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Abstract: Single valued trapezoidal neutrosophic numbers (SVTNNs) are very useful tools for 

describing complex information, because of their advantage in describing the information 

completely, accurately and comprehensively for decision-making problems. In the paper, a method 

based on SVTNNs is proposed for dealing with multi-criteria group decision-making (MCGDM) 

problems. Firstly, the new operations SVTNNs are developed for avoiding evaluation information 

aggregation loss and distortion. Then the possibility degrees and comparison of SVTNNs are 

proposed from the probability viewpoint for ranking and comparing the single valued trapezoidal 

neutrosophic information reasonably and accurately. Based on the new operations and possibility 

degrees of SVTNNs, the single valued trapezoidal neutrosophic power average (SVTNPA) and 

single valued trapezoidal neutrosophic power geometric (SVTNPG) operators are proposed to 

aggregate the single valued trapezoidal neutrosophic information. Furthermore, based on the 

developed aggregation operators, a single valued trapezoidal neutrosophic MCGDM method is 

developed. Finally, the proposed method is applied to solve the practical problem of the most 

appropriate green supplier selection and the rank results compared with the previous approach 

demonstrate the proposed method's effectiveness. 

Keywords: single valued trapezoidal neutrosophic number; multi-criteria group decision making; 

possibility degree; power aggregation operators 

 

1. Introduction 

Multi-criteria decision-making (MCDM) problems are important issues in practice and many 

MCDM methods have been proposed to deal with such issues. Due to the vagueness of human being 

thinking and the increased complexity of the objects, there are always much uncertainty, incomplete, 

indeterminate and inconsistent information in evaluating objects. Traditionally, vagueness 

information is always described by fuzzy sets (FSs) [1] using the membership function, intuitionistic 

fuzzy sets (IFSs) [2] using membership and non-membership functions and hesitant fuzzy sets 

(HFSs) [3] using one/several possible membership degrees. Many fuzzy methods are proposed, for 

example, Medina [4] extends the fuzzy soft set by Multi-adjoint concept lattices, Pozna & Precup [5] 

proposed the operator and application to a fuzzy model, Jane et al. [6] proposed fuzzy S-tree for 

medical image retrieval and Kumar & Jarial [7] proposed a hybrid clustering method based on an 

improved artificial bee colony and fuzzy c-means algorithm. However, fuzzy sets cannot deal with 
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the indeterminate information and inconsistent information which exists commonly in complex 

MCDM problems. As a generalization of the IFSs [2], neutrosophic sets (NSs) [8–10] are proposed to 

deal with the uncertainty, incomplete, indeterminate and inconsistent information by using the 

truth-membership, indeterminacy-membership and falsity-membership functions. 

Due to the advantages of handling uncertainty, imprecise, incomplete, indeterminate and 

inconsistent information existing in real world, NSs have attracted many researchers’ attentions 

However NSs are proposed from the philosophical point of view, it is difficult to be directly applied 

in real scientific and engineering areas without specific descriptions. Therefore, in accordance with 

the real demand difference, three main subsets of NSs were proposed, namely single valued 

neutrosophic sets (SVNSs) [11], interval neutrosophic sets (INSs) [12] and multi-valued neutrosophic 

set (MVNSs) [13]. Based on the aforementioned sets by specifying the NSs, many MCDM methods 

were developed, which can be classified as three main aspects: aggregation operators, measures and 

the extension of classic decision-making methods. These methods have been successfully applied in 

many areas, such as medical diagnosis [14,15], medical treatment [16], neural networks [17], supplier 

selection [18,19] and green product development [20]. 

With regard to aggregation operators of SVNSs, Liu and Wang [21] proposed a single-valued 

neutrosophic normalized weighted Bonferroni mean operator, Liu et al. [22] proposed the 

generalized neutrosophic operators, Sahin [23] developed the neutrosophic weighted operators. 

Considering real situations, INSs is more suitable and flexible for describing incomplete information 

than SVNs. Sun et al. [24] introduced the interval neutrosophic number Choquet integral operator, 

Ye [25] proposed the interval neutrosophic number ordered weighted operators, Zhang et al. [26] 

proposed the interval neutrosophic number weighted operators. All of these methods demonstrate 

the effectiveness. 

In respect of measures, Sahin and Kucuk [27] proposed the subset-hood measure for SVNSs, Ye 

[28–30] and Wu et al. [31] developed some measures of SVNSs including the weighted correlation 

coefficient [28], cross-entropy [29,31], similarity measure [30]. Broumi and Smarandache proposed 

the correlation coefficient [32] and cosine similarity measure [33] distance [34] of INSs, Ye [35] 

proposed the similarity measures between INSs, Sahin and Karabacak [36] developed the inclusion 

measure for INSs. All of these measures are verified by real cases and demonstrate the effectiveness 

as well. 

In respect of the extension of classic decision-making methods, Zhang and Wu [19] developed 

an extended TOPSIS method for the MCDM with incomplete weight information under a single 

valued neutrosophic environment; Biswas et al. [37] developed the entropy based grey relational 

analysis method to deal with MCDM problems in which all the criteria weight information 

described by SVNSs is unknown; Peng et al. [38] developed the outranking approach for MCDM 

problems based on ELECTRE method; and Sahin and Yigider [39] developed a MCGDM method 

based on the TOPSIS method for dealing with supplier selection problems. Chi and Liu [40] 

developed the extended TOPSIS method for deal MCDM problems based on INSs. 

Peng et al. [13] firstly defined MVN and developed the approach for solving MCGDM 

problems based on the multi-valued neutrosophic power weighted operators. Wang and Li [41] 

proposed the Hamming distance between multi-valued neutrosophic numbers (MVNN) and the 

extended TODIM method for dealing with MCDM problems. Wu et al. [42] proposed the novel 

MCDM methods based on several cross-entropy measures of MVNSs. 

However, these subsets of NSs cannot describe the assessment information with different 

dimensions. For overcoming the shortcomings and improving the flexibility and practicality of these 

sets, by extending the concept of trapezoidal intuitionistic fuzzy numbers (TrIFNs) [43], single 

valued trapezoidal neutrosophic numbers (SVTNNs) [44] are proposed for improving the ability to 

describe complex indeterminate and inconsistent information. Then, SVTNNs attract the attention of 

some researchers on them as very useful tools on describing evaluation information. Based on 

SVTNNs, Ye [44] developed the MCDM method on the basis of trapezoidal neutrosophic weighted 

arithmetic averaging (TNWAA) operator or trapezoidal neutrosophic weighted geometric averaging 

(TNWGA) operator. However, the correlation of trapezoidal numbers and three membership 
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degrees has been ignored and the indeterminate-membership degree is regarded to be equal to 

falsity-membership degree in these operators, which will lead to information distortion and loss. 

Meanwhile, it does not take into account the information about the relationships among the 

assessment information being aggregated, which always exists in the process of solving MCDM 

problems. To overcome this shortcoming, motivated by the ideal of power aggregation operators 

[45,46], considering the relationship among the information being aggregated and the possibility 

degree widely used as a very useful tool to aggregate and rank uncertain data from the probability 

viewpoint, in this paper we propose the possibility degrees of SVTNNs, single trapezoidal 

neutrosophic power average (SVTNPA) and single valued trapezoidal neutrosophic power 

geometric (SVTNPG) operators to deal with MCGDM problems. The prominent characteristics of 

these proposed operators are taking into account relationship among the aggregation information 

and overcome the drawbacks of the existing operator of SVTNNs. Then, we utilize these operators 

and possibility degrees to develop a novel single valued trapezoidal neutrosophic MCGDM method. 

