)+1−γ0 = γy +1−γ0 < 1, that is, y ∈ Fq(A; 1−γ0).
Hence y∗y ∈ Fq(A; (1−γ0)∨(1−γ0)), i.e., 0 ∈ Fq(A; 1−γ0), which is a contradiction
since AF (0) + 1− γ0 = 1. For the second case, there exist γ1, γ2 ∈ (0, 1) such that

1− γ0 > γ1 > 1− γy > γ2.

Then AF (y) + γ2 = γy + γ2 < 1, i.e., y ∈ Fq(A; γ2), and AF (0) + γ1 = γ0 + γ1 < 1,
i.e., 0 ∈ Fq(A; γ1). It follows that y ∗ 0 ∈ Fq(A; γ1 ∨ γ2). But

AF (y ∗ 0) + γ1 ∨ γ2 = AF (y) + γ1 = γy + γ1 > 1,

and so y ∗ 0 /∈ Fq(A; γ1 ∨ γ2). This is a contradiction. Therefore AF is constant on
X1

0 . This completes the proof. �

We provide conditions for a neutrosophic set to be a (q,∈∨ q)-neutrosophic sub-
algebra.

Theorem 3.16. For a subalgebra S of a BCK/BCI-algebra X, let A = (AT , AI , AF )
be a neutrosophic set in X such that

(∀x ∈ S) (AT (x) ≥ 0.5, AI(x) ≥ 0.5, AF (x) ≤ 0.5) ,(3.14)

(∀x ∈ X \ S) (AT (x) = 0, AI(x) = 0, AF (x) = 1) .(3.15)

Then A = (AT , AI , AF ) is a (q,∈∨ q)-neutrosophic subalgebra of X.

Proof. Assume that x ∈ Iq(A;βx) and y ∈ Iq(A;βy) for all x, y ∈ X and βx, βy ∈
[0, 1]. Then AI(x) + βx > 1 and AI(y) + βy > 1. If x ∗ y /∈ S, then x ∈ X \ S or
y ∈ X \S since S is a subalgebra of X. Hence AI(x) = 0 or AI(y) = 0, which imply
that βx > 1 or βy > 1. This is a contradiction, and so x ∗ y ∈ S. If βx ∧ βy > 0.5,

84



Y. B. Jun/Ann. Fuzzy Math. Inform. 14 (2017), No. 1, 75–86

then AI(x ∗ y) + βx ∧ βy > 1, i.e., x ∗ y ∈ Iq(A;βx ∧ βy). If βx ∧ βy ≤ 0.5, then
AI(x∗y) ≥ 0.5 ≥ βx∧βy, i.e., x∗y ∈ I∈(A;βx∧βy). Hence x∗y ∈ I∈∨ q(A;βx∧βy).
Similarly, if x ∈ Tq(A;αx) and y ∈ Tq(A;αy) for all x, y ∈ X and αx, αy ∈ [0, 1],
then x ∗ y ∈ T∈∨ q(A;αx ∧ αy). Now let x, y ∈ X and γx, γy ∈ [0, 1] be such that
x ∈ Fq(A; γx) and y ∈ Fq(A; γy). Then AF (x) + γx < 1 and AF (y) + γy < 1. It
follows that x∗y ∈ S. In fact, if not then x ∈ X\S or y ∈ X\S since S is a subalgebra
of X. Hence AF (x) = 1 or AF (y) = 1, which imply that γx < 0 or γy < 0. This is
a contradiction, and so x ∗ y ∈ S. If γx ∨ γy ≥ 0.5, then AF (x ∗ y) ≤ 0.5 ≤ γx ∨ γy,
that is, x ∗ y ∈ F∈(A; γx ∨ γy). If γx ∨ γy < 0.5, then AF (x ∗ y) + γx ∨ γy < 1,
that is, x ∗ y ∈ Fq(A; γx ∨ γy). Hence x ∗ y ∈ F∈∨ q(A; γx ∨ γy), and consequently
A = (AT , AI , AF ) is a (q,∈∨ q)-neutrosophic subalgebra of X. �

Combining Theorems 3.5 and 3.16, we have the following corollary.

Corollary 3.17. For a subalgebra S of X, if A = (AT , AI , AF ) is a neutrosophic set
in X satisfying conditions (3.14) and (3.15), then Tq(A;α), Iq(A;β) and Fq(A; γ)
are subalgebras of X for all α, β ∈ (0.5, 1] and γ ∈ [0, 0, 5) whenever they are
nonempty.

Theorem 3.18. Let A = (AT , AI , AF ) be a (q,∈ ∨ q)-neutrosophic subalgebra of
X in which AT , AI and AF are not constant on X1

0 . Then there exist x, y, z ∈ X
such that AT (x) ≥ 0.5, AI(y) ≥ 0.5 and AF (z) ≤ 0.5. In particular, AT (x) ≥ 0.5,
AI(y) ≥ 0.5 and AF (z) ≤ 0.5 for all x, y, z ∈ X1

0 .

