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Abstract: Reducing the potential risks in the manufacturing process to improve the reliability
of the switched-mode power supply (SMPS) is a critical issue for the users’ safety. This paper
proposes a novel failure mode and effects analysis (FMEA) model based on hybrid multiple
criteria decision-making (MCDM), which adopts neutrosophic set theory into the proposed model.
A developed neutrosophic Best Worst method (NBWM) is used to evaluate the weights of risk
factors and determine their importance. Secondly, the neutrosophic Weight Aggregated Sum Product
Assessments (NWASPAS) method is utilized to calculate the Risk Priority Number (RPN) of the
failure modes. The proposed model improves the shortcomings of traditional FMEA and improves
the practical applicability and effectiveness of the Best Worst method (BWM) and Weight Aggregated
Sum Product Assessments (WASPAS) methods. In addition, this study uses neutrosophic logic to
reflect the true judgments of experts in the assessment, which considers authenticity, deviation,
and uncertainty to obtain more reliable information. Finally, an empirical case study from an
SMPS company headquartered in Taiwan demonstrates the effectiveness and robustness of the
proposed model. In addition, by comparing with two other FMEA models, the results show that the
proposed model can more clearly reflect the true and effective risks in the assessment. The results can
effectively help power supply manufacturers to assess risk factors and determine key failure modes.

Keywords: FMEA; RPN; SVTNNS; NBWM; NWASPAS; risk assessment

1. Introduction

In today’s highly competitive consumer electronics industry environment, cumulative sales of
many hot-selling products have reached tens of millions of units [1]. For brands and manufacturers,
any issues related to product safety should be considering as priorities [2]. Otherwise, once quality
problems occur, in addition to the cost of product recalls and the possible huge loss due to consumer
class action lawsuits, the loss of goodwill caused by such events is even more difficult to measure in
terms of money [3].

Most electronic products require power supply units to provide electric power directly or indirectly
to drive the system to operate. In other words, whether the power supply meets the safety regulations
is related to the safety and reliability of the entire electronic product [4]. Manufacturing and quality
assurance managers should identify and pre-manage possible problems in the production process and
potential risks when consumers use the product in the future, to maximize the reliability and safety of
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the product. To consider user behavior under complex circumstances such as risk and uncertainty,
studies have been developing machine learning algorithms to learn and predict complex scenarios
to improve the quality of service for users [5,6]. Another commonly used method in the field of
risk management is FMEA. This method can be used to evaluate and diagnose the reliability of a
system/product/component [7]. The main goal of FMEA is to identify potential failure modes in
the system/product/component, evaluate possible subsequent effects, and recommend detectability
strategies to eliminate or reduce the chance of serious problems, thus ensuring the robustness
and safety of various products or system operating. Traditional FMEA has some shortcomings
in practical use (the detailed description is presented in Section 2). Therefore, many studies
combine Multiple Criteria Decision-Making (MCDM) with FMEA to strengthen the applicability of
traditional FMEA. For instance, Chemweno et al. [8] developed an FMEA model for asset management
and maintenance decision-making, which uses the Analytic Network Process (ANP) method to consider
the interdependence of risk factors. The selected risk factors are on the basis of the International
Organization for Standardization (ISO) 31,000:2009. Wang et al. [9] established a risk priority model for
the vertical machining system. The model uses the rough VlseKriterijuska Optimizacija I Komoromisno
Resenje (VIKOR) method, and introduces House of Reliability (HoR) to identify the associations among
the critical failure modes. In addition, a new method based on Failure Mode, Effects, and Criticality
Analysis (FMECA) was proposed to prevent the possibility of direct or indirect occupational hazards
(injury, illness, or death) caused by workplace risks—the so-called Total efficient risk priority number
(TERPN) [10]. Chang et al. [11] proposed a hybrid FMEA and MCDM model that combines rough Best
Worst method (BWM) and Rough Technique for Order Preference by Similarity to an Ideal Solution
(R-TOPSIS) to obtain the ranking of failure modes. They used a multinational audio equipment
manufacturing company to demonstrate that the model effectively overcomes many shortcomings of
traditional FMEA, helping decision-makers and Research and Design (R&D) departments improve
product reliability.

However, the above studies did not consider the uncertainty and ambiguity of the assessment
environment in risk analysis. Considering the obvious complexity of the entire manufacturing process
and the inherent ambiguity of human judgment, it is often difficult for the experts to express their
judgments with clear and accurate numbers in the early stages of production operations. In order to be
more flexible and more effectively describe the uncertainty and fuzzy information in actual operations,
it is necessary to propose a more reasonable mathematical tool to deal with uncertainty and ambiguity,
and build modeling based on the subjective opinions of experts [12,13]. For example, Kompa et al. [14]
pointed out that in high-risk fields, such as pharmaceuticals or self-driving cars, deep learning
prediction models have been widely adopted in recent years, many studies have shown that prediction
uncertainty can be improved. Among them, the Monte Carlo approach is one of the well-known
deep learning methods [15] and the other is the Bayesian neural network. In addition to using the
discriminant model, it also uses the generative model to find out distribution data. Even though
generative models are a way to perform out-of-distribution detection, they cannot assess predictive
uncertainty [16]. Moreover, some studies combined with fuzzy theory to improve the analysis of FMEA.
Li et al. [17] developed an FMEA model based on fuzzy information. The interval-valued intuitionistic
fuzzy set (IVIFs) was applied to embody the risk ambiguity of failure modes. Their paper used service
process at a hospital as an empirical example to demonstrate the accuracy, effectiveness, and flexibility
of the proposed model. Many academic articles point out that the FMEA model combined with
fuzzy theory can improve the accuracy of risk analysis. Unfortunately, previous FMEA studies used
vague methods that did not take into account certainty, uncertainty, and error simultaneous in the
risk assessment.