The motivation and main attribution of the paper are presented as below: 

(1) The novel operation laws of SVTNNs are conducted to overcome the lack of operation laws of 

SVTNNs appeared in previous paper. 

(2) Based on the novel operations of SVTNNs, the SVTNPA and SVTNPG operators are developed. 

(3) Based on the concept of the possibility degree, the possibility degree of SVTNNs is defined and 

presented. 

(4) Based on possibility degree of SVTNNs, SVTNPA and SVTNPG operators, a novel method for 

solving MCGDM problems under single trapezoidal neutrosophic environment is developed. 

The rest of the paper is organized as follows. In Section 2, we introduce some basic concepts and 

operators related to subsets of NS. In Section 3, we propose new operations, possibility degrees and 

comparison of SVTNNs. SVTNPA and SVTNPG operators are developed in Section 4. The method 

for solving MCGDM problems under single trapezoidal neutrosophic environment is developed in 

Section 5. An illustrative example for selecting the most appropriate green supplier for Shanghai 

General Motors Company is provided in Section 6. Meanwhile a comparison with other method is 

presented to show the effectiveness of the proposed approach. Finally, conclusions are drawn in 

Section 7. 

2. Preliminaries 

In this section, some basic concepts, definitions of SVTNNs and two aggregation operators are 

introduced, which are laying groundwork of latter analysis. 

2.1. NS and SVNS 

Definition 1 ([14]). Let X  be a space of points (objects), with a generic element in X  denoted by x . A NS 

A  in X  is characterized by three membership functions, namely truth-membership function ( )
A

T x , 

indeterminacy-membership function ( )
A
I x  and falsity-membership function ( )

A
F x , where ( )

A
T x , ( )

A
I x  

and ( )
A

F x  are real standard or nonstandard subsets of ] 0,1 [
 

, i.e., ( ) : ] 0,1 [AT x X   , 

( ) : ] 0,1 [AI x X    and ( ) : ] 0,1 [AF x X   . Therefore, it is no restriction on the sum of ( )
A

T x , ( )
A
I x  

and ( )
A

F x  and 0 ( ) ( ) ( ) 3
A A A

T x I x F x
 
    . 

The neutrosophic set needs to be specified from a technical point of view, otherwise it is 

difficult to apply in the real scientific and engineering areas. Therefore, Wang et al. [13] proposed the 

concept SVNS as an instance of neutrosophic set for easily operating and conveniently applying in 

practical issues. 

Definition 2 ([13]). Let X  be a space of points (objects). A SVNS A  in X  can be expressed as follows: 
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 , ( ), ( ), ( ) |A A AA x T x I x F x x X  ,  

where ( ) [0,1]AT x  , ( ) [0,1]AI x   and ( ) [0,1]AF x  . 

Obviously, the sum of 
( )AT x

, 
( )AI x

 and 
( )AF x

 satisfies the condition 

0 ( ) ( ) ( ) 3A A AT x I x F x   
. 

2.2. The Trapezoidal Fuzzy Number and SVTNNs 

Definition 3 ([43,47]). Let a  be a trapezoidal fuzzy number 1 2 3 4( , , , )a a a a a  and 1 2 3 4a a a a   . 

Then its membership function ( ) : [0,1]a x R   can be defined as follows: 

   

   

1 2 1 1 2

2 3

4 4 3 3 4

,    

,                                
( )

,   

0,                                  .

a

a

a

a

x a a a a x a

a x a
x

a x a a a x a

otherwise








   


 
 

   











；

；

；

 

 

Because of the great validity and feasibility of trapezoidal fuzzy numbers and SVNSs in 

decision-making problems, Ye [44] developed the SVTNNs by combining the two concepts. 

Definition 4 ([44]). Let U  be a space of points (objects). Then a SVTNN   can be represented as 

 1 2 3 4[ , , , ], ( ), ( ), ( )a a a a T I F   
 

 

whose truth-membership ( )T  , indeterminacy-membership ( )I   and falsity-membership ( )F   can be 

described as follows: 

   

   

1 2 1 1 2

2 3

4 4 3 3 4

( ) ,    

( ),                                 
( )

( ) ,    

0,                                      .

x a T a a a x a

T a x a
T

a x T a a a x a

otherwise








   


 
 

   



；

；

；

 

 

   

   

1 2 1 1 2

2 3

4 4 3 3 4

( ) ,    

( ),                                 
( )

( ) ,    

0,                                      .

x a I a a a x a

I a x a
I

a x I a a a x a

otherwise








   


 
 

   



；

；

；

 

 

   

   

1 2 1 1 2

2 3

4 4 3 3 4

( ) ,    

( ),                                 
( )

( ) ,    

0,                                       .

x a F a a a x a

F a x a
F

a x F a a a x a

otherwise








   


 
 

   



；

；

；

 

 

Especially, if 
1

0a   and 
4

0a  , then    
1 2 3 4
, , , , ( ), ( ), ( )a a a a T I F     becomes a 

positive SVTNN. If ( ) 1 ( ) ( )I T F     , then the SVTNN is a TrIFN. And if ( ) 0I   , ( ) 0F   , 

then the SVTNN becomes a trapezoidal fuzzy number, that is 1 2 3 4[ , , , ], ( )a a a a T  . 
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Example 1. Let    
1

0.3,0.4,0.7,0.8 , 0.8,0.2,0.4   be a SVTNN. Then its truth-membership 
1

( )T  , 

indeterminacy-membership 
1

( )I   and falsity-membership 
1

( )F   can be obtained, respectively, as follows: 

 

 1

8 0.3 ,    0.3 0.4

0.8,                0.4 0.7
( )

8 0.8 ,    0.7 0.8

0,                   .

x x

x
T

x x

otherwise



  

 


  








；

；

；

 

 

 

 1

2 0.3 ,    0.3 0.4

0.2,                0.4 0.7
( )

2 0.8 ,    0.7 0.8

0,                   .

x x

x
I

x x

otherwise



  

 


  








；

；

；

 

 

 

 1

4 0.3 ,    0.3 0.4

0.4,                0.4 0.7
( )

4 0.8 ,    0.7 0.8

0,                   .

x x

x
F

x x

otherwise



  

 


  








；

；

；

 

 

2.3. PA and PG Operators 

The power average (PA) operator was firstly proposed by Yager [45]; then, based on PA 

operator, Xu and Yager [46] developed the power geometric (PG) operator. 

Definition 5 ([45,46]). Let 1 2{ , , , }nh h h h     a collection of positive real numbers, then PA operator and PG 

operator can be defined, respectively, as follows: 

 

 
1 2 1

1

1 ( )
( , , , )

1 ( )

n i i

n ni

ii

G h h
PA h h h

G h





   



  

 

     1
1 ( ) 1 ( )

1 2 1
( , , , )

n

i ii
G h G hn

n ii
PG h h h h 

 



     
 

where 
1,

( ) ( , )
n

i i jj j i
G h Sup h h

 
  , 1,2, ,i n    . ( , )i jSup h h  is the support for ih  from jh , satisfying the 

following properties:  

(1) 
( , ) [0,1]i jSup h h 

. 

(2) 
( , ) ( , )i j j iSup h h Sup h h

. 

(3) If i jh h a b   , then ( , ) ( , )i jSup h h Sup a b , where a  and b  are two positive real numbers. 

3. New Operations and Comparison of SVTNNs 

In this section, new operations and comparison method of SVTNNs are proposed for 

overcoming the limitations in Reference [44] which can avoid information loss and distortion 

effectively. 

3.1. The New Operations of SVTNNs 

In order to aggregate different SVTNNs in decision-making process, Ye [44] defined the 

operations of SVTNNs. 



