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Abstract
Different with the plain flexible job-shop scheduling problem (FJSP), the FJSP with routing flexibility is more complex and
it can be deemed as the integrated process planning and (job shop) scheduling (IPPS) problem, where the process planning
and the job shop scheduling two important functions are considered as a whole and optimized simultaneously to utilize the
flexibility in a flexible manufacturing system. Although, many novel meta-heuristics have been introduced to address this
problem and corresponding fruitful results have been observed; the dilemma in real-life applications of resultant scheduling
schemes stems from the uncertainty or the nondeterminacy in processing times, since the uncertainty in processing times
will disturb the predefined scheduling scheme by influencing unfinished operations. As a result, the performance of the
manufacturing system will also be deteriorated. Nevertheless, research on such issue has seldom been considered before.
This research focuses on the modeling and optimization method of the IPPS problem with uncertain processing times. The
neutrosophic set is first introduced to model uncertain processing times. Due to the complexity in the math model, we
developed an improved teaching-learning-based optimization(TLBO) algorithm to capture more robust scheduling schemes.
In the proposed optimization method, the score values of the uncertain completion times on each machine are compared and
optimized to obtain themost promising solution. Distinct levels of fluctuations or uncertainties on processing times are defined
in testing the well-known Kim’s benchmark instances. The performance of computational results is analyzed and competitive
solutions with smaller score values are obtained. Computational results show that more robust scheduling schemes with
corresponding neutrosophic Gantt charts can be obtained; in general, the results of the improved TLBO algorithm suggested
in this research are better than those of other algorithms with smaller score function values. The proposed method in this
research gives ideas or clues for scheduling problems with uncertain processing times.
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TLBO · Integrated process planning and scheduling, IPPS · Uncertain processing times
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Introduction

As two crucial components in a flexible manufacturing
system, the job-shop scheduling module and the process
planning module received a number of research attentions
[1–5]. In tradition, process planning specifies the technical
details [6,7], e.g., cutting parameters; the scheduling mod-
ule, on the other hand, arranges operations on machines to
shorten the maximum completion time (makespan) or meet
other criteria [8,9]. These twomodules usually perform sepa-
rately and sequentially [10–12].Nevertheless, such paradigm
ignores the inherent relationship between the two functions,
since there is a lackof coordinationmechanismbetween them
and more importantly, the flexibility in the two functions
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cannot be utilized fully [13,14]. For example, the processing
flexibility is rigidified, since one cannot change processing
sequence at the scheduling stage with sequential paradigm.
Thus, this will lead to inefficiencies of a flexible manufactur-
ing system [15,16], such as resource conflicts and unbalanced
utilization of machines [17]. Lots of efforts have been paid
to eliminate resource conflicts and improve the performance
of a manufacturing system by taking the advantage of the
flexibilities in the two modules [4,8,13,17]. Fruitful results
have been observed and the meta-heuristics have garnered
wide research interests due to the high cost performance and
the accessibility.

There are three kinds of flexibilities in this problem:
operation flexibility (OF), sequencing flexibility (SF), and
processing flexibility (PF) [14,18]. OF means that an oper-
ation may be processed by more than one machine tools.
SF allows more than one feasible operation permutations as
long as these operations satisfy the precedence constraints.
PF means that there may be more than one possible opera-
tion combinations (or sets) to finish the same feature of a part
[10], since the same feature can usually be realized by many
feasible operation combinations. Clearly, it is quite necessary
to carry out joint optimization for the problem by properly
managing OF, SF, and PF.

Many efforts have been paid for the plain IPPS problem.
Nevertheless, these research papers mainly pay attentions
to the optimization methods to shorten the makespan. In
other literature, researchers either consider the problem in a
dynamic environmentwith random job arrivals or performing
multi-objective optimizations.Most of these studies deem the
processing times as static ones; however, this goes against
with real-life situations: the processing times always vary in
a certain range due to various kinds of disturbances [19]. As
a result, themakespan will fluctuations within a certain range
[20]. Clearly, existing optimization techniques for determin-
istic processing times are not fit for the uncertain IPPS
problem any more [21]: the actual starting times or finish-
ing times will always deviate largely from the predetermined
ones, and there will be large deviations between the actual
makespan and the so-called “optimal” one. Unfortunately,
modeling and optimization techniques on the uncertain IPPS
problem have seldom been considered and robust scheduling
schemes are not available to absorb processing time varyings
or hedge against the uncertainty in processing times. Real-
life requirements stress the need to perform this study.