This paper proposes a novel FMEA model based on hybrid MCDM, which adopts neutrosophic set
theory into the model. This theory can not only consider the uncertainty of the evaluation environment,
but also explore the true judgments of experts during the evaluation (the measured factors include truth,
falsity, and indeterminacy). This paper is divided into three stages. First, department managers
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related to design and production form an expert team. The expert team draws out all possible failure
causes/modes for the analyzed products. Secondly, a NBWM questionnaire was designed for experts
to evaluate the importance of risk factors, so as to obtain the weights of risk factors. Finally, all experts
evaluate the risk value of each failure mode under the risk factors, and use neutrosophic Weight
Aggregated Sum Product Assessments (NWASPAS) to calculate the Risk Priority Number (RPN)
of the failure modes. The higher the number, the greater the risk level. The proposed model can
encompass a wider range of uncertainties. This paper took a power supply product designed by a
Taiwanese multinational electronics company as an analysis case. The potential critical failure modes
are identifying through the analysis of this research, and the reliability of the product can be improved
by eliminating the risk of product failure. In summary, the specific contributions and characteristics of
this study are described below.

(i) The proposed FMEA model takes into account the economic perspective, which adds the expected
cost (E) as a risk factor.

(ii) The introduction of the Single-Valued Trapezoidal Neutrosophic Numbers (SVTNNs),
which integrates neutrosophic set theory into the analysis methods (BWM and WASPAS),
can more clearly show the uncertainty of the experts in evaluating risks.

(iii) NBWM significantly reduces the number of pairwise comparisons and achieves a better
consistency ratio.

(iv) NWASPAS optimizes traditional FMEA’s RPN calculation method to obtain more reliable
ranking results.

(v) The root causes of the failures of the switching power supply are analyzed and provided to the
decision-makers and R&D department to formulate improvement measures.

The rest of this paper is arranged as follows: Section 2 briefly reviews the related research on FMEA
combined with MCDM in recent years and points out research gaps in this field. Section 3 describes
the proposed FMEA model, including the detailed calculation steps of the neutrosophic set, NBWM,
and NWASPAS. Section 4 introduces a multinational corporation as an empirical case to demonstrate
the practicality of the proposed model. Section 5 explains the sensitivity analysis, model comparisons,
and provides management implications. Finally, Section 6 summarizes the findings and contributions
of this research and explains future research directions.

2. A Brief Literature Review of MCDM Combined with FMEA

The FMEA model was developed by Grumman Aircraft Corporation in the 1960s and used to
analyze the flight control system of naval aircraft [18,19]. So far, it has been used in various fields
for more than 50 years, and is especially widely used in the evaluation of failure modes of products
or systems operation. Generally speaking, the assessment of FMEA is based on three risk factors,
namely, the severity (S), occurrence (O) and detection (D), and RPN = S × O × D. The scale of each risk
factor is from 1 to 10. The higher the value, the higher the risk of failure mode. Many studies criticize
that RPN has the following disadvantages:

(i) S, O, and D have equal weight, which does not consider the relative importance of these three
risk factors [20,21].

(ii) Even though different combinations of risk factors may still form the same RPN, this does not
indicate that the meaning of risk level is the same [20,21].

(iii) RPN is obtained by multiplying three risk factors. Such an evaluation model is too simple and
unreliable [21,22].

(iv) RPN calculation is too sensitive to changes in risk factors [20,21].
(v) There are other important risk factors that are ignored, for example, the expected cost from a

financial perspective is not considered [23].
(vi) Uncertainty and ambiguity of information are not considered in traditional FMEA.
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Many scholars have proposed to build a model by combing FMEA and MCDM methods. This study
summarizes the academic research related to FMEA in the past two years, as shown in Table 1.

Table 1. Summary of literature review of multiple criteria decision-making (MCDM) combined with
failure mode and effects analysis (FMEA) models.

Author Research Methodology Application Field

Lo et al. [24]

Use Decision Making Trial and Evaluation Laboratory
(DEMATEL) to determine influence weight of risk factors,
rank and compare the results obtained using different MCDM
methods—Simple Additive Weighting (SAW) VIKOR, Grey
Relational Analysis (GRA), Complex proportional assessment
of alternatives (COPRAS) to generate a final ranking result.

Computer Numerical Control
(CNC) rotary machine

Bian et al. [25]
A risk priority model based on D numbers, and propose
technique for order of preference by similarity to ideal solution
(TOPSIS) to evaluate the risk in FMEA.

Applying to rotor blades of
aircraft’s turbine

Hu et al. [26]

Applying grey relation analysis (GRA) –TOPSIS to
determining risk ranking of identified failure modes.
Considering vagueness and uncertainty in FMEA team’s
evaluations on failure modes, proposed two-dimensional
uncertain linguistic variables to describe the risk evaluation
result and reliability of a failure mode.

A healthcare risk analysis case
study about suctioning by
endotracheal tube (ETT)

Liu et. al. [27]

Use Analytic Hierarchy Process (AHP) to determine weights
of risk factors, fuzzy Graph-Theoretical Matrix calculate risk
effect indexes, and identify interrelationships between failure
modes by DEMATEL.

Empirical study of rotary switch

Boral et al. [28]
MCGDM integrating by Interval Type-2 Fuzzy DEMATEL
(IT2F-DEMATEL) and Modified Fuzzy Multi-Attribute Ideal
Real Comparative Analysis (Modified FMAIRCA).

To extend FMEA approach to
reflect benefits on sustainable
manufacturing

Zhu et al. [29]

Use linguistic neutrosophic numbers to capture
decision-makers’ evaluation of failure modes on each risk
criterion. Combined regret theory and PROMETHEE
(Preference ranking organization method for enrichment
evaluation) methods to establish a hybrid risk ranking
model of FMEA.

Using a supercritical water
gasification system as an empirical
case study

Liu et. al. [30] Integrating cloud model theory with extended GRA for
resolving disadvantages of traditional RPN method. Screening unit in a paper mill

Srivastava et al. [31]
Combined fuzzy decision support system and fuzzy GRA for
estimating RPN scores, then compared with classical RPN
scores for realistic prioritization and decision making.