Symmetry 2018, 10, 590 6 of 22 

 

Definition 6 ([44]). Let    
1 2 3 4
, , , , ( ), ( ), ( )a a a a T I F     and 

   
1 2 3 4
, , , , ( ), ( ), ( )b b b b T I F     be two positive SVTNNs, 

1 2 3 4
0 1a a a a     , 

1 2 3 4
0 1b b b b     , 0  . Then the operations of SVTNNs can be defined as follows: 

(1) 
   

1 1 2 2 3 3 4 4
, , , , ( ) ( ) ( ) ( ), ( ) ( ), ( ) ( )a b a b a b a b T T T T I I F F                

; 

(2) 
   

1 1 2 2 3 3 4 4
, , , , ( ) ( ), ( ) ( ) ( ) ( ), ( ) ( ) ( ) ( )a b a b a b a b T T I I I I F F F F              

; 

(3) 
        

1 2 3 4
, , , , 1 , ,1 ( ) ( ) ( )a a a a T I F

  
         

; 

(4) 
        

1 2 3 4
, , , , ,1 ,1( ) 1 ( ) 1 ( )a a a a T I F

            
; 

However, there are some shortcomings in Definition 7. 

(1) The trapezoidal fuzzy numbers and three membership degrees of SVTNNs are considered as 

two separate parts and operated individually in the operation   , which ignore the 

correlation among them and cannot reflect the actual results. 

Example 2. Let 
1

[0.5,0.6,0.7,0.8], (0,0,1)   and 
2

[0.2,0.3,0.4,0.5], (1,0,0)   be two SVTNNs. 

1 2
[0.5,0.6,0.7,0.8], (0,0,1) [0.2,0.3,0.4,0.5], (1,0,0) [0.7,0.9,1.1,1.3], (1,0,0)    

;  

This result is inaccurate since the falsity-membership of 
1
 , the correlations among trapezoidal 

fuzzy numbers and the membership degrees of 
1


 
and 

2
  are not considered. Thus, the operations 

would be unreasonable. 

(2) The three membership degrees of SVTNNs are also operated as the trapezoidal fuzzy numbers 

in the operation  , which can produce the repeat operation and make the result bias. 

Example 3. Let 
1

[0.03,0.05,0.07,0.09], (0.3,0.5,0.5)   be a SVTNN, 10  . Then the result 
1

  

can be obtained by using Definition 6. 

1
10 [0.3,0.5,0.7,0.9], (0.9718,0.001,0.001) 

 
 

The three membership degrees of these SVTNNs are operated repeatedly which make the result 

distort significantly and conflict with common sense. 

For overcoming the limitations existing in the operations proposed by Ye [44], motivated by the 

operations on triangular intuitionistic fuzzy numbers proposed by Wang et al. [48], new operations 

of SVTNNs are defined as below. 

Definition 7. Let    
1 2 3 4
, , , , ( ), ( ), ( )a a a a T I F     and 

   
1 2 3 4
, , , , ( ), ( ), ( )b b b b T I F     be two positive SVTNNs, 

1 2 3 4
0 1a a a a     , 

1 2 3 4
0 1b b b b     , 0  . Then the new operations of SVTNNs can be defined as follows: 

(1) 
   

4 3 2 1
( ) 1 ,1 ,1 ,1 , ( ), ( ), ( )neg a a a a T I F       

; 
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(2) 

 1 1 2 2 3 3 4 4

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
, , , , , ,

( ) ( ) ( ) ( )

T T I I
a b a b a b a b

   

 

       
 

  

 
     

 



  

( ) ( ) ( ) ( )

( ) ( )

F F   

 

 

 









, where 

1 2 3 4
2 2

( )
6

a a a a
 

  


, 

1 2 3 4
2 2

( )
6

b b b b
 

  


; 

(3) 
   

1 1 2 2 3 3 4 4
, , , , ( ) ( ), ( ) ( ) ( ) ( ), ( ) ( ) ( ) ( )a b a b a b a b T T I I I I F F F F                

;  

(4) 
   

1 2 3 4
, , , , ( ), ( ), ( )a a a a T I F       

; 

(5) 
        

1 2 3 4
, , , , ( ) ,1 1 ( ) ,1 1 ( )a a a a T I F

             
; 

 ,   ,    and 
  do not appear alone in application due to the meaninglessness 

of their results. Only in the aggregation process do    and/or    being combined with 

  and/or 
  make sense. 

Example 4. Let 
1

[0.5,0.6,0.7,0.8], (0,0,1)   and 
2

[0.2,0.3,0.4,0.5], (1,0,0)   be two SVTNNs, 

2  , the following results can be obtained based on Definition 7. 

(1) 1
( ) [0.5,0.6,0.8,0.9], (0.4,0.1,0.5)neg  

; 

(2) 1 2
[0.3,0.5,1.0,1.2], (0.64,0.22,0.26)  

; 

(3) 1 2
[0.02,0.06,0.24,0.35], (0.32,0.37,0.55)  

; 

(4) 1
2 [0.2,0.4,0.8,1.0], (0.4,0.1,0.5) 

; 

(5) 
2

1
[0.04, 0.09, 0.25, 0.36], (0.16, 0.19, 0.75) 

. 

Compared with the operations proposed by Ye [44], the new operations of SVTNNs have some 

excellent advantages on reflecting the effect of all truth, indeterminacy and falsity membership 

degrees of SVTNNs on aggregation results and taking into account the correlation of the trapezoidal 

fuzzy numbers and three membership degrees of SVTNNs, which can avoid information loss and 

distortion effectively. 

In terms of the corresponding operations of SVTNNs, the following theorem can be easily 

proved. 

Theorem 1. Let 
1
 , 

2
 , 

3
  be three SVTNNs and 0  . Then the following equations must be true and 

easy to proof. 

(1) 1 2 2 1
=    

; 

(2) 1 2 3 1 2 3
( ) = ( )        

; 

(3) 1 2 2 1
=    

; 

(4) 1 2 3 1 2 3
( ) = ( )        

; 

(5) 1 2 2 1
= ( )     

; 

(6) 2 1 1 2
( )

      
. 

3.2. The Possibility Degree 
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The possibility degree, which is proposed from the probability viewpoint, is a very useful tool 

to rank uncertain data reasonably and accurately. 

Definition 8 ([49,50]). Let 1 2[ , ] [0,1]y y y   and 1 2[ , ] [0,1]z z z   be two real number intervals with 

uniform probability distribution, the probability y z  can be represented as ( )p y z , which exists the 

following properties: 

(1) 
0 ( ) 1p y z  

. 

(2) 
( ) ( ) 1p y z p z y   

. 

(3) If y z , then 
( ) ( ) 0.5p y z p z y   

. 

(4) If 


 is an arbitrary interval or number, 
( ) 0.5p y z 

, 
( ) 0.5p z  

, then 
( ) 0.5p y  

. 

(5) If 
min( ) max( )y z

, then 
( ) 1p y z 

. 

Based on the concept of the possibility degree, the possibility degree of two arbitrary positive 

SVTNNs is presented. 