There aremainly two types ofmethods to handle uncertain
scheduling problems: the on-linemode and the off-linemode.
They also correspond to the reactive scheduling method and
the proactive (or preventive) scheduling method [21,22]. In
reactive scheduling paradigm, an optimal scheduling scheme
is first generated; when disturbances occur or starting times
of operations deviate from the predetermined values to a cer-
tain extent, the rescheduling process is trigged in time by

the scheduling module for the remaining operations. Such
rescheduling procedure will be performed interactively till
all the operation have been processed. This paradigm can-
not ensure the global optimality, and the total makespam
will increase with the number of reschedulings [23,24]. The
proactive scheduling considers the possible processing time
fluctuations or disturbances in advance and the resultant
scheduling scheme is capable to absorb possible processing
time fluctuations. In this research, the proactive scheduling
paradigm is adopted andwe try to obtain a scheduling scheme
with certain immunity to uncertain processing times.

Several methods have been proposed to model actual pro-
cessing times. For example, random variables that subject to
a certain probability distribution have been considered [25].
In other cases, processing times are treated as fuzzy numbers
that subject to a certain kind of membership function [26–
28], such as triangular fuzzy numbers (TFNs) or trapezoidal
fuzzy numbers (TrFNs). Usually, it is very hard to distinguish
which distribution operation processing times follow and the
math operators. The fuzzy set-based optimization techniques
have receivedmore research attentions due to its convenience
in modeling uncertain processing times as well as in the
implementation details of algorithms. Traditional fuzzy the-
ory is not perfect in describing the fuzziness of things. Prof.
Smarandache further developed the concept of “neutroso-
phy” in 2008 for a better conveying of people’s thinking [29].
After that, the neutrosophic set was formally proposed to
efficiently and effectively copewith indeterminate and incon-
sistent information [30,31]; as a powerful general framework
which generalizes classic sets, fuzzy sets, intuitionistic fuzzy
sets, tautological sets, andother sets [32], the neutrosophic set
is capable to handle incomplete information, indeterminate
information, and inconsistent information [32]. Therefore, it
can be used to more precisely or accurately describe uncer-
tain objects.

In fuzzy sets, there is membership function μx only and
the information of indeterminacy and nonmembership is
lost [32]. In neutrosophic sets, indeterminacy is quantified
explicitly as three independent components: the truth mem-
bership (TA(x)), the indeterminacy membership (IA(x)),
and the falsity membership (FA(x)). Because all the three
memberships are used to reflect the ambiguous nature of sub-
jective judgments, there is no restriction to express uncertain
objectives and it is quite easy to capture imprecise or uncer-
tain information. Nevertheless, since the three components
TA(x), IA(x), and FA(x) are non-standard subsets (non-
standard interval ]0−, 1+[), they cannot be directly used
in engineering problems or real-world applications. There-
fore, the single-valued neutrosophic set (SVNS), a branch
of neutrosophic sets, is proposed [33,34]. Let E be a uni-
verse; each of the three membership functions of an SVNS
is mapped into the closed interval: TA : E → [0, 1], IA :
E → [0, 1], FA : E → [0, 1]. Successful applications

123



Complex & Intelligent Systems

of SVNSs have been reported. Deli et al. developed a rank-
ing method for single-valued neutrosophic numbers and they
applied the method in multi-attribute decision-making [35].
Pramanik and Mallick developed a TODIM strategy to deal
with multi-attribute group decision-making problem, where
score function, accuracy function, and Hamming distance
function for single-valued trapezoidal neutrosophic numbers
were considered [36]. The shortest path problem in neutro-
sophic set environment has also been considered [37–40].
For example, Broumi et al. in their research suggested a new
score function for interval-valued neutrosophic numbers and
the neutrosophic shortest path is determined based on the
score function [39]; the score function is used to evaluate
the paths that have been chosen. Applications of SVNSs can
also be found in pattern recognition and medical diagnosis
[41,42], taxonomy, and clustering analysis [42] and other
areas. Unfortunately, most of the existing studies regard-
ing SVNSs or related applications focus on decision-making
issues; to the best of our knowledge, there is no research
regarding SVNSs for the uncertain IPPS problem. In this
study, SVNSs are first introduced to model the uncertain pro-
cessing times in solving the IPPS problem.