Sugar plants milling system

Rezaee et al. [32]

A hybrid approach based on the Linguistic FMEA, Fuzzy
Inference System (FIS) and Fuzzy Data Envelopment Analysis
(DEA) model to calculate scores for covering shortcomings of
RPN and prioritizing HSE risks.

Chemical industry.

Through an extensive FMEA literature review, some research gaps were found in this study.
As mentioned earlier, FMEA is based on expert judgment [33]. In some cases, if the experts are
not confident or unable to make appropriate judgments, that will lead to uncertainty in the risk
analysis process [34,35]. In addition, only S, O, and D are considered in most FMEAs, and only a few
studies have explored the management costs of failure modes. In the methodology section, a risk
assessment model combining NBWM and NWASPAS methods has not been proposed in past studies.
In particular, the proposed FMEA model has never been used in the switching power supply, one of
the important parts of electronic products. In Section 3, the analysis process of the proposed FMEA
model is explained.

3. The Proposed FMEA Model

The proposed FMEA model integrates three methods, including the neutrosophic set, BWM,
and WASPAS. This section details the concepts of the methods involved and presents the analysis steps
of the proposed model. The important indices and variables are summarized in Table 2. In addition,
architecture of the proposed FMEA model for switched-mode power supply risk analysis is illustrated
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in Figure 1. The research procedures can be divided into three stages. First, an expert team is formed
to identify all possible failure causes/modes of switched-mode power supply. Second, the input data
required by the analysis program is collected, and NBWM is used to obtain the weights of the criteria.
Finally, we apply the NWASPAS to determine the priority of failure modes. In addition, sensitivity
analysis and model comparisons are carried out to illustrate the advantages of the proposed model.

Table 2. Important indices and variables.

Indices Description

i Failure mode i, i = 1, 2, . . . , m
j Risk factor j, j = 1, 2, . . . , n
k Expert k, k = 1, 2, . . . , p

Variables Description Variables Description

θ̃ SVTNN w∗j Weight of risk factor
T
θ̃ Truth variable ξL Consistency index

F
θ̃ Falsity variable D̃

(k) Initial neutrosophic assessment matrix of expert k
I
θ̃ Indeterminacy variable A Average assessment matrix
µ
θ̃ Truth-membership function P Normalized assessment matrix
λ
θ̃ Falsity-membership function SQi Performance indexes WSM of failure mode i
ν
θ̃ Indeterminacy-membership function PQi Performance indexes WSP of failure mode i

ÃBj BO vector Zi Integrated performance index of failure mode i
Ã jW OW vectorMathematics 2020, 8, x FOR PEER REVIEW 6 of 21 
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Figure 1. A flow chart of this study.

3.1. Neutrosophic Set: SVTNNs

Neutrosophic logic is proposed by Smarandache [36], which extends the concept of traditional
intuitionistic fuzzy logic, using three parameters to reflect the uncertainty of the evaluation environment,
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including truth (T
θ̃

), falsity (F
θ̃

), and indeterminacy (I
θ̃

). In the real world, in the face of unprecedented
or special events, it is difficult for humans to accurately judge, evaluate and explain what circumstance it
may happen in the future. Thus, using general fuzzy numbers to express the uncertainty of information
may not be enough. SVTNNs is a method in neutrosophic set theory, which has two advantages to
overcome traditional intuitionistic fuzzy numbers, namely, the inclusion of three parameters to reflect
the ambiguity and the use of trapezoidal fuzzy numbers to include a larger amount of information.
Several definitions of SVTNNs are as follows [37].

Definition 1. The value range of T
θ̃

, F
θ̃

, and I
θ̃

is between 0 and 1, normally expressed as a percentage.

An SVTNN can be expressed as θ̃ =
{
(θ1, θ2, θ3, θ4),

(
T
θ̃

, F
θ̃

, I
θ̃

)}
. It belongs to a special neutrosophic

set in the real number set R, where µ
θ̃

, λ
θ̃

, and ν
θ̃

are expressed as truth-membership, falsity-membership,
and indeterminacy-membership functions. The membership functions of µ

θ̃
, λ

θ̃
, and ν

θ̃
are shown as

Equations (1)–(3) [36,37].

µ
θ̃
(x) =



(x−θ1)Tθ̃
(θ2−θ1)

,θ1 ≤ x ≤ θ2

T
θ̃

,θ2 ≤ x ≤ θ3
(θ4−x)T

θ̃
(θ4−θ3)

,θ3 ≤ x ≤ θ4

0 , otherwise

(1)

λ
θ̃
(x) =



(θ2−x+F
θ̃
(x−θ1))

(θ2−θ1)
,θ1 ≤ x ≤ θ2

F
θ̃

,θ2 ≤ x ≤ θ3
(x−θ3+F

θ̃
(θ4−x))

(θ4−θ3)
,θ3 ≤ x ≤ θ4

1 , otherwise

(2)

ν
θ̃
(x) =



(θ2−x+I
θ̃
(x−θ1))

(θ2−θ1)
,θ1 ≤ x ≤ θ2

I
θ̃

,θ2 ≤ x ≤ θ3
(x−θ3+I

θ̃
(θ4−x))

(θ4−θ3)
,θ3 ≤ x ≤ θ4

1 , otherwise

(3)

The SVTNN θ̃ =
{
(θ1, θ2, θ3, θ4),

(
T
θ̃

, F
θ̃

, I
θ̃

)}
is composed of two parts, including the

trapezoidal fuzzy number (θ1, θ2, θ3, θ4) and the neutrosophic part θ̃
(
T
θ̃

, F
θ̃

, I
θ̃

)
. Specifically,

a trapezoidal fuzzy number can be used to describe the evaluation of an evaluated event, and the
experts have to consider whether the number (θ1, θ2, θ3, θ4) is consistent, inconsistent, and uncertain
with the evaluated event separately before forming a complete SVTNN. In neutrosophic logic, the three
parameters