Definition 9. Let  
1 2 3 4

[ , , , , ( ), ( ), ( )]a a a a T I F     and  
1 2 3 4

[ , , , , ( ), ( ), ( )]b b b b T I F     

be two positive SVTNNs, 
1 2 3 4

0 1a a a a     , 
1 2 3 4

0 1b b b b     . Then the possibility degree of 

   ( )p    can be defined as follows: 

 

 

4

4 11

4

4 1 4 11

4

4 11

max( , 0) ( ) 2 max ( ) ( ),01
( ) max 1 max , 0 , 0

2 ( ) ( ) 2 ( ) ( )

max( , 0) ( ) 2 max ( ) ( ), 0
                   max 1 max

i ii

i ii

i ii

i ii

b a b a T T
p

b a b b a a T T

b a b a I I

b a

 
 

  

 










    
 

       

    
 



    
   
     








 

4

4 1 4 11

4

4 11

4

4 1 4 11

, 0 , 0
( ) ( ) 2 ( ) ( )

max( , 0) ( ) 2 max ( ) ( ), 0
                   1 max 1 max , 0 ,0 ,

( ) ( ) 2 ( ) ( )

i ii

i ii

b b a a I I

b a b a F F

b a b b a a F F

 

 

 





     

    
  

      

   
  
    

   
  
    






 

 

where the value of [0,1]   is the coefficient that can reflect the attitudes of decision-makers. 0.5  , 

0.5   and 0.5   denotes, respectively, the decision-makers’ attitude of optimism, compromise and 

pessimism. 

Example 5. Let 1
[0.3,0.4,0.7,0.8], (0.8,0.2,0.4)   and 

2
[0.2,0.5,0.6,0.7], (0.6,0.1,0.3)   be 

two SVTNNs, 0.5  . The result of 
1 2

( )p    can be obtained as follows. 

Because 

 

 

4

4 1 2 11

4

4 1 4 1 2 11

max( , 0) ( ) 2 max ( ) ( ), 0

( ) ( ) 2 ( ) ( )

max(0.2 0.3, 0) max(0.5 0.4, 0) max(0.6 0.7, 0) max(0.7 0.8, 0) (0.7 0.4) 2 max 0.6 0.8, 0

0.2 0.3 0.5 0.4 0.6 0.7 0.7 0.8 (0

i ii

i ii

b a b a T T

b a b b a a T T

 

 





    

      

          


       




.7 0.2) (0.8 0.3) 2 0.6 0.8

0.4
0.222;

1.8

    

 
 

 

 
4

4 1 2 11

4

4 1 4 1 2 11

max( , 0) ( ) 2 max ( ) ( ), 0 0.4
0.25

1.6( ) ( ) 2 ( ) ( )

i ii

i ii

b a b a I I

b a b b a a I I

 

 





    
 

      




; 
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 
4

4 1 2 11

4

4 1 4 1 2 11

max( , 0) ( ) 2 max ( ) ( ), 0 0.4
0.25

1.6( ) ( ) 2 ( ) ( )

i ii

i ii

b a b a F F

b a b b a a F F

 

 





    
 

      




 

 

Therefore, we can obtain 

        

 

1 2

1
( ) max 1 max 0.222,0 ,0 0.5 max 1 max 0.25,0 ,0 1 max 1 max 0.25,0 ,0

2.5

1
                  = 0.778 0.5 0.75 0.25

2.5

                 0.561.

p          

  





 

 

Theorem 2. Let  
1 2 3 4

[ , , , , ( ), ( ), ( )]a a a a T I F     and  
1 2 3 4

[ , , , , ( ), ( ), ( )]b b b b T I F     

be two positive SVTNNs, 
1 2 3 4

0 1a a a a     , 
1 2 3 4

0 1b b b b     . Then the following properties 

must be true. 

(1) 
0 ( ) 1p   

. 

(2) 
( ) ( ) 1p p     

. 

(3) If 
i i

a b , 1, 2, 3, 4i  , 
( ) ( )T T 

, 
( ) ( )I I 

 and 
( ) ( )F F 

, then 

( ) ( ) 0.5p p     
. 

(4) If 


 is an arbitrary positive SVTNN, 
( ) 0.5p   

, 
( ) 0.5p   

, then 
( ) 0.5p   

. 

(5) If 
1 4
a b , 

( ) ( )T T 
, 

( ) ( )I I 
 and 

( ) ( )F F 
, then 

( ) 1p   
. 

Now we prove the property (2), the proofs of other properties are similar to the proof the 

property (2), thus, they are omitted. 

Proof. Let 
 

4

4 11

4

4 1 4 11

max( , 0) ( ) 2 max ( ) ( ), 0
( , )

( ) ( ) 2 ( ) ( )

i ii

i ii

b a b a T T
x

b a b b a a T T

 
 

 





    


      




, 

 
4

4 11

4

4 1 4 11

max( , 0) ( ) 2 max ( ) ( ), 0
( , )

( ) ( ) 2 ( ) ( )

i ii

i ii

b a b a I I
y

b a b b a a I I

 
 

 





    


      




,

 
4

4 11

4

4 1 4 11

max( , 0) ( ) 2 max ( ) ( ), 0
( , )

( ) ( ) 2 ( ) ( )

i ii

i ii

b a b a F F
z

b a b b a a F F

 
 

 





    


      


 . 

Then 

         
1

( ) max 1 max ( , ), 0 , 0 max 1 max ( , ), 0 ,0 1 max 1 max ( , ), 0 , 0
3

p x y z              
. 

 

Because 

   
4 4

4 1 4 11 1

4 4

4 1 4 1 4 1 4 11 1

4

4 1 4 11

( , ) ( , )

max( ,0) ( ) 2 max ( ) ( ), 0 max( ,0) ( ) 2 max ( ) ( ), 0

( ) ( ) 2 ( ) ( ) ( ) ( ) 2 ( ) ( )

( ) ( ) 2

i i i ii i

i i i ii i

i ii

x x

b a b a T T a b a b T T

b a b b a a T T a b a a b b T T

a b a b b a

   

   

   

 

 





         
 

             

     


 
 


4

4 1 4 11

( ) ( )
1;

( ) ( ) 2 ( ) ( )
i ii

T T

a b a a b b T T

 

 





        

( , ) ( , ) 1y y    
; 

( , ) ( , ) 1z z    
. 
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We can obtain 
     max 1 max ( , ), 0 , 0 max 1 max ( , ), 0 , 0 1x x       ; 

  max 1 max ( , ), 0 , 0y     max 1 max ( , ), 0 , 0 1y     ; 

     1 max 1 max ( , ), 0 , 0 1 max 1 max ( , ), 0 , 0 1z z         . 

Therefore,  

        

        

 

( ) ( )

1
max 1 max ( , ), 0 ,0 max 1 max ( , ), 0 ,0 1 max 1 max ( , ), 0 ,0

2

1
  max 1 max ( , ), 0 ,0 max 1 max ( , ), 0 ,0 1 max 1 max ( , ), 0 ,0

2

1
1 1 1.

2

p P

x y z

x y z

   

      


      







      


      


   


 

 

 

 

 

 

□ 

□ 

The proof of the property (2) is completed now. 

3.3. The Comparison Method of SVTNNs 

In this subsection, based on the concept of the possibility degree of two arbitrary positive 

SVTNNs defined in Definition 9, the new comparison method for two SVTNNs is presented. 

For comparing different SVTNNs in decision-making process, Ye [44] defined the score 

function and comparison of SVTNNs. 

Definition 10 [44] Let    
1 2 3 4
, , , , ( ), ( ), ( )a a a a T I F     and 

   
1 2 3 4

= , , , , ( ), ( ), ( )b b b b T I F     be two SVTNNs. Then the score degree of   ( )S   can be defined 

as follows: 

 
1 2 3 4

1
( ) ( ) 2 ( ) ( ) ( )

12
S a a a a T I F          

. 
 

If 
( ) ( )S S 

, then 
 

; if 
( ) ( )S S 

, then 
 

; if 
( ) ( )S S 

, then 
 

. 

However, the score function is operated by assuming that the parameters of trapezoidal fuzzy 

numbers own same weight, which cannot reflect the different importance for the four parameters of 

a trapezoidal fuzzy number and make aggregating result bias. 

