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Abstract: In time series forecasting, information presentation directly affects prediction efficiency. 
Most existing time series forecasting models follow logical rules according to the relationships 
between neighboring states, without considering the inconsistency of fluctuations for a related 
period. In this paper, we propose a new perspective to study the problem of prediction, in which 
inconsistency is quantified and regarded as a key characteristic of prediction rules. First, a time 
series is converted to a fluctuation time series by comparing each of the current data with 
corresponding previous data. Then, the upward trend of each of fluctuation data is mapped to the 
truth-membership of a neutrosophic set, while a falsity-membership is used for the downward 
trend. Information entropy of high-order fluctuation time series is introduced to describe the 
inconsistency of historical fluctuations and is mapped to the indeterminacy-membership of the 
neutrosophic set. Finally, an existing similarity measurement method for the neutrosophic set is 
introduced to find similar states during the forecasting stage. Then, a weighted arithmetic 
averaging (WAA) aggregation operator is introduced to obtain the forecasting result according to 
the corresponding similarity. Compared to existing forecasting models, the neutrosophic 
forecasting model based on information entropy (NFM-IE) can represent both fluctuation trend 
and fluctuation consistency information. In order to test its performance, we used the proposed 
model to forecast some realistic time series, such as the Taiwan Stock Exchange Capitalization 
Weighted Stock Index (TAIEX), the Shanghai Stock Exchange Composite Index (SHSECI), and the 
Hang Seng Index (HSI). The experimental results show that the proposed model can stably predict 
for different datasets. Simultaneously, comparing the prediction error to other approaches proves 
that the model has outstanding prediction accuracy and universality. 

Keywords: information entropy; aggregation operator; forecasting; neutrosophic set 

1. Introduction 

Financial markets are a complex system where fluctuation is the result of combined variables. 
These variables cause frequent market fluctuations with trends exhibiting degrees of ambiguity, 
inconsistency, and uncertainty. This pattern implies the importance of time series representations, 
and thus, an urgent demand arises for analyzing time series data in more detail. To some extent, an 
effective time series representation can be understood from two aspects: traditional time series 
prediction approaches [1–4]; and the fuzzy time series prediction approaches [5,6]. The former 
emphasizes the use of a crisp set to represent the time series, while the latter uses the fuzzy set. 

Generally speaking, data are not only the source for prediction processes or prediction system 
inputs. The original data, however, are full of noise, incompleteness, and inconsistency, which limit 
the function of traditional prediction methods. Therefore, Song and Chissom [7–9] developed a 
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fuzzy time series model to predict real-time scenarios like college admissions. The fuzzification 
method effectively eliminates part of the noise inside the data, and the prediction performance of 
the time series is strengthened. Subsequently, with advancing research, the non-determinacy of 
information has become the main contradiction affecting prediction accuracy. Some studies 
proposed novel information representation approaches, such as the type 2 fuzzy time series [5], 
rough set fuzzy time series [10], and intuitionistic fuzzy time series [11]. 

Although the above work has achieved considerable results for specific problems, certain 
shortcomings remain that pose a barrier to the accuracy and applicability of predictions. More 
specifically, complex scenarios and variables in actual situations make it unrealistic to define and 
classify explicitly the membership and non-membership of elements. 

The neutrosophic sets (NSs) method, proposed by Smarandache [12] for the first time, is 
suitable for the expression of incomplete, indeterminate, and inconsistent information. A 
neutrosophic set consists of true-, indeterminacy-, and false-memberships. From the perspective of 
information representation, scholars have proposed two specific concepts based on the 
neutrosophic set: single-valued NSs [13] and interval-valued NSs [14]. These concepts are intended 
to seek a more detailed information representation, thereby enabling NSs to quantify uncertain 
information more accurately. To deal with the above problem, entropy is an important 
representation of the degree of the complexity and inconsistency. In a nutshell, entropy is more 
focused on the representation and measure of inconsistency, while NSs tends to describe 
uncertainty. Zadeh [15] first proposed the entropy of fuzzy events, which measures the uncertainty 
of fuzzy events by probability. Subsequently, De Luca and Termin [16] proposed the concept of 
entropy for fuzzy sets (FSs) based on Shannon's information entropy theory and further proposed a 
method of fuzzy entropy measurement. Since information entropy is an effective measurement in 
the degree of systematic order, it has been gaining popularity for different applications, such as 
climate variability [17], uncertainty analysis [18,19], financial analysis [20], image encryption [21], 
and detection [22]. Specifically, He et al. [23] proposed a collapse hazard forecasting method and 
applied the information entropy measurement to reduce the influence of collapse activity indices. 
Bariviera [24] proposed a prediction method based on the maximum entropy principle to predict 
the market and further monitor market anomalies. In Liang’s research [25], information entropy 
was introduced to analyze trends for capacity assessment of sustainable hydropower development. 
Zhang et al. [26] proposed a signal recognition theory and algorithm based on information entropy 
and integrated learning, which applied various types of information entropy including energy 
entropy and Renyi entropy. 