(
T
θ̃

, F
θ̃

, I
θ̃

)
are independent of one another, and there should be no mutual dependence

during the evaluation. The membership function of the three parameters can be plotted as shown in
Figure 2. Obviously, truth-membership function belongs to the larger the better (LTB) feature, and the
remaining two functions are the smaller the better (STB) feature. The linear function on the Figure 2
can correspond to Equations (1)–(3).
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θ1 ≥ x ≥ θ2, µ
θ̃
(x) is an increasing function, but λ

θ̃
(x) and ν

θ̃
(x) are decreasing functions. On the

other hand, when θ3 ≥ x ≥ θ4, µ
θ̃
(x) is a decreasing function, but λ

θ̃
(x) and ν

θ̃
(x) are increasing

functions. This phenomenon shows that the concept of µ
θ̃
(x) is opposite to the other two membership

functions. In a nutshell, the truth-membership function is a positive parameter. The larger the value,
the higher the confidence of the expert in the evaluation

Definition 2. To reflect the quality of expert judgment, SVTNN provides three useful functions which are the
final score (sc

(
θ̃
)
), accuracy (l

(
θ̃
)
), and certainty (c

(
θ̃
)
) functions, as in Equations (4)–(6) [36,37].

sc
(
θ̃
)
=

(θ1 + 2θ2 + 2θ3 + θ4)
(
2 + T

θ̃
− F

θ̃
− I

θ̃

)
18

(4)

l
(
θ̃
)
=

(θ1 + 2θ2 + 2θ3 + θ4)
(
T
θ̃
− F

θ̃

)
6

(5)

c
(
θ̃
)
=

(θ1 + 2θ2 + 2θ3 + θ4)Tθ̃
6

(6)

Definition 3. Suppose that there are two SVTNNs here, namely p̃ =
{
(p1, p2, p3, p4),

(
Tp̃, Fp̃, Ip̃

)}
and

q̃ =
{
(q1, q2, q3, q4),

(
Tq̃, Fq̃, Iq̃

)}
, therefore, p̃ and q̃ can be compared with each other, which is defined

as follows.

• If sc(p̃) > sc(q̃), then p̃ > q̃, and it indicates that p̃ is absolutely better than q̃.
• If sc(p̃) = sc(q̃) and l(p̃) > l(q̃), then p̃ > q̃, and it means that p̃ is better than q̃.
• If sc(p̃) = sc(q̃), then q̃ > p̃, and it means that p̃ is worse than q̃.

If sc(p̃) = sc(q̃), l(p̃) = l(q̃), and c(p̃) > c(q̃), then p̃ > q̃. Obviously, p̃ is better than q̃. On the
other hand, if c(p̃) < c(q̃), then q̃ > p̃. Finally, when c(p̃) = c(q̃), it means that p̃ and q̃ is the same.
Next, the survey data of BWM and WASPAS will be constructed using SVTNNs.

3.2. NBWM

The MCDM method assists experts in the decision-making process to be more scientific. Rezaei [38]
proposed BWM in 2015; in contrast with AHP, BWM’s structure is more streamlined and comes with
better consistent results. This study combines the neutrosophic set with the BWM method, so that
SVTNNs can be used to replace the crisp value in the BWM survey. The detailed steps of NBWM
obtaining the weights are as follows:
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� Step 1. Identify the set of risk factors for the decision-making system

The expert team formulates n risk factors that meet the decision-making issues, {c1, c2, . . . , cn}.

� Step 2. Decide the most and least important risk factors

Following the n risk factors established in Step 1, the most important (i.e., most satisfactory, best,
or most preferred) and the least important (i.e., most dissatisfied, worst, or disfavored) risk factors
are selected.

� Step 3. Take the most important risk factor as a basis and doing pairwise comparisons with other
risk factors to produce the neutrosophic Best-to-Others (BO) vector

Experts assess the relative importance of the most important risk factor and other risk factors,
as shown in Table 3. The linguistic variables of assessment are from “Equally important, (1, 1, 1, 1)” to
“Absolutely important, (4.5, 4.5, 4.5, 5)”. Next, a degree of confidence is given to each evaluation item
with the linguistic variables in Table 4. Each evaluation item is a set of SVTNNs. The neutrosophic BO
vector can be generated, as shown in Equation (7).

ÃBj = (̃aB1, ãB2, . . . , ãBn) (7)

where ãBj represents the importance of the most important risk factor B relative to risk factors j,
and the comparison between the most important risk factor and itself must be “Equally important”
and “Absolutely high confidence”, that is, ãBB =

{
(1, 1, 1, 1), (1, 0, 0)

}
.

Table 3. Linguistic variables and corresponding fuzzy numbers in the Best Worst Method (BWM) survey.

Linguistic Variables Fuzzy Numbers

Equally important (1, 1, 1, 1)
Weakly important (1, 1.5, 1.5, 1.5)
Fairly important (1.5, 2, 2, 2.5)

Important (2.5, 3, 3, 3.5)
Very important (3.5, 4, 4, 4.5)

Absolutely important (4.5, 4.5, 4.5, 5)

Table 4. Linguistic variables and corresponding fuzzy numbers in the neutrosophic part.

Linguistic Variables Fuzzy Numbers

No confidence (0, 0, 0)
Low confidence (0.6, 0.2, 0.2)

Fairly low confidence (0.7, 0.1, 0.1)
Medium confidence (0.8, 0.1, 0)

Fairly high confidence (0.8, 0.2, 0.2)
High confidence (0.9, 0.1, 0.1)

Absolutely high confidence (1, 0, 0)

� Step 4. Take the rest of the risk factors as a benchmark, and make pairwise comparisons with the
least important risk factor to generate the neutrosophic Others-to-Worst (OW) vector

Similar to Step 3, the experts assess the relative importance of other risk factors with the least
important risk factor, and generate the neutrosophic OW vector, as shown in Equation (8).