Example 6. Let 
1

[0.1,0.3,0.5,0.6], (0.6,0,0.4)   and 
2

[0,0.4,0.5,0.6], (0.6,0,0.4)   be two 

SVTNNs. 

1

1
( ) (0.1 0.3 0.5 0.6) (2 0.6 0 0.4) 0.275

12
S          

; 
2

( ) 0.275S   . 
 

We cannot compare these two SVTNNs using the above function but it is easy to know that 
1
  

is superior to 
2

 . 

Meanwhile, the function operates the indeterminacy-membership degree as like the 

false-membership degree, which does not take the preference of decision-makers into consideration. 

Example 7. Let 
1

[0.2,0.3,0.4,0.5], (0.6,0,0.4)   and 
2

[0.2,0.3,0.4,0.5], (0.6,0.4,0)   be two 

SVTNNs. 
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1

1
( ) (0.2 0.3 0.4 0.5) (2 0.6 0 0.4) 0.257

12
S          

; 
2

( ) 0.257S   . 
 

1 2
( ) ( )S S 

 indicates that 1


 is equal to 2


. However, it is obvious that 2


 is superior to 

1


. 

These shortcomings existing in the score function given in Definition 10 may make the 

comparison results of SVTNNs unacceptable. For overcoming the limitations of Definition 10, based 

on the concept of the possibility degree of two arbitrary positive SVTNNs defined in Definition 9, we 

propose a new comparison method. 

Definition 11. Let   and   be two positive SVTNNs,   be an arbitrary positive SVTNN and then the 

comparison method can be defined as follows. 

(1) If 
( ) ( )p p    

, then 
 

, i.e.,   is superior to 


. 

(2) If 
( ) ( )p p    

, then 
 

, i.e.,   is equal to 


. 

(3) If 
( ) ( )p p    

, then 
 

, i.e., 


 is superior to  . 

Example 8. Let 0.5  . When using the data of Example 4 and the following can be obtained. 

1 2
( ) 0.508p   

; 2 1
( ) 0.492p   

, so 1 2
 

.  

When using the data of Example 5 and the following can be obtained. 

1 2
( ) 0.329p   

; 2 1
( ) 0.671p   

, so 2 1
 

.  

Thus, the results of the above two examples are consistent with our common sense. Because the 

score function can overcome the shortcoming existing in Reference [44] by calculating the 

indeterminacy-membership degree by taking into account the preference of decision-makers, the 

results are more grounded in reality than the results obtained by using the score degree proposed by 

Ye [44]. 

4. Single Valued Trapezoidal Neutrosophic Power Aggregation Operators 

In this section, the SVTNPA and SVTNPG operators based on the new operations of SVTNNs 

are developed. 

Definition 12. Let  
1 2 3 4

[ , , , ], ( ), ( ), ( )
i i i ii i i ia a a a T I F     be a collection of positive SVTNNs. Then 

the single valued trapezoidal neutrosophic power average (SVTNPA) operator can be defined as follows: 

     

 

1 2

1 2 1 2

1 1 1

1

1

1 ( )1 ( ) 1 ( )
, , , )

1 ( ) 1 ( ) 1 ( )

1 ( )
                                    ,

1 (

(

)

n

n nn n n

i i ii i i

n i

i in

ii

GG G

G G G

G

G

SVTNPA
 

     
  






  





 
     

  


 



 
 
 

  


 

 

where 
1,

( ) ( , )
n

i i jj j i
G Sup  

 
  , ( , )

i j
Sup    is the support for 

i
  from 

j
 , satisfying the following 

properties. 

(1) 
( , ) [0,1]

i j
Sup   

. 

(2) 
( , ) ( , )

i j j i
Sup Sup   

. 
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(3) If ( ) ( ) ( ) ( )
i j j i

p p p p             , then ( , ) ( , )
i j

Sup Sup    , where   and 

  are two positive SVTNNs, ( )
i j

p   , ( )
j i

p   , ( )p    and ( )p    are the 

possibility degree of 
i j

  , 
j i

  ,    and   . 

The support for 
i
  from 

j
  can be obtained using the function 

( , ) 1 ( ) ( )
i j i j j i

Sup p p         . Obviously, the closer the values of the score of 
i
  and 

j
 , the more they support each other. 

Theorem 3. Let  1 2 3 4
[ , , , ], ( ), ( ), ( ) ( 1,2, , )

i i i ii i i ia a a a T I F i n        be a collection of positive 

SVTNNs. The aggregated result, obtained by using the SVTNPA operator, is also a positive SVTNN, and 

 

       

1 2 1

1

1 2 3 41 1 1 1

1 ( )
, , , )

1 ( )

                                    ( ) , ( ) , ( ) , ( ) ,

( ) (
                                         

(
n i

n i in

ii

n n n n

i i i i i i i ii i i i

i i

SVTNP
G

G

a a a a

T

A


   


       

  





   


    





 
 
 

  



   

     
1 1 1

1 1 1

) ( ) ( ) ( ) ( )
, , ,

( ) ( ) ( )

n n n

i i i ii i i

n n n

i i ii i i

I F     

     

  

  

 
  
 

  
  

 

 

where 
1,

( ) ( , )
n

i i jj j i
G Sup  

 
  , ( , ) 1 ( ) ( )

i j i j j i
Sup p p          is the support for 

i
  

from 
j

 , 
 

1

1 ( )
( )

1 ( )

i

i n

ii

G

G


 








,  1 2 3 4

1
( ) ( ) 2 ( ) 2 ( ) ( )

6
i i i i i i i i i

a a a a             , 

( )
i j

p    and ( )
j i

p    are the score functions of 
i j

  , 
j i

  . 

Proof. According to Definition 8, the aggregated result is also a positive SVTNN. Therefore, 

Theorem 3 can be easily proven by using a mathematical induction on n . 

(1) For 2n  , since 

 
   1 1

1 1 11 1 12 1 13 1 14 1 1 12

1

1 ( )
( ) , ( ) , ( ) , ( ) , ( ), ( ), ( )

1 ( )
ii

G
a a a a T I F

G


           








; 

 

 
   2

2 2 21 2 22 2 23 2 24 2 2 22

1

1 ( )
( ) , ( ) , ( ) , ( ) , ( ), ( ), ( )

1 ( )
ii

G
a a a a T I F

G


           








. 

 

Then 

   

 

1 2

1 2 1 22 2

1 1

1 11 2 21 1 12 2 22 1 13 2 23 1 14 2 24

1 1 2 2 1 1 2 2

1 2 1 2

1 ( ) 1 ( )
, )

1 ( ) 1 ( )

( ) ( ) , ( ) ( ) , ( ) ( ) , ( ) ( ) ,

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
   , ,

( ) ( ) ( ) ( )

(

i ii i

G G

G G

a a a a

SVTNPA

a a a a

T T I I

 
   

 

               

            

       

 

 
 

 

    

 

 

 

1 1 2 2

1 2

( ) ( ) ( ) ( )
.

( ) ( )

I I    

   





 
 
  □ 

 

(2) If we hold n k , then 
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 

       

1 2 1

1

1 2 3 41 1 1 1

1 ( )
, , , )

1 ( )

                                    ( ) , ( ) , ( ) , ( ) ,

( ) (
                                         

(
k i

n i ik

ii

k k k k

i i i i i i i ii i i i

i i

SVTNP
G

G

a a a a

T

A


   


       

  





   


    





 
 
 

  



   

     
1 1 1

1 1 1

) ( ) ( ) ( ) ( )
, , .