Scheduling problems, due to their complexity and the NP-
hardness, are usually solved by meta-heuristic algorithms.
Inspired by the effects of influence of teachers on learn-
ers, Rao et al. in 2008 proposed the teaching-learning-based
optimization algorithm [43]. The TLBO algorithm also hires
many individuals as learners and teacher(s). Nevertheless,
the outstanding feature of TLBO is parameter independent;
that is, every learner will take part in the ’teacher phase’
and the ’learner phase’ and there is no limitations caused
by pre-set probabilities throughout the two phases. Relative
applications of the TLBO algorithm can be found in exist-
ing literature. Rao and Patel used the TLBO algorithm in
multi-objective optimization of heat exchangers to achieve
maximum heat exchanger effectiveness with minimum total
cost [44]; they also give the improved version of the plain
TLBO algorithm to enhance the exploration and exploita-
tion capacities [45]. Tang et al. suggested a hybrid TLBO
algorithm for solvingmulti-constraints’ stochastic two-sided
assembly line balancing problem [46]. In terms of schedul-
ing problems, applications of the TLBO algorithm have also
been reported [47–49]; for example, Shao et al. proposed a
hybrid discrete TLBO algorithm for the no idle flow shop
scheduling problem to minimize the total tardiness [48]. In
this research, we extent the application of this algorithm to
the discrete problem and an improved TLBO algorithm is
developed for the IPPS problem.

This research tries to develop a neutrosophic based TLBO
algorithm for the IPPS problem which is contaminated with
uncertain processing times. Neutrosophic sets are used to
model uncertain processing times; this is the novelty of this
research. To improve the exploitation ability of the algorithm,

some modifications are made for the TLBO algorithm to
adapt to the problem. The remainder of the paper is orga-
nized as follows. Some research papers on the IPPS problem
as well as the scheduling problem with uncertain processing
timeswill be reviewed in “Literature review”. “Mathematical
modelingwith neutrosophic set” gives some preliminaries on
neutrosophic sets; besides, the method to convert a deter-
ministic mathematical model of the IPPS problem to the
neutrosophic counter part will also be presented in this sec-
tion. In the next section, details of the proposed improved
TLBO algorithm is demonstrated. The experimental study
with discussions will be arranged in “Experiments with dis-
cussions”. Conclusions with further research directions will
be given in the last section.

Literature review

The IPPS problem with deterministic processing times has
been investigated widely [10,16,17,50–53]. The research of
the IPPS problem starts from single objective optimiza-
tion, and many research papers mentioned above pay more
attentions to makespan reduction. Many novel optimization
algorithms have been applied in their optimization methods.
For instance, Kim et al. suggested the symbiotic evolutionary
algorithm to tackle this problem [17]; Zhang et al. developed
an object-coding genetic algorithm to optimize themakespan
criterion [50]; Lian et al. introduced the imperialist compet-
itive algorithm in IPPS instance optimizations with relative
promising results [10]. Besides, Petrovic et al. and Jin et
al. also adopted novel meta-heuristic algorithms to address
deterministic IPPS problem [51,54]. Recently, Liu et al. pro-
posed a modified genetic algorithm and the corresponding
encoding and decoding methods for the IPPS problem and
promising results have been observed [13]. Relative litera-
tures have been summarized in Table 1.

Some researchers have shifted their attentions to the IPPS
problems with practical requirements, e.g., handling uncer-
tainty in IPPS instances. As analyzed in “Introduction”, the
fluctuations in processing times will affect the upcoming
operations (they will be put off) and further disturb the whole
scheduling plan; if such issue is not settled properly, the orig-
inal scheduling scheme will be useless. Therefore, it is quite
necessary to develop effective optimization method to hedge
against such uncertainty. One of the paradigms is the reac-
tive or on-line rescheduling approach [23]; the rescheduling
will be triggered when there is a large deviation between the
actual and the predefined scheduling scheme. However, the
renewed scheduling scheme cannot ensure the global opti-
mality [23]. Therefore, the proactive paradigm receivedmore
research attentions. There are some kinds of methods in the
proactive scheduling paradigm.
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The chance constrained programming (CCP) approach is
the first kind of approach that is used in scheduling prob-
lems or other discrete optimization problemswith parameters
uncertainty [55–57]. This method can transform a mixed
integer linear programming (MILP) model with uncertain
parameters into a “deterministic” one, and the resultant
model can resist the uncertainty in parameters. A typical
application of such method is reported in [57]; the process-
ing times in a flow shop are regarded as random variables
and an equivalent deterministic model is provided. Similar
research can also be found in recent publication [58]. Other
applications of CCP can be found in assembly line balancing
[56] and project scheduling [55], etc. However, this method
relies on the deterministic MILP model of the problem; in
many cases, e.g., the IPPS problem and the flexible job-shop
scheduling problem, the corresponding model is quite com-
plex with lots of variables and constraints and the model
after conversion is more complex than before. This hinders
the application of the method.