Ã jW = (̃a1W , ã2W , . . . , ãnW)T (8)

where ã jW represents the importance of the remaining risk factor j relative to the least important risk
factor W, and ãWW =

{
(1, 1, 1, 1), (1, 0, 0)

}
.
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� Step 5. Use Equation (4) to convert SVTNNs into crisp values

The elements of the neutrosophic BO and OW vectors are all types of SVTNNs. Before linear
programming is used to obtain the criteria weights, the elements of the neutrosophic BO and OW
vectors must be converted to crisp values through Equation (4).

� Step 6. Calculate the optimal weight value of each risk factor
(
w∗1, w∗2, . . . , w∗n

)
The optimal weight is calculated by the linear programming model. The BO and OW vectors

are the input data (with crisp values), and the absolute deviations from the expert evaluation (that is,∣∣∣∣wB
w j
− aBj

∣∣∣∣ and
∣∣∣∣ w j
wW
− a jW

∣∣∣∣). Moreover, to maximize the absolute deviation value in the end, the minimum
of the two is chosen as the optimal goal function, and the complete model is shown in Equation (9).

minmax j

{∣∣∣∣∣∣wB

w j
− aBj

∣∣∣∣∣∣,
∣∣∣∣∣ w j

wW
− a jW

∣∣∣∣∣}; s.t.


∑
j

w j = 1

w j ≥ 0, for all j
(9)

In Equation (9), the goal function for minimizing the maximum value can be alternated into a
linear goal function to facilitate the calculation. The minimization goal function after conversion can
be introduced by the following model:

min ξ; s.t.



∣∣∣∣wB
w j
− aBj

∣∣∣∣ ≤ ξ;∣∣∣∣ w j
wW
− a jW

∣∣∣∣ ≤ ξ;∑
j

w j = 1;

w j ≥ 0, for all j

, (10)

In Equation (10), it is possible to produce multiple optimal solutions; thus, Rezaei [39] proposed a
linear BWM model and modified the minimization goal function model to:

min ξL; s.t.



∣∣∣wB − aBjw j
∣∣∣ ≤ ξL;∣∣∣w j − a jWwW
∣∣∣ ≤ ξL;∑

j
w j = 1;

w j ≥ 0, for all j

. (11)

It is a linear function in Equation (11), and only a single optimal solution
(
w∗1, w∗2, . . . , w∗n

)
is

obtained. ξL can be regarded as a consistency index when ξL is close to 0, which indicates a high
degree of consistency.

3.3. NWASPAS

WASPAS is a hybrid MCDM method, developed by combining the two systems of Weighted
Sum Model (WSM) and Weighted Product Model (WPM) [40]. This method has been used to deal
with MCDM problems. For example, Badalpur and Nurbakhsh [41] applied WASPAS identified and
evaluated the risks of a road construction project in Iran. In addition, authors pointed out that WASPAS
is one of the basic MCDM methods for getting started, and the calculation results of this method are
reliable and effective.

The paper proposes the NWASPAS method to determine the risk score of failure modes and their
ranking. The operation steps are as follows:

� Step 1. Obtain the initial neutrosophic assessment matrix

This study applies the linguistic variables in Table 5 [30] to identify the scores of failure modes.
Next, the experts give confidence levels for each score according to Table 4.
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Table 5. Linguistic variables and fuzzy numbers for risk factors.

S O D E Fuzzy Numbers

Very hazardous Failure almost inevitable Absolute uncertainty Almost close to the original price (1, 1, 1, 2)
Hazardous Very high Very remote Extremely high (1, 2, 2, 3)

Extreme Repeated failures Remote Very high (2, 3, 3, 4)
Major High Very low High (3, 4, 4, 5)

Significant Moderately high Low Moderately high (4, 5, 5, 6)
Moderate Moderate Moderate Moderate (5, 6, 6, 7)

Low Relatively low Moderately high Relatively low (6, 7, 7, 8)
Minor Low High Low (7, 8, 8, 9)

Very minor Remote Very high Remote (8, 9, 9, 10)
None Nearly impossible Almost certain Nearly no cost (9, 10, 10, 10)

Assume that the FMEA team has k experts. Experts assess the score of failure mode i in risk
factor j to obtain the initial neutrosophic assessment matrix (Equation (12)), where k = 1, 2, . . . , p;
j = 1, 2, . . . , n; and i = 1, 2, . . . , m.

~
D
(k)

=


d̃(k)11 d̃(k)12 · · · d̃(k)1n
d̃(k)21 d̃(k)22 · · · d̃(k)2n

...
...

. . .
...

d̃(k)m1 d̃(k)m2 · · · d̃(k)mn


(12)

where d̃(k)i j represents the score of the kth expert’s assessment of the failure mode i under the risk factor j.

� Step 2. Obtain the assessment matrix

According to Equation (4), the initial neutrosophic assessment matrix is defuzzified to obtain the
assessment matrix Equation (13).

D(k) =


d(k)11 d(k)12 · · · d(k)1n
d(k)21 d(k)22 · · · d(k)2n

...
...

. . .
...

d(k)m1 d(k)m2 · · · d(k)mn


(13)

� Step 3. Use Equation (14) to calculate the average assessment matrix

A =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

 (14)

where ai j =

p∑
k=1

di j

k .

� Step 4. Calculate the normalized matrix

In order to unify the unit and score range of the assessment risk factors, the normalized matrix
Equation (15) is obtained through Equation (16) here, we set the highest risk score to 10.

P =
[
pi j

]
m×n

, (15)

pi j =
ai j

10
(16)
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� Step 5. Calculate the performance indexes WSM and WSP

Through Equations (17) and (18), the performance indexes WSM and WSP can be calculated.

SQi =
n∑

j=1

pi j.w j (17)

PQi =
n∏

j=1

(pi j)
w j (18)

Both WSM and WSP are considered in NWASPAS, and the preference ratio of these two is
determined by the parameter. The integrated performance index Z is shown in Equation (19).

Zi = λsQi + (1− λ)pQi = λ
n∑

j=1

pi j.w j + (1− λ)
n∏

j=1

(pi j)
w j (19)

The failure modes are ranked according to the performance index Z. If it has the highest
performance value Z, it means that the failure mode is the riskiest.