( ) ( ) ( )

k k k

i i i ii i i

k k k

i i ii i i

I F     

     

  

  

 
 
 
 

  
    

 

When 1n k  , by the operations described in Definition 10, we have 

   

       

1

1 2 1 1

1 1

1 1 1 1

1 2 3 41 1 1 1

1 ( ) 1 ( )
, , , )

1 ( ) 1 ( )

                                    ( ) , ( ) , ( ) , ( ) ,

               

(

 

k i k

n i i kn n

i ii i

k k k k

i i i i i i i ii i i i

G G

G G

a a a

SVTNPA

a

 
    

 

       



 

 

   

   

 
     

 



 
 
 

  

 

   

     
1 1 1

1 1 1

1 1 1

1 1 1

( ) ( ) ( ) ( ) ( ) ( )
                        , , .

( ) ( ) ( )

k k k

i i i i i ii i i

k k k

i i ii i i

T I F        

     

  

  

  

  

 
 
 
 

  
  

 

 

□ 

So, 1n k  , Theorem 2 is also right. 

According to (1) and (2), we can get Theorem 3 hold for any n . 

Example 9. Let    
1

0.3,0.4,0.7,0.8 , 0.8,0.2,0.4  ,    
2

0.2,0.5,0.6,0.7 , 0.6,0.1,0.3  ,

   
3

0.3,0.4,0.5,0.6 , 0.7,0.3,0.3   and    
4

0.3,0.5,0.5,0.7 , 0.6,0.2,0.3   be four positive 

SVTNNs, 0.8  . Then 
1 2 3 4

( , , ),SVTNPA      can be calculated as follows. 

Because 1 2
( ) 0.566p   

, 1 3
( ) 0.541p   

, 1 4
( ) 0.547p   

, 2 3
( ) 0.452p   

, 

2 4
( ) 0.467p   

, 3 4
( ) 0.530p   

, we can obtain the following results. 

 
     

3

1 11,

4

1 12

( ) ( , )

1 ( ) ( )

1 0.566 0.434 1 0.541 0.459 1 0.547 0.453

2.692,

        

        
        

jj j i

j jj

G Sup

p p

  

   

 





  

        




  

 

2
( ) 2.707G   , 

3
( ) 2.762G   , 

4
( ) 2.779G   . 

 

         
1

1 4

1

1 ( ) 1 2.692
( ) 0.247

1 2.692 1 2.707 1 2.762 1 2.7791 ( )
ii

G

G


 




 
  

      
, 

2
( ) 0.248  

, 3
( ) 0.252  

, 4
( ) 0.253  

. 

 

 
1 1 11 1 12 1 13 1 14

1 1
( ) ( ) 2 ( ) 2 ( ) ( ) 0.247 (0.3 2 0.4 2 0.7 0.8) 0.136

6 6
a a a a                     

, 

2
( ) 0.128  

, 3
( ) 0.113  

, 4
( ) 0.127  

. 

 

Therefore, 
   

1 2 3 4
( , , ) 0.275,0.450,0.574,0.699 , 0.676,0.197,0.327,SVTNPA     

. 

Theorem 4. Let  
1 2 3 4

[ , , , ], ( ), ( ), ( ) ( 1,2, , )
i i i ii i i ia a a a T I F i n        be a collection of positive 

SVTNNs. If ( , )  ( [0,1], , 1, 2, , )
i j

Sup c c i j j n         , then SVTNPA operator reduces to single valued 

trapezoidal neutrosophic average (SVTNA) operator as follows: 
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1 2 1 2 1
, , , ) ,( ,( , )

1n

n n i i
SVTNPA SVTNA

n
      


        

 
 
 

  

Proof. Because ( , )  ( [0,1], , 1, 2, , )
i j

Sup c c i j j n         , we have 

1,
( ) ( , ) ( 1)

n

i i jj j i
G Sup n c  

 
   . 

Therefore,  

   
1 2 1 1 1

1 1

1 ( ) 1 ( 1)
, , , )

1 ( ) 1 ( 1)
(

1n n ni i

n i i i i i in n

ii i

G
SVTNPA

n c

G n c n


     


  

 

  
        

  

     
           . 

□ 

□ 

Finally, we can get  
1 2 1 2 1
, ,( (, ) , , , )

n

n n i i
SVTNPA SVTNA      


          and the proof of 

Theorem 4 is completed now. 

Definition 13. Let  1 2 3 4
[ , , , ], ( ), ( ), ( ) ( 1,2, , )

i i i ii i i ia a a a T I F i n        be a collection of positive 

SVTNNs. Then the single valued trapezoidal neutrosophic power geometric (SVTNPG) operator can be defined 

as follows: 

     
 

1 2

1 1 1

1

1 ( )1 ( ) 1 ( )

1 ( )
1 ( ) 1 ( ) 1 ( )

1 ( )1 2 1 2 1
( , , , )

n

n n n i
i i ii i i n

ii

GG G

G
G G G n

Gn n i

i

SVTNPG

 


  

     


  



 


  



            
 
 
  , 

 

where 
1,

( ) ( , )
n

i i jj j i
G Sup  

 
  , ( , )

i j
Sup    is the support for 

i
  from 

j
 . 

Theorem 5. Let  1 2 3 4
[ , , , ], ( ), ( ), ( ) ( 1,2, , )

i i i ii i i ia a a a T I F i n        be a collection of positive 

SVTNNs. The aggregated result, obtained by using the SVTNPG operator, is also a positive SVTNN, and 

 

    

  

( )

1 2 1

( ) ( )( )( ) ( ) ( )

41 2 3 1 111 1 1

( )

1

, , , )

, ( ) ,1 1 ( ) ,, , ,

 

(

     1 1 ( ) ,

i

i iii i i

i

n

n i i

n nnn n n

i iii i i i iii i i

n

ii

T Ia

SVTNPG

a a a

F

 

         

 

   

 





   



    

  

 

     

  

 

where 
 

1

1 ( )
( )

1 ( )

i

i n

ii

G

G


 








, 

1,
( ) ( , )

n

i i jj j i
G Sup  

 
  , 

( , ) 1 ( ) ( )
i j i j j i

Sup p p          is the support for 
i
  from 

j
 , ( )

i j
p    and ( )

j i
p    

are the score functions of 
i j

  , 
j i

  . 

The proof of Theorem 5 can refer to Theorem 3. 

Example 10. Use the data of Example 9. Then 
1 2 3, , )(SVTNPG     can be calculated as follows. 

According to Example 9, we can get 1
( ) 0.247  

, 2
( ) 0.248  

, 3
( ) 0.252  

, 4
( ) 0.253  

; 

So, 
   

1 2 3 4
( , , ) 0.271,0.447,0.569,0.696 , 0.669,0.204,0.326,SVTNPG     

.  

Theorem 6. Let  
1 2 3 4

[ , , , ], ( ), ( ), ( ) ( 1,2, , )
i i i ii i i ia a a a T I F i n        be a collection of positive 

SVTNNs. If ( , )  ( [0,1], , 1, 2, , )
i j

Sup c c i j j n         , then SVTNPG operator reduces to single valued 

trapezoidal neutrosophic geometric (SVTNG) operator as follows: 
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 
1 2 1 2 1

1
, , , ) , , , )( (

n

n n i i

n
SVTNPG SVTNG      


         .  

The proof of Theorem 6 can refer to Theorem 4. 

5. A MCGDM Method Based on Possibility Degree and Power Aggregation Operators under 

Single Valued Trapezoidal Neutrosophic Environment 

In this section, the possibility degrees of SVTNNs, single trapezoidal neutrosophic power 

weighted aggregation operators are applied to MCGDM problems single valued trapezoidal 

neutrosophic information. 