In order to describe the indeterminacy of fluctuations and further measure the inconsistency 
and uncertainty of dynamic fluctuation trends, we propose a neutrosophic forecasting model based 
on NSs and information entropy of high-order fuzzy fluctuation time series (NFM-IE). The biggest 
difference compared to the original models is that the NFM-IE represents both fluctuation trend 
information and fluctuation consistency information. First of all, a time series is converted to a 
fluctuation time series by comparing each of the current data and corresponding previous data in 
the time series. Then, the upward trend of each of the fluctuation data is mapped to the 
truth-membership of a neutrosophic set and falsity-membership for the downward trend. 
Information entropy of high-order fluctuation time series is introduced to describe the 
inconsistency of historical fluctuations and is mapped to the indeterminacy-membership of the 
neutrosophic set. Finally, an existing similarity measurement method for the neutrosophic set is 
introduced to find similar states during the forecasting stage, and the weighted arithmetic 
averaging (WAA) aggregation operator is employed to obtain the forecasting result according to the 
corresponding similarity. The largest contributions of the proposed model are listed as follows:  
(1) Introducing information entropy to quantify the inconsistency of fluctuations in related periods 
and mapping it to the indeterminacy-membership of neutrosophic sets allow NFM-IE to extend 
traditional forecasting models to a certain level. (2) Employing a similarity measurement method 
and aggregation operator allows NFM-IE to integrate more possible rules. In order to test its 
performance, we used the proposed model to forecast some realistic time series, such as the Taiwan 
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Stock Exchange Capitalization Weighted Stock Index (TAIEX), the Shanghai Stock Exchange 
Composite Index (SHSECI), the Hang Seng Index (HSI), etc. The experimental results show that the 
model has a stable prediction ability for different datasets. Simultaneously, comparing the 
prediction error with that from other approaches proves that the model has outstanding prediction 
accuracy and universality. 

The rest of this paper is organized as follows: Section 2 introduces the basic concepts of wave 
time series and information entropy. Then, the concepts proposed in this paper, such as 
neutrosophic fluctuation time series (NFTS) and the neutrosophic fluctuation logical relationship, 
are defined. Section 3 presents the specific modules of the model presented in this paper. Section 4 
details the prediction steps and validates the model using TAIEX as the dataset. Section 5 further 
analyzes the prediction accuracy and universality of the model based on SHSECI and HSI. Finally, 
the conclusions and prospects are presented in Section 6. 

2. Preliminaries 

2.1. Fluctuation Time Series 

Definition 1. Let {Vt|t = 1, 2, …, T} be a stock time series, where T is the number of observations. 
Then, {Ut|t = 2, 3, …, T} is called a fluctuation time series, where Ut = Vt – Vt-1(t = 2, 3, …, T). 

2.2. Information Entropy of the mth-Order Fluctuation in a Time Series 

Information entropy (IE) [27] was proposed as a measurement of event uncertainty. The 
amount of information can be expressed as a function of event occurrence probability. The general 
formula for information entropy is: 

𝐸 = −෍𝑝(𝑥௧)𝑙𝑜𝑔ଶே
௧ୀଵ (𝑝(𝑥௧)) (1) 

where p(·) is the probability function of a set of N events. In addition, the information entropy must 
satisfy the following conditions: ∑ 𝑝(𝑥௧) = 1, 0 < 𝑝(𝑥௧) < 1ே௧ୀଵ . The information entropy is always 
positive. 

According to the fuzzy set definition by Zadeh [28], each number in a time series can be 
fuzzified by its membership function of a fuzzy set 𝐿 = ൛𝐿ଵ, 𝐿ଶ, … . , 𝐿௚ൟ, which can be regarded as an 
event in a time series. For example, when g = 5, it might represent a set of linguistic event variants 
as: L = {L1, L2, L3, L4, L5} = {very low, low, equal, high, very high}, etc. 

Definition 2. Let F(t − 1), F(t − 2), …, F(t − m) be fuzzy sets of the mth-order fluctuation time 
series {Ut|t = m + 1, m + 2, …, T}. Let pUt(L1), pUt (L2), pUt (L3), pUt (L4), and pUt(L5) be the probabilities of 
the occurrence of the linguistic variants L1, L2, L3, L4, and L5 for F(t − 1), F(t − 2), …, F(t − m). The 
information entropy of the mth-order fluctuation is defined as: 

𝐸(𝑈௧) = −෍𝑝௎௧(𝐿௡)logଶ௚
௡ୀଵ (𝑝௎௧(𝐿௡)) (2) 

where g = 5, 𝐸(𝑈௧) is the information entropy of the mth-order fluctuation at point t in the fluctuation 
time series {Ut|t = m + 1, m + 2, …, T}. 