4. Case Illustration

This section demonstrates the effectiveness and practicality of the proposed FMEA model with
actual cases and compares it with the traditional FMEA method. Finally, significant management
implications are provided through the analysis results and recommendations are made to decision-
makers on future improvement plans.

4.1. Problem Description and Data Collection

The quality and reliability of power supply products are critical to electronic products.
The manufacturing process and quality engineers have to evaluate the possible failure modes
before the new products are launched, and further exploit improvement strategies to reduce the
possibility of product risks. The case in this study is a multinational company headquartered in
Taiwan that has business with global well-known brands in the electronics industry. The power supply
product categories designed by the company include laptops, consumer products, desktop computers,
workstations, and servers. Facing the trend of consumers with higher product safety requirements, the
top management believes that it is necessary to continuously improve product quality to face sales
competition in the global market.

The FMEA plan of the case company was composed of senior managers within the company. A total
of 15 experts, who have had more than 10 years’ experience, came from five departments, including
manufacturing process design, production management, quality assurance, R&D, and sales team.
The 20 possible failure modes of power supply products of the power supply were determined,
as shown in Table 6.

Table 6. Description of failure modes.

Category Description Failure Mode

No Output No power output FM11 Capacitor burst
FM12 Transistor failure
FM13 Components burned out
FM14 Blown fuses

Electrical Electrical FM21 Insufficient output voltage
Defect characteristics FM22 No power-good signal

failed to meet FM23 Cooling fan no operation
specifications FM24 Insufficient output wattage
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Table 6. Cont.

Category Description Failure Mode

FM25 Efficiency recession
FM26 High frequency noise
FM27 Radiation interference

Appearance Appearance out of FM31 Tooling abrasion
Issue product specification FM32 Case Scratch

FM33 Connector deformation
FM34 Label broken
FM35 Printing blurred

Dimension Mechanical dimension FM41 Direct Current (DC) cable dimension
Defect Out of specifications FM42 Screw hole offset

FM43 Improper heat dissipation hole
FM44 Assembly problem

4.2. Using NBWM to Obtain Risk Factor Weights

The operating process of NBWM is to invite the 15 experts to decide the best and worst risk factors
based on their experience and expertise. Table 7 shows the most important and least important risk
factors selected by the experts. According to Equations (7) and (8), the neutrosophic BO and OW
vectors can be obtained, as shown in Tables 8 and 9 (taking Expert 1 as an example).

Table 7. The selected most and least important risk factors.

Expert No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Most important S S E S S E S S E S E S S S E
Least important D D D D E O D D O D D D O O D

Table 8. The neutrosophic Best-to-Others (BO) vector obtained by Expert 1.

S O D E

S (most important) {(1.0, 1.0, 1.0, 1.0),
(1.0, 0.0, 0.0)}

{(3.5, 4.0, 4.0, 4.5),
(0.8, 0.1, 0.0)}

{(4.5, 4.5, 4.5, 5.0),
(0.8, 0.1, 0.0)}

{(1.5, 2.0, 2.0, 2.5),
(0.8, 0.1, 0.0)}

Table 9. The neutrosophic Others-to-Worst (OW) vector obtained by Expert 1.

D (Least Important)

S {(4.5, 4.5, 4.5, 5.0), (0.8, 0.1, 0.0)}
O {(1.5, 2.0, 2.0, 2.5), (0.8, 0.1, 0.0)}
D {(1.0, 1.0, 1.0, 1.0), (1.0, 0.0, 0.0)}
C {(3.5, 4.0, 4.0, 4.5), (0.8, 0.1, 0.0)}

Based on Step 5 of Section 3.2, the Equation (4) is applied to defuzzify the contents of Tables 8 and 9,
the BO and OW vectors can be obtained as shown in Tables 10 and 11.

Table 10. The BO vector obtained by Expert 1.

S O D E

S (most important) 1.0 3.6 4.1 1.8
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Table 11. The OW vector obtained by Expert 1.

D (Least Important)

S 4.1
O 1.8
D 1.0
E 3.6

The consistency ratios of the 15 experts in the NBWM questionnaire were all less than 0.1, indicating
high consistency [42]. Table 12 lists the weights of the risk factors and their ranking. The ranking of
the risk factors is S, E, O, and D based on their relative importance. The most important risk factor
is severity (S), and its weight is 0.408. The added expected cost (E) ranks second with the weight
of 0.2872.

Table 12. Results of the NBWM analysis.

Risk Factor Weights Rank

S 0.4080 1
O 0.1879 3
D 0.1169 4
E 0.2872 2

4.3. Using NWASPAS to Rank Failure Modes

This study uses a hybrid MCDM performance method, WASPAS, to enhance the effectiveness
of the risk analysis model, and the reliability and efficiency of the model calculation will not be
influenced by the number of failure modes. In the next step, the 15 experts used the linguistic variables
(Tables 4 and 5) to assess each failure mode under different risk factors. The initial neutrosophic
assessment matrix of Expert 1 is shown in Table 13.

Table 13. Initial neutrosophic assessment matrix obtained by Expert 1.

Failure Mode S O D E

FM11 {(8.0, 9.0, 9.0, 10.0),
(0.8, 0.1, 0.0)}

{(6.0, 7.0, 7.0, 8.0),
(0.9, 0.1, 0.1)}

{(7.0, 8.0, 8.0, 9.0),
(0.9, 0.1, 0.1)}

{(8.0, 9.0, 9.0, 10.0),
(0.8, 0.1, 0.0)}

FM12 {(8.0, 9.0, 9.0, 10.0),
(0.8, 0.2, 0.2)}

{(4.0, 5.0, 5.0, 6.0),
(0.8, 0.1, 0.0)}

{(7.0, 8.0, 8.0, 9.0),
(0.9, 0.1, 0.1)}

{(7.0, 8.0, 8.0, 9.0),
(0.8, 0.2, 0.2)}

...
...