For a MCGDM problems with single valued trapezoidal neutrosophic information, assume that 

the set of alternatives is 
1 2

{ , , , }
m

B B B B   , 
1 2

{ , , , }
t

D D D D    is the set of decision-makers who 

evaluate the alternatives according to the criteria 
1 2

{ , , , }
n

C C C C   . The evaluation information 

( 1,2, , ; 1, 2, , ;
y

ij
i m j n      1, 2, , )y t     which is described by positive SVTNNs, can be given by 

decision-makers ( 1, 2, , )
y

D y t     when they assess the alternatives ( 1, 2, , )
i

B i m    with respect 

to the criteria ( 1, 2, , )
j

C j n     and then the decision matrices ( )
y

y ij m n
R 


  are obtained. A 

method of determining the ranking of the alternatives is introduced here and the decision-making 

procedures are shown as follows. 

Step 1. Normalize the decision matrices. 

Normalize the decision-making information 
y

ij
  in the matrices ( )

y

y ij m n
R 


 . The criteria can 

be classified into the benefit type and the cost type. For the benefit-type criterion, the form of the 

evaluation information needs no change; but for the cost-type criterion, the negation operator is 

used. 

The normalization of the decision matrices can be represented as follows: 

            ,

( )   ,

y y

ij ij j T

y y

ij ij j T

C B

neg C C

 

 

 

 








, 

 

where 
T

B  is the set of benefit-type criteria and TC  is the set of cost-type criteria. 

The normalized decision matrices are denoted as ( )
y

y ij m n
R 


  . 

Step 2. Aggregate the values of alternatives on each criterion to get the collective SVTNNs. 

Based on the Definitions 12 or 13, the collective SVTNNs ij  or ij  can be gotten by SVTNPA 

or SVTNPG operator, the aggregation values of decision-makers on each alternative are as follows: 

1 2
,( , , )

y y y

iy i i in
SVTNPA       

 or 1 2
,( ), ,

y y y

iy i i in
SVTNPG       

. 
 

Then the collective preference matrix ( )
iy m y

P 


  or ( )
iy m y

P 


   can be obtained. 

Step 3. Aggregate the values of alternative on each decision-maker to get the overall SVTNNs. 

Based on the Definitions 12 or 13, the overall SVTNNs ij  or ij  can be gotten by SVTNPA or 

SVTNPG operator, the aggregation values of alternative on each decision-maker are as follows: 

1 2
,( , , )

i i i it
SVTNPA     

 or 1 2
,( ), ,

i i i it
SVTNPA        

.  

Then the coverall preference matrix ( )
i

K   or ( )
i

K    can be obtained. 
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Step 4. Calculate the possibility degrees of the assessment values of each alternative superior than 

other alternatives’ values. 

Based on Definition 9, the possibility degrees of 
'
( ')

i i
i i    or 

'
( ')

i i
i i     can be 

obtained. The matrix of 
'
)(

i i
p    or 

'
)(

i i
p     can be represented as  

'
( )

i i m m
U p  


   or 

 
'

( )
i i m m

U p  


   . 

Step 5. Calculate the collective possibility degree index of each alternative to derive the overall 

values of the alternatives. 

Aggregate U  or U  to get the overall possibility degree index ( )
i

p B  of the alternative 
i

B  

by using the following functions: 

'' 1, '
( ) ( )

1

1

m

i i ii i i
p B p

m
 

 



   or 

'' 1, '
( ) ( )

1

1

m

i i ii i i
p B p

m
 

 



    .  

Then the overall possibility degree index matrix  ( )
T

iQ p B  or  ( )
T

iQ p B   can be 

obtained. 

Step 6. Rank the alternatives and select the best one. 

According to the results obtained in Step 5, rank the alternatives by the overall values in 

descending order and the first order alternative is the best. 

6. Illustrative Example 

In this section, a green supplier selection problem is used to illustrate the validity and 

effectiveness of the developed method. 

6.1. Background 

The following case background is adapted from [51]. 

In recent years, more and more people pay attention the serious environmental problems 

caused badly by the rapid economic development of all over the world. The green supply chain 

management becomes imperative under this situation because of its advantages on the sustainable 

development of economics and protection of environment. Meanwhile, it can bring tremendous 

economic benefit and competitive strengthen for the enterprises. 

Motivated by the advantages of green supply chain management, Shanghai General Motors 

(SGM) Company wants to select the most appropriate green supplier as its cooperative alliance. 

After pre-evaluation, four suppliers become the final alternatives for further evaluation, including 

Howden Hua Engineering Company ( 1B ), Sino Trunk ( 2B ), Taikai Electric Group Company ( 3B ) 

and Shantui construction machinery Company ( 4B ). SGM employs four experts ( ( 1, 2,3, 4)
y

D y  ) 

coming from the departments of production, purchasing, quality inspection, engineering to form a 

group of decision-makers for evaluating the four suppliers ( 1, 2,3, 4)
i

B i   according the product 

quality (
1

C ), technology capability ( 2C ), pollution control ( 3C ) and environment management ( 4C ). 

The four experts ( 1, 2,3, 4)
y

D y   give their assessment information about the four green suppliers 

( 1, 2,3, 4)
i

B i   according to the four criteria ( ( 1, 2, 3, 4)
j

C j  ). Assume that the four experts’ 

attitudes on evaluating the four green suppliers are neutral, that is 0.5  . The assessment 

information ( 1,2,3,4; 1,2,3,4;y
ij i j   1,2,3,4)y   is described by SVTNNs and the decision 

matrices are shown in 
1

R , 
2

R ,
3

R  and 4R . 
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 
 
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 
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6.2. The Procedures of Single Valued Trapezoidal Neutrosophic MCGDM Method 

The proposed MCGDM method is used for determining the ranking of the green suppliers. 

Step 1. Normalize the decision matrices. 

The four criteria ( 1, 2, 3, 4)
j

C j   are regarded as the benefit-type criterion, so the decision 

matrices change nothing. 

Step 2. Aggregate the values of the four alternatives on each criterion to get the collective SVTNNs. 

Use the SVTNPA or SVTNPG operator to aggregate the values of four alternatives on each 

criterion, the collective SVTNNs are obtained shown in P  and P . 
1 2 3                                                                                                                                                                                                  D D D 4

1
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Step 3. Aggregate the values of the four alternatives on each green supplier to get the overall 

SVTNNs by using the SVTNPA or SVTNPG operator. 

The coverall preference matrix shown in K  or K . 

1

2

3

4

[0.36,0.54,0.65,0.79], (0.51,0.25,0.32)

[0.37,0.52,0.66,0.79], (0.55,0.22,0.31)

[0.26,0.40,0.57,0.74], (0.54,0.25,0.23)

[0.22,0.35,0.50,0.64], (0.53,0.28,0.21)
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B
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B

B
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3

4

[0.32,0.52,0.64,0.78], (0.50,0.27,0.34)

[0.33,0.50,0.64,0.77], (0.54,0.23,0.31)

[0.22,0.37,0.55,0.73], (0.54,0.25,0.25)

[0.18,0.32,0.48,0.63], (0.52,0.30,0.22)

B

B
K

B

B

 
 
 
 
 
 



 

 

Step 4. Calculate the possibility degrees of the assessment values of each alternative superior than 

other alternatives’ values to get the possibility degrees matrix U  or U . 



Symmetry 2018, 10, 590 18 of 22 

 

1 2 3 4

1

2

3

4

                         

0.48 0.51 0.54

0.52 0.52 0.54

0.48 0.48 0.53

0.47 0.46 0.47

B B B B

B

B
U

B

B

 
 

 
 
 

   

 

1

2

3

4

0.48 0.51 0.53
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   

Step 5. Calculate the collective possibility degree index of each alternative to derive the overall 

values of the alternatives. 