Fuzzy set-related optimization methods are another kind
of approach in coping with uncertainty in scheduling prob-
lems. Because this method can be easily combined with
meta-heuristic algorithms in tackling complex scheduling
problems or other NP-hard problems, many fuzzy set-related
studies have been investigated since 1999 [59]. Sakawa and
Mori gave a textbook like example of such application in job-
shop scheduling in the genetic algorithm framework [59];
they adopted triangular fuzzy numbers to model the uncer-
tain processing times and due dates and the approximation
for the max operator was developed to ensure that the result
is also a triangular fuzzy number. In subsequent studies,
many fuzzy set-based optimization methods for parame-
ter uncertain scheduling problems have been published,
and meta-heuristic algorithms are adopted. Lei suggested
a decomposition–integration genetic algorithm (DIGA) to
reduce the fuzzy makespan value for the flexible job-shop
scheduling problem where the uncertain processing times
are also mapped into triangular fuzzy numbers [27]. Later,
they gave a similar research, where an efficient swarm-based
neighborhood search algorithm (SNSA) is developed for the
fuzzy flexible job-shop scheduling problem [60]. Following
Lei’s step, Wang et al. combined fuzzy numbers with the
artificial bee colony (ABC) algorithm and presented a hybrid
artificial bee colony (HABC) algorithm in their research to
capture the best fuzzy makespan [61]; again, the uncertain
processing times are treated as triangular fuzzy numbers.
With almost the same coding and decoding methods, Wang
et al. also suggested an effective fuzzy number-based esti-
mation of distribution algorithm (EDA) to obtain the best
makespan in the flexible job shop [28]. Gao et al. reported
a study on uncertain flexible job shop scheduling problems
[1]; a discrete harmony search (DHS) algorithm with a sim-
ple heuristic rule which is used to initialize the individuals

was proposed to shorten the maximum fuzzy completion
time. Li et al. recently presented a research regarding the
uncertain IPPS problem based on the interval number [26],
which can be deemed as a kind of fuzzy number with a
uniform distribution-like membership function. In recent
years, multi-objective cases of uncertain scheduling prob-
lems have been reported. For example, Gao et al. proposed
an improved artificial bee colony (IABC) algorithm to mini-
mize the maximum fuzzy completion time and themaximum
fuzzy machine workload, and the benchmark instances as
well as the practical instances were adopted to test the algo-
rithm [62]. According to the literature mentioned above, it
can be found that the uncertain processing times are regarded
as triangular fuzzy numbers and other types of fuzzy num-
bers have seldom been considered. The reason behind this
is that triangular fuzzy numbers are more close to the actual
situations. However, existing investigations pay less atten-
tion on the uncertain IPPS problem and worse still, there is
no application of neutrosophic sets on the uncertain IPPS
problem.

Other kinds of methods dealing with uncertain schedul-
ing problems have also been reported according to related
literature. For instance, Liu et al. suggested a Petri net-
based model for the emergency response process which is
constrained by resources and uncertain durations [63]. Had-
dadzade et al. considered the uncertain IPPS problems using
a two stage method, where the process planning procedure
and the scheduling module are separated [8]; nevertheless,
in their research, only several ’promising’ process plans are
considered, and hence, the corresponding flexibilities cannot
be fully utilized. Different with existing research, we propose
in this paper a novel optimization method for the uncertain
IPPS problem; the neutrosophic set is applied to model the
uncertain processing times. The resultant scheduling scheme
is capable to hedge against the uncertainty and improve the
robustness at a certain extent.

Mathematical modeling with neutrosophic
set

The uncertain IPPS problem

The IPPS problem can be deemed as the extension of the
flexible job-shop scheduling problem. However, the process
planning module increases the flexibilities as well as com-
plexity of the problem.Based onRef. [64], the uncertain IPPS
problem can be defined as: given a set of n parts (jobs) to be
processed on m machines with operations that have alterna-
tivemanufacturing resources and uncertain processing times,
select the suitable manufacturing resources and sequence the
operations so as to determine a schedule in which the prece-
dence constraints among operations can be satisfied and the
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corresponding objectives, e.g., the fuzzy maximum com-
pletion time, can be optimized. In this research, the actual
processing time of each operation on each available machine
will be presented using neutrosophic sets.