...
...

...

FM44 {(1.0, 2.0, 2.0, 3.0),
(0.9, 0.1, 0.1)}

{(4.0, 5.0, 5.0, 6.0),
(0.8, 0.2, 0.2)}

{(2.0, 3.0, 3.0, 4.0),
(0.8, 0.2, 0.2)}

{(2.0, 3.0, 3.0, 4.0),
(0.9, 0.1, 0.1)}

Though Equations (13)–(19), the calculation results of NWASPAS can be obtained, as shown in
Table 14. The top five failure modes are capacitor burst (FM11), components burned out (FM13),
transistor failure (FM12), blown fuses (FM14), and insufficient voltage output (FM21). The WASPAS of
the failure mode FM11 has the largest value (0.6945) in the assessment model; thus, it should have
the highest priority for prevention and correction. Based on the results, Section 5 presents sensitivity
analysis, model comparison, and discussion of management implications.
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Table 14. Results of NWASPAS.

Failure Mode WSM WSP WASPAS Rank

FM11 0.6945 0.6905 0.6925 1
FM12 0.6100 0.5952 0.6026 3
FM13 0.6397 0.5889 0.6143 2
FM14 0.6072 0.5504 0.5788 4
FM21 0.5235 0.4942 0.5088 5
FM22 0.4092 0.3872 0.3982 7
FM23 0.4397 0.4012 0.4204 6
FM24 0.3865 0.3735 0.3800 8
FM25 0.3274 0.3219 0.3247 10
FM26 0.3262 0.3130 0.3196 11
FM27 0.3527 0.3451 0.3489 9
FM31 0.2531 0.2338 0.2434 14
FM32 0.2482 0.2036 0.2259 16
FM33 0.3307 0.3081 0.3194 12
FM34 0.1146 0.0829 0.0987 19
FM35 0.1093 0.0708 0.0900 20
FM41 0.2465 0.2393 0.2429 15
FM42 0.1652 0.1614 0.1633 18
FM43 0.2817 0.2757 0.2787 13
FM44 0.1962 0.1898 0.1930 17

5. Discussion

In this section, sensitivity analysis and model comparisons are performed to measure the robustness
and effectiveness of the proposed model. In addition, in the part of management implications,
the elimination and improvement strategies of failure modes are also discussed.

5.1. Sensitivity Analysis

The integration of the two parameters WSM and WSP is used for sensitivity analysis. This study
set these two parameters to be configured with equal weight (λ = 0.5), which means that the parameters
have equal importance in the beginning. The reason for taking this approach is to ensure the robustness
of the proposed model not being affected by the different weights of WSM and WSP. Table 15 shows
the failure modes for different risk scores, with the parameter λ ranging from 0.1 to 0.9 (lowest to
highest). According to Figure 3, there is no significant difference in the ranking result even though the
parameter λ is changed. Therefore, it is justifiable to set the parameter λ = 0.5.
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Table 15. Risk scores of failure modes after nine sensitivity analyses.

RUN1 RUN2 RUN3 RUN4 RUN5 RUN6 RUN7 RUN8 RUN9

WSM WSP λ = 0.1 λ = 0.2 λ = 0.3 λ = 0.4 λ = 0.5 λ = 0.6 λ = 0.7 λ = 0.8 λ = 0.9

FM11 0.6945 0.6905 0.6909 0.6913 0.6917 0.6921 0.6925 0.6929 0.6933 0.6937 0.6941
FM12 0.6100 0.5952 0.5967 0.5981 0.5996 0.6011 0.6026 0.6040 0.6055 0.6070 0.6085

...
...

...
...

...
...

...
...

...
...

...
...

FM44 0.1962 0.1898 0.1904 0.1911 0.1917 0.1924 0.1930 0.1937 0.1943 0.1949 0.1956

5.2. Model Comparisons

The following section is to compare the model (NBWM and NWASPAS) proposed in this study
with two other models. As shown in Table 16, the RPN of the first model was obtained from the
traditional FMEA. From the perspective of failure mode ranking, the results of RPN are only slightly
different from the ranking results of our proposed model. However, just as the shortcoming discussed
in Section 2, the final value obtained by multiplying the three factors could range from 1 to 10,000.
These unreasonable RPN numbers could mislead the interpretation of risk levels. Another problem is
that the weights of S, O, and D are equal, which will cause the relative importance of these three risk
factors to be ignored. It is very likely to have the same value after calculation, but almost impossible to
determine which ones are more serious and need to be treated as the priority tasks to resolve.

Table 16. The failure mode ranking results of the three models.

Failure Mode RPN Rank BWM and SAW Rank NBWM and NWASPAS Rank

FM11 4132.95 1 0.8298 1 0.6925 1
FM12 2426.67 2 0.7350 4 0.6026 3
FM13 1632.15 3 0.7854 2 0.6143 2
FM14 1350.85 4 0.7452 3 0.5788 4
FM21 1096.68 5 0.6371 5 0.5088 5
FM22 675.58 6 0.4988 7 0.3982 7
FM23 470.13 9 0.5402 6 0.4204 6
FM24 525.50 7 0.4736 8 0.3800 8
FM25 401.69 10 0.3992 12 0.3247 10
FM26 290.28 11 0.4035 11 0.3196 11
FM27 506.15 8 0.4294 9 0.3489 9
FM31 154.35 14 0.3056 15 0.2434 14
FM32 105.73 17 0.2996 16 0.2259 16
FM33 243.30 12 0.4049 10 0.3194 12
FM34 18.66 19 0.1473 19 0.0987 19
FM35 16.63 20 0.1367 20 0.0900 20
FM41 153.21 15 0.3057 14 0.2429 15
FM42 71.83 18 0.2096 18 0.1633 18
FM43 238.83 13 0.3458 13 0.2787 13
FM44 115.93 16 0.2432 17 0.1930 17

For the second model [43,44], BWM and SAW, it does not take into account the uncertainty of
the evaluation environment. In addition, there is no way to obtain the confidence levels from the
interviews with the experts in answering questions during the evaluation process. The proposed model
(NBWM and NWASPAS) not only allows the authenticity, deviation, and uncertainty to be considered,
but also more clearly reflects the true and effective risk values during the expert assessment.