Proof. Assume that AT (x) < 0.5 for all x ∈ X. Since there exists a ∈ X1
0 such that

αa = AT (a) 6= AT (0) = α0, we have αa > α0 or αa < α0. If αa > α0, then we
can choose δ > 0.5 such that α0 + δ < 1 < αa + δ. It follows that a ∈ Tq(A; δ),
AT (a ∗ a) = AT (0) = α0 < δ = δ ∧ δ and AT (a ∗ a) + δ ∧ δ = AT (0) + δ = α0 + δ < 1
so that a ∗ a /∈ T∈∨ q(A; δ ∧ δ). This is a contradiction. Now if αa < α0, we can take
δ > 0.5 such that αa + δ < 1 < α0 + δ. Then 0 ∈ Tq(A; δ) and a ∈ Tq(A; 1), but
a ∗ 0 /∈ T∈∨ q(A; 1 ∧ δ) since AT (a) < 0.5 < δ and AT (a) + δ = αa + δ < 1. This is
also a contradiction. Thus AT (x) ≥ 0.5 for some x ∈ X. Similarly, we know that
AI(y) ≥ 0.5 for some y ∈ X. Finally, suppose that AF (z) > 0.5 for all z ∈ X. Note
that γc = AF (c) 6= AF (0) = γ0 for some c ∈ X1

0 . It follows that γc < γ0 or γc > γ0.
We first consider the case γc < γ0. Then γ0 + ε > 1 > γc + ε for some ε ∈ [0, 0.5),
and so c ∈ Fq(A; ε). Also AF (c ∗ c) = AF (0) = γ0 > ε and AF (c ∗ c) + ε ∨ ε =
AF (0) + ε = γ0 + ε > 1 which shows that c ∗ c /∈ F∈∨ q(A; ε ∨ ε). This is impossible.
Now, if γc > γ0, then we can take ε ∈ [0, 0.5) and so that γ0 + ε < 1 < γc + ε.
It follows that 0 ∈ Fq(A; ε) and c ∈ Fq(A; 0). Since AF (c ∗ 0) = AF (c) = γc > ε
and AF (c ∗ 0) + ε = AF (c) + ε = γc + ε > 1, we have c ∗ 0 /∈ F∈∨ q(A; ε). This
is a contradiction, and therefore AF (z) < 0.5 for some z ∈ X. We now show that
AT (0) ≥ 0.5, AI(0) ≥ 0.5 and AF (0) ≤ 0.5. Suppose that AT (0) = α0 < 0.5. Since
there exists x ∈ X such that AT (x) = αx ≥ 0.5, it follows that α0 < αx. Choose α1 ∈
[0, 1] such that α1 > α0 and α0 +α1 < 1 < αx+α1. Then AT (x)+α1 = αx+α1 > 1,
and so x ∈ Tq(A;α1). Now we have AT (x∗x) +α1∧α1 = AT (0) +α1 = α0 +α1 < 1
and AT (x ∗ x) = AT (0) = α0 < α1 = α1 ∧ α1. Thus x ∗ x /∈ T∈∨ q(A;α1 ∧ α1), a
contradiction. Hence AT (0) ≥ 0.5. Similarly, we have AI(0) ≥ 0.5. Assume that
AF (0) = γ0 > 0.5. Note that AF (z) = γz ≤ 0.5 for some z ∈ X. Hence γz < γ0, and

85



Y. B. Jun/Ann. Fuzzy Math. Inform. 14 (2017), No. 1, 75–86

so we can take γ1 ∈ [0, 1] such that γ1 < γ0 and γ0 +γ1 > 1 > γz +γ1. It follows that
AF (z)+γ1 = γz+γ1 < 1, that is, z ∈ Fq(A; γ1). Also AF (z∗z) = AF (0) = γ0 > γ1 =
γ1∨γ1, i.e., z∗z /∈ F∈(A; γ1∨γ1), and AF (z∗z)+γ1∨γ1 = AF (0)+γ1 = γ0 +γ1 > 1,
i.e., z ∗ z /∈ Fq(A; γ1 ∨ γ1). Thus z ∗ z /∈ F∈∨ q(A; γ1 ∨ γ1), a contradiction. Hence
AF (0) ≤ 0.5. We finally show that AT (x) ≥ 0.5, AI(y) ≥ 0.5 and AF (z) ≤ 0.5
for all x, y, z ∈ X1

0 . We first assume that AI(y) = βy < 0.5 for some y ∈ X1
0 ,

and take β > 0 such that βy + β < 0.5. Then AI(y) + 1 = βy + 1 > 1 and
AI(0) + β + 0.5 > 1, which imply that y ∈ Iq(A; 1) and 0 ∈ Iq(A;β + 0.5). But
y ∗ 0 /∈ I∈∨ q(A;β + 0.5) since AI(y ∗ 0) = AI(y) < β + 0.5 < 1 ∧ (β + 0.5) and
AI(y ∗0)+1∧(β+0.5) = AI(y)+β+0.5 = βy +β+0.5 < 1. This is a contradiction.
Hence AI(y) ≥ 0.5 for all y ∈ X1

0 . Similarly, we induces AT (x) ≥ 0.5 for all
x ∈ X1

0 . Suppose AF (z) = γz > 0.5 for some z ∈ X1
0 , and take γ ∈ (0, 0.5) such

that γz > 0.5 + γ. Then z ∈ Fq(A; 0) and AF (0) + 0.5 − γ ≤ 1 − γ < 1, i.e.,
0 ∈ Fq(A; 0.5−γ). But AF (z ∗0) = AF (z) > 0.5 > 0.5−γ and AF (z ∗0) + 0.5−γ =
AF (z) + 0.5− γ = γz + 0.5− γ > 1, which imply that z ∗ 0 /∈ F∈∨ q(A; 0.5− γ). This
is a contradiction, and the proof is complete. �
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