A job in the IPPS problem can be presented by a network
graph, as shown in Fig. 1. The starting node and the ending
node are the dummy nodes, representing the beginning and
the finishing operations. The other two types of nodes are
operation nodes and ’OR’ nodes; an operation node stands
for an operationwhere the operation ID, alternativemachines
with corresponding processing times have been specified. For
instance, operation 6 in Fig. 1 can be processed on machine
1 or 5 with nominal processing times 42 and 38, respec-
tively. The ’OR’ node sometimesmaynot appear in a network
graph; however, if it appears after a certain node, there will
be at least two OR link paths, each of which begins after
the ’OR’ node and ends when the path merges with the other
[14]. For example, there are two OR link paths after the ’OR’
node among operation nodes 8, 9, and 12 in Fig. 1; therefore,
only the left OR link path (operation nodes 9, 10, 11) or
the right OR link path (operation nodes 12, 13) needs to be
visited. If a bifurcation without ’OR’ node, operation nodes
in all the link paths should be visited. Operation sets 2, 3
and 4, 5 are in two link paths according to Fig. 1, and these
two link paths are not OR link paths; therefore, operation
nodes 2–5 have to be visited. The arrows in Fig. 1 indicate
the precedence relationships between operations: an one-way
arrow from node A to B means that operation B should be
processed directly or indirectly after operation A. In such a
case, a job may have many possible process plans (operation
permutations), since there may be lots of operation prece-
dence relationships specified by the one-way arrows in the
network graph. Especially, there are quite a few operation
nodes whose precedence relationships are not determined,
since no arrow is placed between any two operation nodes,
e.g., operation nodes 3 and 12 in Fig. 1. Two feasible pro-
cess plans (operation permutations) of the example network
graph are also given in Fig. 1. With such flexibility, one does
not know which operation permutation is the ’best’ one from
the scheduling point of view; clearly, it is quite necessary to
consider both the scheduling and the process planning mod-
ules simultaneously: a ’bad’ process plan in process planning
module may be the best one in scheduling.

The three types of flexibilities are reflected in a network
graph. The situation where an operation can be processed
by more than one available machines reflects the operation
flexibility; the situation where given operations can have dif-
ferent permutations as long as they satisfy the precedence
relationships stands for the sequencing flexibility; finally,
the situation where only operations in one OR link path are
selected relates to the processing flexibility.

Fig. 1 A network graph with two possible process plans

Neutrosophic sets

This section introduces some basic concepts of neutrosophic
sets, and related operations.

Definition 1 [31,40] Let 1 be a special neutrosophic set on
the real number setR, the truth membership function μã(x),
the indeterminacymembership function νã(x), and the falsity
membership function λã(x) of are defined as

μã(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Tã(x−ãT )

ãI−ãT
, ãT ≤ x ≤ ãI ,

Tã, ãI ≤ x ≤ ãP ,
Tã(ãS−x)
ãS−ãP

, ãP ≤ x ≤ ãS,
0, otherwise.

(1)

νã(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(ãI−x+Iã(x−ãT ))

ãI−ãT
, ãT ≤ x ≤ ãI ,

Iã, ãI ≤ x ≤ ãP ,
(x−ãP+Iã(ãS−x))

ãS−ãP
, ãP ≤ x ≤ ãS,

1, otherwise.

(2)

λã(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(ãI−x+Fã(x−ãT ))

ãI−ãT
, ãT ≤ x ≤ ãI ,

Fã, ãI ≤ x ≤ ãP ,
(x−ãP+Fã(ãS−x))

ãS−ãP
, ãP ≤ x ≤ ãS,

1, otherwise.

(3)
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For the case when 0 ≤ ãT ≤ ãI ≤ ãP ≤ ãS ≤ 1 and
Tã, Iã, Fã ∈ [0, 1], ã is called a normalized trapezoidal neu-
trosophic number; when ãI = ãP , ã is transformed into a
triangular neutrosophic number. In this research, the uncer-
tain processing time are modeled as triangular neutrosophic
numbers.

Definition 2 [33,40] Let X be a space point, and x be an
element in X , a single valued neutrosophic set(NS) V in X is
characterized by membership functions, e.g., μã(x), νã(x),
and λã(x), and μã(x) : X → [0, 1], νã(x) : X → [0, 1],
λã(x) : X → [0, 1].