2.3. Neutrosophic Fluctuation Time Series  

Definition 3. (Smarandache [12]) Let W be a space of points (objects), with a generic element in 
W denoted by w. A neutrosophic set A in W is characterized by a truth-membership function TA(w), 
am indeterminacy-membership function IA(w), and a falsity-membership function FA(w). The 
functions TA(w), IA(w), and FA(w) are real standard or nonstandard subsets of ]0−,1+[, where 
0 0 ε− = − , +1 1 ε= + , 0ε >  is an infinitesimal number. There is no restriction on the sum of 
TA(w), IA(w), and FA(w). 
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Definition 4. Let {Ut|t = 2, 3, …, T} be a fluctuation time series of a stock time series as defined 
in Definition 1. A number Ut in U is characterized by an upward-trend function T(Ut), a 
fluctuation-inconsistency function I(Ut), and downward-trend function F(Ut), which can be 
correspondingly mapped to the truth-membership, indeterminacy-membership, and 
falsity-membership dimension of a neutrosophic set, respectively. The upward-trend function T(Ut) 
and downward-function F(Ut) are defined according to the number Ut shown as follows: 

1 1

1 1 2 1 2 2 1 2 1 2

0, 1,
( ) ( , , ), ( ) ( , , ),

1, 1,

t t

t t t t t t

U m U o
T U f U m m m U m F U f U o o o U o

otherwise otherwise

 ≤ ≤
 

= ≤ ≤ = ≤ ≤ 
 
 

　          　          

　 　

　　　     　　　     

 (3) 

where jm  and jo  (j = 1, 2) are parameters according to the fluctuation time series. 
The fluctuation-inconsistency function I(Ut) can be represented by the information entropy 𝐸(𝑈௧) as defined in Equation (2). 
Thus, a fluctuation time series {Ut|t = 1, 2, 3, …, T} can be represented by a neutrosophic 

fluctuation time series {Xt|t = m + 1, m + 2, …, T}, where Xt = (T(Ut), I(Ut), F(Ut)) is a neutrosophic set.  

2.4. Neutrosophic Logical Relationship  

Definition 5. Let {Xt|t = 1, 2, 3, …, T} be a fluctuation time series. If there exists a relation  
R(t, t + 1), such that: 

Xt+1 = Xt ◦ R(t, t + 1) (4) 

where ◦ is a max–min composition operator, Xt+1 is said to be derived from Xt, denoted by the 
neutrosophic logical relationship (NLR) Xt→Xt+1. Xt and Xt+1 are called the left-hand side (LHS) and 
the right-hand side (RHS) of the NLR, respectively. Xt+1 can also represented by Dt. Therefore, 
Xt→Xt+1 can also be represented by Xt→Dt. 

The Jaccard index, also known as the Jaccard similarity coefficient, is used to compare 
similarities and differences between finite sample sets [29]. The larger the Jaccard similarity value, 
the higher the similarity. 

Definition 6. Let Xt, Xj be two NSs. The Jaccard similarity between Xt and Xj in vector space can 
be expressed as follows: 

𝐽 ቀ𝑋𝑡,𝑋𝑗ቁ = 𝑇𝑋𝑡𝑇𝑋𝑗 + 𝐼𝑋𝑡𝐼𝑋𝑗 + 𝐹𝑋𝑡𝐹𝑋𝑗(𝑇𝑋𝑡)ଶ + (𝐼𝑋𝑡)ଶ + (𝐹𝑋𝑡)ଶ + (𝑇𝑋𝑗)ଶ + (𝐼𝑋𝑗)ଶ + (𝐹𝑋𝑗)ଶ − (𝑇𝑋𝑡𝑇𝑋𝑗 + 𝐼𝑋𝑡𝐼𝑋𝑗 + 𝐹𝑋𝑡𝐹𝑋𝑗) (5) 

2.5. Aggregation Operator for NLRs 

Definition 7. Let { },...,1 2 t nX = X ,X X ,...,X , { }1 2, , , ,...,t nD D D D D= …
 be the LHSs and RHSs of 

a group of NLRs, respectively. The Jaccard similarities between Xt (t = 1, 2, ..., n) and Xj are 
,i jXS  (I = 1, 

2, ..., n), respectively. The corresponding Dj can be calculated by an aggregation operator [30] as: 

,
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According to the definition of NLR, Dj can be represented by Xj+1. 
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3. Research Methodology 

In this section, we will introduce a neutrosophic forecasting model for time series based on 
first-order state and information entropy of high-order fluctuation. The detailed steps are shown as 
follow steps and in Figure 1. 

Neutrosophication

The similarity between 
Xt, Xj

historical values

Using neutrosophic fluctuation sets  to 
describe a time series

Establish Logical 
Relationships For Training 
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Forecast Future Data Using 
Aggregation Operator
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Where is the similarity measure
,t jXS

 

Figure 1. The flowchart of the neutrosophic forecasting model. 

3.1. Step 1: Using Neutrosophic Fluctuation Sets to Describe a Time Series 

Let {Vt|t = 1, 2, 3, …, T} be a stock index time series and {Ut|t = 2, 3, …, T} be its fluctuation time 

series, where Ut = Vt-Vt−1 (t = 2, 3, …, T). Then, we can calculate 2

1

T

t
t=

U
len=

T −


, which is the benchmark 

for interval division when calculating membership. Let {Xt|t = m, m + 1, m + 2, …, T} be the mth-order 
neutrosophic expression of fluctuation time series {Ut|t = 2, 3, …, T}. The conversion rules for the 
truth-membership 𝑇௑೟ and falsity-membership 𝐹௑೟ of Xt are defined as follows: 

0                         , 0.5 1                          ,
1 1 +   ,  0.5              + ,  0.5

3/ 2 3 3/ 2 3
1                          ,   

t t

t t

t t
X t X t

t
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len len
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≤ − ≤ −
 −= − × ≤ ≤ = − ≤ ≤ × × ×

≥

　  　  

 

0                          ,   0.5t

en

U len






≥

 (7) 