Aggregate U  or U  to get the overall possibility degree index and the overall possibility 

degree index matrix Q  or Q . 

 
1 2 3 4                          

0.512 0.526 0.497 0.465

B B B B

Q 
  

1 2 3 4                          

0.510 0.528 0.494 0.468

B B B B

Q 
 

 

Step 6. Rank the green suppliers and select the best one. 

The ranking of the four green suppliers is 2 1 3 4B B B B   . Therefore, SGM Company will 

choose Sino Trunk as its cooperative alliance. 

The rankings of green suppliers using the SVTNPA operators for different values of λ are 

shown in Figure 1. In general, larger values of λ are associated with relatively pessimistic 

decision-makers; thus, the alternatives were associated with relatively overall possibility degree 

index. In contrast, lower values of λ are associated with relatively optimistic decision-makers. When 

the decision-makers do not indicate any preferences, the most commonly-used value (λ = 0.5) is 

used.  

 

Figure 1. Rankings of various green suppliers for different values of λ. 

6.3. Comparison Analysis and Discussion 

In order to validate the accuracy of the proposed single valued trapezoidal neutrosophic 

MCGDM method, a comparative study is conducted based on the illustrative example in this paper 

and the method used for comparison was proposed by Ye [44]. 

When resolving the above example using the approach described in Reference [44], which 

involves the use of t trapezoidal neutrosophic weighted arithmetic averaging (TNWAA) operator or 

trapezoidal neutrosophic weighted geometric averaging (TNWGA) operator with known weights to 
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comprehensively analyze green suppliers, the weights of the decision-makers and criteria can be 

generated using the PA operator (
 1

1 ( )

1 ( )
i
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j n
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G

G
w




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
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
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( ) 1 ( ) ( )

n

ij ij ijj j j
G S S  

 
   ) and 

( )ijS   [44] is the score function value of the SVTNN 
ij

a . The overall values of four alternatives on 

each criterion obtained by using TNWAA operator are shown as the matrix M , the matrix M  got 

by using TNWGA operator. 
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9,0.52,0.62,0.74],(0.47,0.18,0.39) [0.31,0.52,0.69,0.86],(0.64,0.15,0.23) [0.21,0.38,0.56,0.66],(0.53,0.31,0.20) [0.47,0.60,0.72,0.85],(0.45,0.25,0.38)

[0.31,0.45,0.56,0.69], (0.50,0.28,0.26) [0.14,0.28,0.51,0.76],(0.65,0.20,0.25) [0.20,0.32,0.59,0.72],(0.54,0.26,0.25) [0.24,0.45,0.55,0.74],(0.47,0.25,0.23)

[0.27,0.39,0.56,0.66],(0.50,0.30,0.21) [0.12,0.25,0.39,0.59],(0.57,0.23,0.25) [0.14,0.28,0.42,0.57],(0.49,0.34,0.20) [0.23,0.39,0.56,0.70],(0.50,0.34,0.21)

 
 
 
 
  
   

 

The collective values of the four green suppliers can also be obtained by using the TNWAA 

operator as the matrix U  or the matrix U  by using the TNWGA operator. 

1

2

3

4

[0.37,0.52,0.66,0.78], (0.57,0.20,0.27)

[0.38,0.54,0.66,0.80], (0.55,0.22,0.29)

[0.26,0.40,0.57,0.74], (0.56,0.23,0.24)

[0.23,0.35,0.50,0.64], (0.56,0.26,0.19)

B

B
U

B

B

 
 
 
 
  
   

 

1

2

3

4

[0.33,0.50,0.64,0.77], (0.51,0.23,0.31)

[0.33,0.53,0.65,0.79], (0.49,0.27,0.34)

[0.22,0.37,0.55,0.73], (0.54,0.25,0.25)

[0.18,0.32,0.48,0.63], (0.51,0.30,0.22)

B

B
U

B

B

 
 
 
 
  
 



 

 

Finally, the score values ( 1,2,3, 4)
i
s i   of each green supplier can be obtained by using the 

score degree function show in the matrix H  or H . 

 
1 2 3 4                          

0.410 0.404 0.342 0.301

B B B B

H 
 

 
1 2 3 4                          

0.371 0.362 0.317 0.267

B B B B

H 
 

 

So, the ranking is 1 2 3 4B B B B    and the best green supplier obtained by using the 

approach in Reference [44] is 1B . The ranking results of different methods can be shown in Table 1. 

Table 1. The ranking results of different methods. 

Methods Operators Ranking of Alternatives 

The method 

in Reference 

[44] 

NNTWA operator 1 2 4 3
B B B B    

NNTWG operator 4 2 1 3
B B B B    

The proposed 

method 

SVTNPA operator and the possibility degrees 

SVTNNs 2 1 3 4
B B B B    

SVTNPG operator and the possibility degrees 

SVTNNs 2 1 4 3
B B B B    

From Table 1, it can be seen results of the ranking on the four green suppliers obtained by the 

proposed single trapezoidal neutrosophic MCGDM method in this paper is quite different from that 

the ranking obtained by the method introduced in Reference [44]. The main reasons are summarized 

as follows. 

(a) The new operations of SVTNNs defined in this paper, which take the conservative and reliable 

principle, can take account of the correlation between trapezoidal fuzzy numbers and three 
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membership degrees of SVTNNs. However, the operations in Reference [44] divide the 

trapezoidal fuzzy numbers and three membership degrees of SVTNNs into two parts and 

calculate them separately, which make aggregating results deviate from the reality. 

(b) The new comparison of SVTNNs proposed in this paper has some crucial advantages over 

comparison of SVTNNs based on the score degree function in Reference [44], which can take the 

preference of decision-makers into consideration. 

(c) The relationship among the aggregation information, which exists in the aggregation process of 

in practical MCDM problems, is ignored [44]. Whereas, the SVTNPA and SVTNPG operators, 

which can effectively take the relationship among the assessment information being aggregated 

into consideration and in this paper, the advantages of the possibility degree of SVTNNs are 

combined to rank the uncertain information reasonably and accurately from the probability 

viewpoint. Hence, the ranking result of this paper is more objective and reasonable than that 

obtained by using the operators in Reference [44]. 

7. Conclusions 

In order to improve the reasonability and effectiveness of the methods on dealing with single 

valued trapezoidal neutrosophic MCGDM problems, also overcome the limitations of the existing 

approaches. In this paper, a single valued trapezoidal neutrosophic MCGDM method is proposed 

form the possibility degree of SVTNNs and the single valued trapezoidal neutrosophic power 

aggregation operators. Firstly, the new operations of SVTNNs are proposed for avoiding 

information loss and distortion, the possibility degrees of SVTNNs are proposed from the 

probability viewpoint. Based on the proposed operations and possibility degrees, SVTNPA and 

SVTNPG operators are proposed. Furthermore, a single valued trapezoidal neutrosophic MCGDM 

method based on SVTNPA, SVTNPG operator and the possibility degrees of SVTNNs is developed. 

The prominent advantages of the proposed method are not only its ability to effectively deal with 

the preference information expressed by SVTNNs but also the consideration of the relationship 

among the information being aggregated in the process on dealing with the practical MCGDM 

problems and the advantage of the possibility degrees of SVTNNs, which can avoid information loss 

and distortion, is combined. Thus, the final results are more scientific and reasonable. Finally, the 

method is applied to a practical problem on selecting the most appropriate green supplier for SGM 

Company, meanwhile, the comparison with other method is carried on and demonstrates its 

feasibility and effectiveness in dealing with MCGDM problems. 

In future research, the developed method will be extended to other domains, such as personnel 

selection and medical diagnosis. 
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