It is clear that, the truth, the indeterminacy and the falsity
membership functions are mapped into the range [0, 1] in
single-valued NSs; this brings convenience for the applica-
tions of NSs. However, operators of triangular neutrosophic
sets (TNSs) are required to be defined, because the operators
are used in the scheduling (decoding) procedure. More pre-
cisely, three operators of TNSs, e.g., the addition operator,
the maximization operator, and the ranking operator, should
be ensured. The addition operator is defined to determine
the sum of two TNS numbers in completion time calcula-
tion. The the ranking operator is employed in comparing two
TNSs numbers so as to compare the completion time on each
machine, and hence, the makespan is determined. The maxi-
mization operator is developed to determine the neutrosophic
starting time of an operation. Based on the existing literature
[31,40], we have

Definition 3 Let r̃ N = 〈[r̃T , r̃ I , r̃S], (Tr̃ , Ir̃ , Fr̃ )〉 and s̃ N =
〈[s̃T , s̃I , s̃S, ], (Ts̃, Is̃, Fs̃)〉 be two TNSs, and some operators
are defined as:

r̃ N ⊕ s̃ N = 〈[r̃T + s̃T , r̃ I + s̃I , r̃S + s̃S],
(Tr̃ + Ts̃ − Tr̃ Ts̃ , Ir̃ Is̃ , Fr̃ Fs̃)〉 . (4)

r̃ N ⊗ s̃ N = 〈[r̃T · s̃T , r̃ I · s̃I , r̃S · s̃S],
(Tr̃ · Ts̃ , Ir̃ + Is̃ − Ir̃ Is̃ , Fr̃ + Fs̃ − Fr̃ Fs̃)〉 . (5)

θ r̃ N = 〈[θ r̃T , θ r̃ I , θ r̃S], (1 − (1 − Tr̃ )
θ , (Ir̃ )

θ , (Fr̃ )
θ )

〉
. (6)

Definition 4 Let r̃ N = 〈[r̃T , r̃ I , r̃S], (Tr̃ , Ir̃ , Fr̃ )〉 be a TNS,
and the score function can be defined as

s
(
r̃ N

)
= 1

12

[
r̃T + 2r̃ I + r̃S

] × [2 + Tr̃ − Ir̃ − Fr̃ ] . (7)

Let r̃ N = 〈[r̃T , r̃ I , r̃S], (Tr̃ , Ir̃ , Fr̃ )〉 and s̃ N = 〈[s̃T , s̃I , s̃S, ],
(Ts̃, Is̃, Fs̃)〉 be two TNSs, and the ranking of the two TNSs
is easy: if s

(
r̃ N

) ≺ s
(
s̃ N

)
then r̃ N ≺ s̃ N . Furthermore,

if s
(
r̃ N

) = s
(
s̃ N

)
coincidentally, the accuracy function is

applied [35,40]. In many cases, using the score function is
enough to compare two TNS numbers.

For the maximization operator, it is used to determine
the maximum neutrosophic completion times of two oper-
ations: the current operation should be started only after

the maximum neutrosophic completion time between the job
predecessor and the machine predecessor. Since the indeter-
minacy and the falsity membership functions are considered,
the maximization operator will be discussed in the decoding
procedure in later sections.

IPPSmodeling

In this research, the TNS-basedmathematicalmodel is devel-
opedbasedonpreviously proposedType-2model [14],which
is more powerful and general than Type-1 models [65];
nevertheless, it is suitable for plain or crisp number-based
processing times only. We therefore try to introduce TNS
numbers into the plain mixed integer linear programming
(MILP) model, and then to interpret it into the deterministic
one. TheMILPmodelwith plain processing times is provided
here for ease of understanding.

In modeling the problem, we assume that: (1) job preemp-
tions are not allowed; (2) each machine can only process at
most one job at any time; (3) at any time, a job can only be
processed by at most one machine; (4) all the jobs are avail-
able at time zero; (5) the transportation time as well as the
set-up time can be included in the nominal processing time.
Corresponding sets, parameters, and variables are given as
follows.

Subscripts and notations

i, i ′ Jobs, 1 ≤ i, i ′ ≤ |n|,
j, j ′ Operations, 1 ≤ j, j ′ ≤ |ni |,
k, k′ Machines,
h Combinations,
Oi j The j th operation of the i th job,
Oihj The j th operation of the i th job in the hth opera-
tion combination.