3.2. Step 2: Using Information Entropy to Represent the Complexity of Historical Fluctuations 
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{Ut|t = 1, 2, 3, …, T} can be fuzzified according to a linguistic set L = {l1, l2, l3, l4, l5}. Specifically, 
min1 , 1.5[ )l   lenU − ×= , 2 [ 1.5 , 0.5 )l len len − −= × × , 3 [ 0.5 , 0.5 )l  lenlen  = − × × , 4 [0.5 , 1.5 )l len len = × × , 

and max5 [1.5 , )l len  U= × . The conversion rule for the indeterminacy-membership 𝐼௑೟ is defined as 
follows: 

𝐼௑೟ = −෍𝑝௑೟(𝐿௡)logଶ௚
௡ୀଵ (𝑝௑೟(𝐿௡)) (8) 

where g = 5, 𝑝௑೟(𝐿௡) indicates the probability of occurrence of the label ln in the past m days. 

3.3. Step 3: Establishing Logical Relationships for Training Data 

According to Definition 5, NLRs were established as a training dataset.
 

3.4. Step 4: Calculating the Similarities between Current Data and Training Data 

According to Definition 6, similarities between current data and training data were calculated. 
Let t be the current data of the point. 

,t jXS  is the similarity of NFTS between the current point t 

and training data j. 
 

3.5. Step 5: Forecasting Neutrosophic Value Using the Aggregation Operator 

According to Definition 7, the future neutrosophic fluctuation number 𝑋௧ାଵ can be generated 
based on the training dataset and the similarities with 𝑋௧. In order to eliminate very low similarity 
data, valid NLRs satisfy 

,t jXS w′≥ . 

3.6. Step 6: Deneutrosophication for the Neutrosophic Fluctuation Set and Calculating the Forecasted Value 

Calculating the expected value of the forecasted neutrosophic set 𝑋௧ାଵ , the forecasted 
fluctuation value can be calculated by: 

1 11 ( ) +V
t tt X X tV T F len
+ ++′ = − ×  (9) 

4. Empirical Analysis 

4.1. Prediction Process 

4.1.1. Step 1: After Calculating the Fluctuation Value in Stock Time Series, the Fluctuation Values 
Will Be Converted to Neutrosophic Time Series 

This study needs to select the parameters of the model and estimate its performance. Many 
studies in the field of fuzzy forecasting have used the data from January–October as the training set 
and the data from November–December as the test dataset. To facilitate comparison with these 
existing studies, we also selected data from November–December as the test dataset. Considering 
the characteristics of time series, traditional cross-validation methods (such as k-fold 
cross-validation) have poor adaptability. A subset of data after the training subset needs to be 
retained for validation of model performance. Therefore, we chose a special nested cross-validation, 
the outer layer of which was used to estimate the model performance and the inner layer of which 
was used to select the parameters. Specifically, in this paper, we used TAIEX's 1999 data as an 
example. The closing prices from 1 January–31 October were used as the training dataset. Among 
them, from January–August was a training subset, and from September–October was for validation. 
Logical relationships were constructed between each dataset and its closest ninth-order historical 
values. The closing prices from 1 November–31 December were used as forecast data, and 
performance was evaluated by comparing forecasting and realistic data. 
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For example, when the fluctuation value is U12 = 28.7, the sequence of linguistic variables is l4, 
l5, l3, l3, l2, l2, l2, l5, l3. 

12 1( )Up l  = 0, 
12 2( )Up l  = 0.3333, 

12 3( )Up l  = 0.3333, 
12 4( )Up l  = 0.1111, 

12 5( )Up l  = 

0.2222. Then, we can calculate the ninth-order fuzzy fluctuation information entropy as follows: 

12 12

5

12 2
1

( )= (28.7) ( ) log ( ( ))=1.8911U i U i
i

E U E p l p l
=

= −  (10) 

13 13

5

13 2
1

( )= ( 106.5) ( )log ( ( ))=1.5307U i U i
i

E U E p l p l
=

= −−   (11) 

14 14

5

2
1

( 33.89) ( ) log ( ( ))=1.3923U i U i
i

E p l p l
=

− = −  (12) 

…  

The information entropy of fluctuation time proposed in this paper is the intermediate term of 
NS. In order to maintain the consistency with the other two terms, the above results must be 
normalized. Normalized information entropy based on the maximum values of information 
entropy is calculated as follows: 

12
1.8911( ) =
3.70

0 1 1
00

.5 1E U′ =  (13) 

13
1.5307( ) =
3.70

0 1 7
00

.4 3E U′ =  (14) 

14
1.3923( ) =0.3763
3.7000

E U′ =  (15) 

…  

In order to convert the numerical data of stock market fluctuation time series into NS, it is 
necessary to calculate the elements corresponding to the truth-membership term and the 
falsity-membership term of NS. According to Equation (7), neutrosophic set membership can be 
calculated. For example, when the fluctuation value is U12=28.7, then truth-membership 𝑇௑భమ of X12 

is 28.7 1 + =0.5584  
3 / 2 3len×

 and falsity-membership 𝐹௑భమ  of X12 is 28.7 1 + =0.1082
3 / 2 3len

−
×

. Then, the 

fluctuation can be represented by the neutrosophic set as follows: 

12 0.5584,0.5111(2 ,08.7) ( 2).108X →  (16) 

13 0.0000,0.41( 106.5) ( 37,1.0 00)0X →−  (17) 

14 0.0675,0.37( 33.89) ( 63,0.5 91)9X →−  (18) 

…  

223 1.0000,0.39(148.18) ( 10,0. 0)000X →  (19) 

…  
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4.1.2. Step 2: According to Definition 5, Establishing Mapping Relationships Based on Historical 
Values, Historical Trends, and Current Values 

This step requires establishing neutrosophic logical relationships based on the feature and 
target sets, where X12 is the feature item of X13. 