5.3. Management Implications

Among the top five failure modes with the highest risk, four modes are related to the lack of
power output. The following content will discuss their root causes and consequences, respectively.
The experts unanimously agree that FM11 (risk score 0.6925) capacitor burst is ranked number one.
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The operating temperature of the electrolytic capacitor is up to 105 ◦C [45]. Once the internal temperature
rises to the boiling point of the electrolyte liquid, it leads to the rising of the capacitor’s inside pressure
to exceed the withstand limit of the explosion-proof valve, which will cause capacitor burst. The main
chemical solvent and electrolytic paper of the electrolyte are flammable, and the electrolyte liquid is also
conductive. If the electrolyte contacts the motherboard, it may corrode the circuit or cause a short circuit,
resulting in smoke or fire. Therefore, the circuit layout should not be located under the capacitor;
similarly, the operating conditions should not exceed its rated operating voltage and temperature.

For the second-place FM13 (risk score 0.6143), components are burned out due to overheating.
This phenomenon can happen for several reasons: (1) the input voltage is continuously unstable or
over the component rated specification, (2) the components are damaged by rush currents, (3) the parts
are highly abrasive after long time use, and (4) the cooling fan efficiency decreases, which causes
overheating. Ranked third is the failure of FM12 (risk score 0.6026), transistor failure. A transistor
is a solid semiconductor, and as a variable current switch, it can control the output current based on
the input voltage [46]. There are many points to pay attention to in the application of transistors,
especially the maximum ratings, such as maximum voltage, current, and output power. Used in an
excessive state, the internal structure of the transistor will be damaged and cause the problem of no
power output after it fails.

The fourth item is FM14 (risk score 0.5788)—blown fuses. Switched-mode power supply (SMPS)’s
fuses burning out can be due to the following reasons: (1) the total output capacity is too close to
the designed current, (2) the input power is larger than the rated specification, and (3) the fuse has
problems of aging or quality defects. A blown fuse sometimes burns its associated circuit parts in a
chain reaction; thus, it is necessary to be very careful about this kind of problem. Ranked fifth is FM21
(risk score 0.5088), the output voltage being insufficient. The general root cause is using controller IC
with poor quality. It may also be caused by lower input or unstable voltage. This problem will affect
the performance of the entire device. Take a desktop computer as an example. It may not be able to
boot the computer or its computing performance may be lower than the original design specifications.
In severe cases, it could damage the motherboard, graphics card, and hard disk. This is a serious
failure problem for the desktop computer.

According to the research results shown above, the risk assessment values of the top five failure
modes are all more than 0.5; thus, they are relatively important among all failure modes. Furthermore,
“severity (S)” and “expected cost (E)” are the linchpin risk factors for appraising the failure modes
of a power supply, which shows the need to add the expected cost in the FMEA evaluation factors.
The quality of the SMPS directly affects the overall performance and safety of electronic equipment.
Improving power output and quality are urgent actions to be taken.

6. Conclusions and Future Work

This study has brought many benefits to the case company. An important concept is that the
reliability of power supply should be considered from the source (i.e., the product development and
manufacturing stage) of a product. Otherwise, the subsequent maintenance costs in the market may be
extraordinarily costly and cause consumers to lose confidence in the brand. Engineers may consider
using different production methods or higher-grade components to remove these problems. However,
considering limited resources and the time constraint in the real world, this study uses a hybrid MCDM
based FMEA model to enhance the effectiveness of the risk analysis model. Moreover, the efficiency
and reliability of the model calculation will not be influenced by the number of failure modes.
The calculation concept in this method is clear, easy to understand and operate, and suitable for
practical use. In addition, this model not only effectively integrates the judgments from experts but
also greatly optimizes the calculation of traditional FMEA. Specific contributions and characteristics of
this study are summarized below:

(i) Considering the expected cost (E) as a risk factor.
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(ii) Introducing the neutrosophic logic into the analysis methods and clearly showing the uncertainty
of experts during the evaluation process.

(iii) Significantly reducing the number of problem items and achieving a better consistency ratio.
(iv) Optimizing the traditional FMEA’s RPN calculation method to obtain more reliable ranking results.
(v) Analyzing root causes of SMPS failures and providing improvement measures to decision-makers

and engineers of R&D and quality.

Even though this research makes up for some of the shortcomings and limitations of the original
FMEA model, there are still some discrepancies that need to be improved. In the future, evaluation
systems can be used to apply more seasonable measurement data to help experts to judge the
effectiveness and efficiency of the failure modes. Furthermore, even though the proposed model can
help diagnose failure modes, troubleshooting still has to be performed by well-trained professionals.
In terms of application, our research methods will be extended to the risk management of other
electronic products in the future, and we expect that evaluation model can be used for coding software
for different industrial uses. In addition, the research framework will be combined with other
evaluation tools, such as DEMATEL, to define the mutual influence among the risk factors, so that risk
assessment can be more comprehensive and cover a wider range.
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Nomenclature

Acronym Nomenclature
BO Best-to-Others
FMEA Failure Mode and Effects Analysis
GRA Grey Relational Analysis
NBWM Neutrosophic Best Worst method
NWASPAS Neutrosophic Weight Aggregated Sum Product Assessments
OW Others-to-Worst
R&D Research and Design
RPN Risk Priority Number
SAW Simple Additive Weighting
SMPS Switched-Mode Power Supply
SVTNNs Single-Valued Trapezoidal Neutrosophic Numbers
TERPN Total efficient risk priority number
TOPSIS Technique for Order Preference by Similarity to an Ideal Solution
VIKOR VlseKriterijuska Optimizacija I Komoromisno Resenje
WASPAS Weight Aggregated Sum Product Assessments
WSM Weighted Sum Model
WPM Weighted Product Model
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