Sets and parameters

pi jk The nominal processing time of Oi j processed by machine k,

pNi jk The neutrosophic processing time of Oi j processed by machine

k, pNi jk =
〈
[pTi jk , pIi jk , pSi jk ], (T p

i jk , I
p
i jk , F

p
i jk )

〉
,

Rih The operation set that contains the operation belonging to the
hth combination of the i-th job,
Vi j j ′ =1, If there is an arrow fromoperation node j to j ′ in the network
graph of job i (Oi j is to be processed before Oi j ′ ); =0, otherwise;
This parameter expresses the partial precedence relationships among
operations,
Ki The set of operation combinations of job i , job i has |Ki | operation
sets,
n The set of jobs,
ni The set that contains all the operations in the network graph of job
i ; some of the operations may not be selected due to the ’OR’ node(s),
Mi j The set of alternative machines of Oi j ,
POSi j The pre-ordered set of Oi j ; it contains all the operations that
should be processed before Oi j ,
BOSi j The back-ordered set of Oi j ; it contains all the operations
that should be processed after Oi j ,
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Qi j j ′ =1, Oi j should be processed directly or indirectly before Oi j ′ ;
=0, otherwise,
A A very large positive integer.

The parameter Vi j j ′ determines the precedence relation-
ships of a few operations only; only this set of parameters
is not enough to determine the precedence relationships
of all the selected operations (the operations belonging to
the selected combination). Therefore, the parameters Qi j j ′s,
which specify the precedence relationships of all the opera-
tions, are constructed (see the algorithm in Ref. [14]). The
basic principle of parameters Qi j j ′s is easy: if the precedence
relationship of any two selected operations is determined, the
precedence relationships of all the selected operations are
determined.
Variables

Cmax The nominal makespan value,
CN
max The neutrosophic makespan value, CN

max =〈[CT
max,C

I
max,C

S
max], (TC

max, I
C
max, F

C
max)

〉
,

Wi ji ′ j ′ =1, If operation Oi j is processed before Oi ′ j ′ ;
=0, otherwise,
Yih=1, If the h-th combination of the i-th job is
selected; =0, otherwise,
Zi j j ′=1, If operationOi j is processed directly or indi-
rectly before operation Oi j ′ ; =0, otherwise,
Xihjk=1, If operation Oihj is processed on machine
k; =0, otherwise,
Cihj The completion time of operation Oihj .
CN
ihj The neutrosophic completion time of opera-

tion Oihj ; CN
ihj =

〈
[CT

ih j ,C
I
ih j ,C

S
ih j ], (TC

ih j , I
C
ih j , F

C
ihj )

〉
.

Objective

minCmax. (8)

Constraints

∑

h∈Ki

Yih = 1, ∀i (9)

∑

k∈Mi j

Xih jk = Yih, ∀i ∈ n, h ∈ Ki ,∀ j ∈ Rih (10)

A · Yih ≥ Cihj , ∀i ∈ n, h ∈ Ki ,∀ j ∈ Rih (11)

Cihj ′ ≥ Cihj +
∑

k′∈Mi j ′
Xihj ′k′ pi j ′k′ ,

∀i ∈ n, h ∈ Ki ,∀ j, j ′ ∈ Rih, j 
= j ′, Vi j j ′ = 1

(12)

Zi j j ′ + Zi j ′ j = 1, ∀i ∈ n, j, j ′ ∈ ni , j 
= j ′,
Qi j j ′ + Qi j ′ j = 0 (13)

Cihj ′ ≥ Cihj +
∑

k′∈Mi j ′
Xihj ′k′ pi j ′k′ − A(1 − Zi j j ′),

∀i ∈ n, ∀h ∈ Ki ,∀ j, j ′ ∈ Rih, j 
= j ′ (14)

Ci ′h′ j ′ ≥ Cihj + Xi ′h′ j ′k′ pi ′ j ′k′ − A(1 − Wi ji ′ j ′)

−A(2 − Xihjk − Xi ′h′ j ′k′)

∀i, i ′ ∈ n, i 
= i ′, h ∈ Ki , h′ ∈ Ki ′ , j ∈ Rih,

j ′ ∈ Ri ′h′ , k, k′ ∈ Mi j ∩ Mi ′ j ′, k = k′ (15)

Cihj ≥ Ci ′h′ j ′ + Xihjk pi jk − A · Wi ji ′ j ′

−A(2 − Xihjk − Xi ′h′ j ′k′)