4.1.3. Step 3: Calculating the Jaccard Similarity 

Jaccard similarity is usually used to compare similarities and differences of a limited set of 
samples. The higher the value, the higher the similarity. We used it to compare the current logical 
group with the logical groups in the training set in order to identify similar groups. 

223,12XS ′  

indicates the similarity between the 223rd and 12th groups. 

( )223,12 2 2 2 2 2 2

0.5584 1.0000 0.5111 0.3910 0.1082 0.0000
0.5584 0.5111 0.1082 1.0000 0.3910 0.0000 0.5584 1.0000 0.5111 0.3910 0.1082 0.0000

0.7742

X
+ +S

     
+ + + + +

     =

× × ×
+ + − × × ×

′ =  (22) 

4.1.4. Step 4: Forecasting the Neutrosophic Fluctuation Point Using the Aggregation Operator 

First, we applied the Jaccard similarity measure method to locate similar LHSs of NLRs. We 
tested different threshold values for the training data. In this example, it was set to 0.89, and we 
identified 65 groups that met the criteria. 

Furthermore, we calculated the forecasting NFTS using the aggregation operator:  
D224 = (0.5005, 0.5067, 0.3401) 

4.1.5. Step 5: Calculating the Forecasted Value 

Then, we calculated the predicted fuzzy fluctuation: 𝑌′(𝑡 + 1) = 0.5005 − 0.3401 = 0.1604 (23) 

We also calculated the real number of the fluctuation: 𝑈′(𝑡 + 1) = 𝑌′(𝑡 + 1) × 𝑙𝑒𝑛 = 0.1604 × 85 = 13.63 (24) 

Finally, the predicted value was obtained from the actual value of the previous day and the 
predicted fluctuation value: 𝑉′(𝑡 + 1) = 𝑉(𝑡) + 𝑈′(𝑡 + 1) = 7854.85 + 13.63 = 7868.47 (25) 

For the sample dataset, the complete prediction result of stock fluctuation trends and the actual 
values are shown in Table 1 and Figure 2. 

12 13 12( ) ( ) ( )X x X x D x→ =  (20) 

13 14 13( ) ( ) ( )X x X x D x→ =  (21) 

…  



Entropy 2019, 21, 455 9 of 18 

 

 
Figure 2. Forecasting results from 1 November 1999–30 December 1999. 

Table 1. Forecasting results from 1 November 1999–30 December 1999. 

Date 
(MM/DD/YY

YY) 
Actual Forecast (Forecast −  

Actual)2 

Date 
(MM/DD/YYY

Y) 
Actual Forecast (Forecast −  

Actual)2 

11/1/1999 7814.89 7868.47 2871.08 12/1/1999 7766.20 7719.40 2190.11 
11/2/1999 7721.59 7821.82 10,046.31 12/2/1999 7806.26 7770.62 1270.07 
11/3/1999 7580.09 7722.04 20,149.71 12/3/1999 7933.17 7814.75 14,022.27 
11/4/1999 7469.23 7577.92 11,813.96 12/4/1999 7964.49 7944.99 380.16 
11/5/1999 7488.26 7466.90 456.14 12/6/1999 7894.46 7968.41 5468.57 
11/6/1999 7376.56 7489.54 12,764.37 12/7/1999 7827.05 7895.11 4631.50 
11/8/1999 7401.49 7374.68 718.73 12/8/1999 7811.02 7826.02 225.13 
11/9/1999 7362.69 7399.02 1320.19 12/9/1999 7738.84 7808.59 4864.78 

11/10/1999 7401.81 7371.66 909.13 12/10/1999 7733.77 7738.76 24.94 
11/11/1999 7532.22 7391.20 19,887.04 12/13/1999 7883.61 7723.92 25,501.56 
11/15/1999 7545.03 7543.08 3.82 12/14/1999 7850.14 7897.06 2201.62 
11/16/1999 7606.20 7536.55 4851.14 12/15/1999 7859.89 7854.28 31.42 
11/17/1999 7645.78 7613.89 1017.07 12/16/1999 7739.76 7860.82 14,654.64 
11/18/1999 7718.06 7643.21 5603.26 12/17/1999 7723.22 7738.34 228.50 
11/19/1999 7770.81 7729.37 1716.87 12/18/1999 7797.87 7722.01 5754.66 
11/20/1999 7900.34 7780.44 14,376.84 12/20/1999 7782.94 7811.00 787.09 
11/22/1999 8052.31 7915.24 18,788.73 12/21/1999 7934.26 7782.84 22,929.50 
11/23/1999 8046.19 8068.19 483.82 12/22/1999 8002.76 7946.35 3182.30 
11/24/1999 7921.85 8046.12 15,443.79 12/23/1999 8083.49 8016.21 4526.63 
11/25/1999 7904.53 7919.37 220.29 12/24/1999 8219.45 8096.51 15,113.68 
11/26/1999 7595.44 7906.37 96,679.93 12/27/1999 8415.07 8233.25 33,058.13 
11/29/1999 7823.90 7592.64 53,479.11 12/28/1999 8448.84 8429.73 365.06 
11/30/1999 7720.87 7836.52 13,376.00 Root Mean Square Error (RMSE) 102.02 

Table 1 and Figure 2 show that NFM-IE was able to successfully forecast TAIEX data from  
1 November 1999–30 December 1999 based on the logical rules derived from training data. 
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4.2. Performance Assessments 

During the experimental analysis, some methods were used to measure prediction accuracy in 
order to quantify model prediction effects. These methods are mainly used in the prediction field, 
including the mean squared error (MSE), the root mean squared error (RMSE), the mean absolute 
error (MAE), and the mean absolute percentage error (MAPE). 

These expressions are respectively illustrated by Equations (26)–(29): 
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where forecastt represents the predicted observations and actualt represents actual observations. 
Theil's U index [31] is primarily used to measure the deviation between predicted and actual 

values. It can get a relative value between zero and one, where zero means that the actual value is 
equal to the predicted value, that is the prediction model is perfect. At the same time, one indicates 
that the model prediction effect is not satisfactory. Theil´s U index is expressed as follows: 
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1 1
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  (30) 

According to Equations (26)–(30), we separately predicted TAIEX data from 1997–2005 and 
further calculated the error for each year. 

Table 2. Comparing results of different error statistics methods for Taiwan Stock Exchange 
Capitalization Weighted Stock Index (TAIEX) data collected from 1997–2005. 

Year 1997 1998 1999 2000 2001 2002 2003 2004 2005 
RMSE 141.42 114.69 102.02 129.94 114.22 66.84 53.88 55.24 53.1 
MSE 19,999.62 13,153.80 10,408.08 16,884.40 13,046.21 4467.59 2903.05 3051.46 2819.61 
MAE 113.42 96.31 79.38 96.65 92.48 51.65 41.11 38.65 41.27 

MAPE 0.0143 0.0138 0.0102 0.0182 0.019 0.0111 0.007 0.0065 0.0067 
Theil’s U 0.0089 0.0082 0.0065 0.0122 0.0119 0.0072 0.0046 0.0047 0.0043 

From Table 2, the results of different error statistics methods showed that NFM-IE can 
successfully forecast different time series of TAIEX 1997–2005. 

5. Results Analysis 

5.1. Taiwan Stock Exchange Capitalization Weighted Stock Index 

In general, TAIEX is a widely-used dataset in stock market forecasting. In order to facilitate 
comparison with other forecasting models, this paper also uses it as the main dataset to verify the 
model. Using non-stationary data can lead to spurious regressions, so we first performed a 
stationarity test based on the unit root test by software Eviews (Eviews10.0 Enterprise Edition, 
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Microsoft, Redmond, WA, USA). It can be concluded that the first-order difference of TAIEX 
1997–2005 was stationary data, which indicates that the fluctuation data used in this study were 
stationary. Further, other datasets in this study were also stationary data. 

The model in this paper was based on high order, and thus, different orders may affect the 
accuracy of the prediction. Hence, the experimental analysis showed that when the order of fuzzy 
fluctuation information entropy was 9–11, the stability of the model was more ideal. Table 3 shows 
the experimental errors for different years under different orders. 

Table 3. Comparing average RMSEs based on different order fuzzy fluctuation time series from 
1997–2005. 

Order 8 9 10 11 12 13 14 15 16 
1997 141.41 141.42 141.46 141.9 141.53 141.72 141.68 141.8 141.69 
1998 114.67 114.69 114.61 114.76 114.63 114.39 114.46 114.29 114.23 

1999 101.86 102.02 101.7 101.66 101.55 101.59 101.7 101.26 101.54 

2000 129.07 129.94 129.62 129.34 129.87 129.49 128.64 128.6 128.43 

2001 113.97 114.22 114.53 114.86 115.37 115.11 115.39 116.06 116.02 

2002 67.29 66.84 66.95 66.85 66.76 67.21 66.98 67.02 67.48 

2003 53.84 53.88 53.99 53.68 53.74 53.8 53.55 53.48 53.45 

2004 54.7 55.24 55.17 55.08 55.07 55.36 55.47 55.1 55.25 

2005 53.09 53.1 53.22 53.09 53.14 53.11 53.13 53.04 52.97 

average 92.21 92.37 92.36 92.36 92.41 92.42 92.33 92.29 92.34 

total 829.9 831.35 831.25 831.22 831.66 831.78 831 830.65 831.06 

Not surprisingly, accurate fluctuation trend predictions are very important and needed. 
Therefore, the performance of different methods must be compared and evaluated, thus verifying 
the superiority or deficiency of the model. In order to verify the effects of model prediction, this 
section focuses on comparing this model’s experimental results with those from other models. 
Comparing the errors across model showed that the current model had certain advantages in 
prediction accuracy. Table 4 shows the prediction errors for the different methods between 1997 and 
2005. The NFM-IE hybrid model achieved better prediction accuracy compared to the traditional 
regression model, autoregressive model, neural network model, and fuzzy model (Table 4). In 
addition, NFM-IE exhibited better predictive power in some years compared to other hybrid models 
based on the fuzzy theory.
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Table 4. Performance comparison of prediction RMSEs with other models. NFM-IE, neutrosophic forecasting model based on information entropy. 

TYPE Methods 
RMSE   

1997 1998 1999 2000 2001 2002 2003 2004 2005 Average Total 

Regression 
Model 

Univariate conventional regression model (U_R ) [32,33] N/A N/A 164 420 1070 116 329 146 N/A 374.20 2245 

Bivariate conventional regression model (B_R ) [32,33] N/A N/A 103 154 120 77 54 85 N/A 98.80 593 

Auto- 
regressive 

Autoregressive model for order one (AR_1) [34] 146.22 144.53 116.84 155.12 112.39 97.09 91.67 79.94 N/A 117.98 653.05 

Autoregressive model for order two (AR_2) [34] 174.09 135.21 128.15 142.3 129.84 89.8 66.58 60.33 N/A 115.79 617 

Neural 
network 

Univariate neural network model (U_NN) [32,33] N/A N/A 107 309 259 78 57 60 N/A 145.00 870 

Bivariate neural network mode (B_NN) [32,33] N/A N/A 112 274 131 69 52 61 N/A 116.40 699 

Fuzzy 

fuzzy forecasting and fuzzy rule(F-R) [35] N/A N/A 123.64 131.1 115.08 73.06 66.36 60.48 N/A 94.95 569.72 

Fuzzy time-series model based on rough set rule (F-RS) [36] N/A 120.8 110.7 150.6 113.2 66 53.1 58.6 53.5 90.81 605.7 

Fuzzy variation groups (F-VG) [37] 140.86 144.13 119.32 129.87 123.12 71.01 65.14 61.94 N/A 106.92 570.4 

Fuzzy+ 

Multi-variable fuzzy and particle swarm optimization (M_F-PSO) [38] 138.41 113.88 102.34 131.25 113.62 65.77 52.23 56.16 N/A 96.71 521.37 

Univariate fuzzy and particle swarm optimization (U_F-PSO) [39] 143.6 115.34 99.12 125.7 115.91 70.43 54.26 57.24 54.68 92.92 577.34 

Autoregressive moving average and fuzzy logical Relationships (ARMA-FR) [40] 141.89 119.85 99.03 128.62 125.64 66.29 53.2 56.11 55.83 94.05 584.72 

Back propagation neural network and high-order fuzzy-fluctuation trends 
(BPNN-HFT) [41] 

142.99 112.51 96.77 126.85 120.12 66.39 54.87 58.1 54.7 92.59 577.8 

NFM-IE 141.42 114.69 102.02 129.94 114.22 66.84 53.88 55.24 53.1 92.37 575.24 
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5.2. Forecasting Shanghai Stock Exchange Composite Index  

SHSECI is one of the most typical stock indices in China, with certain representativeness. We 
selected it as an experimental dataset to verify the model’s applicability.  

Recently, scholars have proposed more comprehensive models based on traditional prediction 
methods. For example, Guan et al. [40] proposed a two-actor autoregressive moving average model based 
on the fuzzy logical relationships (ARMA-FR). Guan et al. [41] proposed a model based on back 
propagation neural network and high-order fuzzy-fluctuation trends (BPNN-HFT). This section 
compares several typical prediction methods. The results indicated that the model can also effectively 
predict the stock index. Table 5 and Figure 3 show a comparison of the different prediction methods. 

Table 5. RMSEs of forecast errors for the Shanghai Stock Exchange Composite Index SHSECI from 
2007–2015. 

Year 2007 2008 2009 2010 2011 2012 2013 2014 2015 Average 
ARMA-FR (2017) [40] 129.22 79.77 59.96 49.48 29.7 23.14 22.13 44.11 58.89 55.15 
BPNN-HFT (2018) [41] 123.89 57.44 48.92 47.34 28.37 25.84 21.43 50.59 59.69 51.50 

NFM-IE 112.10 51.98 49.37 45.58 28.22 24.92 20.21 50.44 59.77 49.17 

 

 
Figure 3. RMSEs of forecast errors for SHSECI from 2007–2015. 

The comparison shows that NFM-IE outperformed other methods in predicting SHSECI from 
2007–2015. 

Comparing the average value of the SHSECI prediction error showed that NFM-IE had better 
prediction accuracy and stability compared to the neural network-based BPNN-HFT model and the 
statistical-based ARMA-FR model. 

5.3. Forecasting Hong Kong-Hang Seng Index  

Finally, the Hong Kong-Hang Seng Index (HSI) was selected as the experimental dataset. Comparing 
several authoritative prediction methods, we can verify the universality of the model in other stock markets. 
Table 6 and Figure 4 show a comparison of the different prediction methods from 1998–2012. 
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Table 6. RMSEs of forecast errors for the Hong Kong-Hang Seng Index (HSI) from 1998–2012. 

A. Method B. 1998 C. 1999 D. 2000 E. 2001 F. 2002 G. 2003 H. 2004 I. 2005 J. 2006 K. 2007 L. 2008 
 

2009 2010 2011 2012 Average 

Yu (2005) [42] 291.4 469.6 297.05 316.85 123.7 186.16 264.34 112.4 252.44 912.67 684.9 
 442.64 382.06 419.67 239.11 359.66 

Wan (2017) [43] 326.62 637.1 356.7 299.43 155.09 226.38 239.63 147.2 466.24 1847.8 2179  437.24 445.41 688.04 477.34 595.26 

Ren (2016) [44] 296.67 761.9 356.81 254.07 155.4 199.58 540.19 1127 407.89 1028.7 593.8  435.18 718.33 578.7 442.44 526.46 

Cheng (2018) [36] 201.99 231.91 251.7 156.58 106.26 118.74 105.38 103.96 189.2 682.08 460.12  326.65 260.67 346.33 190.13 248.78 

NFM-IE 195.86 223.91 246.11 163.49 105.65 122.04 102.23 105.37 173.55 694.89 469.11 
 319.7 274.73 347.2 181.98 248.39 

 

  
Figure 4. RMSEs of forecast errors for HSI from 1998–2012. 
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To further evaluate the validity of the proposed model, we used Friedman’s test to perform a 
significance test based on the study of Demšar [45]. For reference, Friedman’s test is a parametric 
statistical test that was proposed by Milton Friedman [46–48]. To further illustrate the significance of the 
model’s predictions compared to other prediction methods, this section will use Friedman’s test and the 
post-hoc test for significance analysis. In the Friedman test phase, SPSS was used for statistical testing, 
and the post-hoc test phase was based on manual calculations. 

In the first stage, Friedman’s test requires comparison of the average ranking of different algorithms 
1 j

j ii
R r

N
=  , where, j

ir  is the rank of the j -th of k  algorithms on the i -th of N datasets. The ranking 

of each method was based on the analysis of HSI forecast results as shown in Table 7. 

Table 7. The rank of the forecasting results of the HSI. 

Method Rank 
Yu (2005) [42] 3.40 

Wan (2017) [43] 4.40 
Ren (2016) [44] 4.20 

Cheng (2018) [36] 1.53 
NFM-IE 1.47 

Through software analysis, we concluded that the method had the highest comprehensive ranking. 
In addition, according to the Chi-square distribution, there were significant differences between these 
methods. 

( 1)
6

k kCD q
Nα
+=  (31) 

In the second stage, in order to further compare the different methods, we used the Nemenyi test [49]. 
According to Equation (31), α = 0.05 and CD = 1.575. Upon further comparison, we found that the method 
proposed in this study had significant advantages over Yu (2005) [42], Wan (2017) [43], Ren (2016) [44], etc. 
Although it was not significant compared with Cheng's method (2018) [36], the NFM-IE had certain 
advantages from the perspective of error mean and average level. 

5.4. Discussion 

The research was mainly focused on two issues. The first was whether the uncertainty of stock 
market volatility can be used as a key feature of forecasting in a complex environment. The other was 
whether the prediction method considering uncertainty and trend was effective. We first used the 
inconsistency of historical fluctuations as a stock forecasting feature and further characterized and 
quantified it. Then, we applied the neutrosophic set to be the representation of the information and 
established a neutrosophic logic relationship based on wave inconsistency. Through experimental 
analysis, the proposed model achieved robustness and stability with relatively few parameters. In 
addition, it was also proven that predictions that consider inconsistency are meaningful and effective. 
The advantages were embodied in the following aspects: First, NFM-IE did not need to establish 
complex assumptions compared to traditional regression-based prediction models. Second, the NFM-IE 
prediction process was more interpretable than the neural network. Finally, compared with the fuzzy 
prediction method, NFM-IE effectively utilized data inconsistency as key information. All in all, the 
model showed satisfactory performance. However, it also showed certain limitations: First, the model 
used single stock market data as the system input and failed to consider multiple factors fully. Secondly, 
using information entropy as a key tool for uncertainty measurement requires further optimization in 
characterizing data. 
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6. Conclusions 

In this paper, we presented the concept of NFTS and proposed a prediction model based on the 
neutrosophic set and information entropy of high-order fuzzy fluctuation time series. This model had 
significant performance advantages over existing fuzzy time series models, machine learning prediction 
models, and traditional economic prediction models. In this paper, we applied three typical test datasets 
to prove that the model had certain universality and stability. In addition, this paper had a certain degree 
of scientific contribution in the following aspects: First, the concept of NFTS was proposed. Second, this 
paper proposed information entropy based on high-order fluctuation time series. Finally, this paper 
established NLRs based on NFTS and information entropy. This paper discussed the first-order 
neutrosophic time series to characterize the historical state of uncertainty and high-order information 
fluctuation entropy to measure the complexity of historical fluctuations. Other types of time series will 
be tested in the future. Meanwhile, future research should aim to establish detailed high-order 
neutrosophic time series models indicating the uncertainty of historical trends. In this study, we have 
considered the Jaccard similarity measure for comparing X_t and X_j. Further work could considered the 
Jensen–Shannon distance [20], which accomplishes the triangular inequality. Furthermore, in order to 
verify the robustness of the forecast in longer forecast scenarios, we will extend the model to 2, 3, or 4 
periods ahead. 
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