∀i, i ′ ∈ n, i 
= i ′, h ∈ Ki , h′ ∈ Ki ′ , j ∈ Rih,

j ′ ∈ Ri ′h′, k, k′ ∈ Mi j ∩ Mi ′ j ′, k = k′ (16)

Cmax ≥ Cihj , ∀i ∈ n,∀h ∈ Ki , j ∈ Rih . (17)

Equation (8) gives the objective: to minimize the nom-
inal makespam. Constraint set (9) means that each job is
forced to select an operation combination which is divided
by the ’OR’ link paths in the network graph; only all the
necessary operations are selected, can the job be completed.
Constraint set (10) indicates that for the selected operations
in the hth combination, they should be assigned to exactly
one machine; otherwise, operations will not be assigned to
any machines (Yih = 0). Constraint set (11) further restricts
the completion time of unselected operations: if operations
belonging to the hth combination are not selected, their com-
pletion times are set to zero. Constraint set (12) determines
the completion times of two operations that have a prece-
dence relationship specified directly by the network graph.
For the two operations that have no precedence relationship
(Qi j j ′ + Qi j ′ j = 0), constraint set (13) is used to determine
which operation will be processed before the other. After
this, such operations can be scheduled sequentially based
on constraint set (14). Constraint sets (15) and (16) sched-
ule two operations on the same machine by determining the
precedence relationship of any two operations on the same
machine; if the operation is not processed by machine k, the
two constraint sets are useless. Finally, constraint set (17)
determines the the completion time of each job.

In the following, we try to interpret the current model
into the neutrosophic version. Note that for a real num-
ber or a integer a, the corresponding neutrosophic version
is 〈[a, a, a](1.0, 0.0, 0.0)〉 and its score function value is
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1
12 [a + 2a + a] × [2 + 1.0 − 0.0 − 0.0] = a; therefore,
there is no need to reform the constraint sets that contain
binary variables only, e.g., constraint sets (9) and (10). For
other constraint sets that contain continuous variables, they
should be reformed. The makespan should be calculated and
determined using the score function instead of a crisp number
Cmax; the objective function (8) can thus be reformed as

min
1

12

[
CT
max + 2C I

max + CS
max

]

×
[
2 + TC

max − I Cmax − FC
max

]
. (18)

The constraint set (11) is interpreted in constraint set (19),
where the strict inequality is converted to the inequality of
score function values

A

12
× (2 + 1.0 + 0.0 + 0.0) · Yih

≥ 1

12

[
CT
ih j + 2C I

ih j + CS
ih j

]

×
[
2 + TC

ih j − I Cih j − FC
ihj

]
. (19)

For constraint set (12), according to Definition 3, it can be
reformed as

CN
ihj ′ ≥ CN

ihj +
∑

k′∈Mi j ′

〈[
Xihj ′k′ pTi j ′k′ , Xihj ′k′ pIi j ′k′ , Xihj ′k′ pSi j ′k′

]
,

(

1 −
(
1 − T p

i j ′k′
)Xihj ′k′

,
(
I pi j ′k′

)Xihj ′k′
,
(
F p
i j ′k′

)Xihj ′k′
)〉

∀i ∈ n, h ∈ Ki , ∀ j, j ′ ∈ Rih , j 
= j ′, Vi j j ′ = 1. (20)

However, constraint set (20) contains the non-linear terms,

e.g. 1 −
(
1 − T p

i j ′k′
)Xihj ′k′

; besides, the terms CN
ihj ′ and

CN
ihj can be further unfolded. Fortunately, the binary vari-

able Xihj ′k′ has only two states: suppose operation Oihj ′ is
selected and processed on machine k′; the result of summa-
tion is〈[
pTi j ′k′ , pIi j ′k′ , pSi j ′k′

]
,
(
T p
i j ′k′ , I

p
i j ′k′ , F

p
i j ′k′

)〉
; otherwise, it

yields 〈[0, 0, 0], (0.0, 1.0, 1.0)〉. Furthermore, according to
Definition 3, we have

〈[0, 0, 0], (0.0, 1.0, 1.0)〉 + · · · + 〈[0, 0, 0], (0.0, 1.0, 1.0)〉
+

〈[
pTi j ′k′ , pIi j ′k′ , pSi j ′k′

]
,
(
T p
i j ′k′ , I

p
i j ′k′ , F

p
i j ′k′

)〉

=
〈[
pTi j ′k′ , pIi j ′k′ , pSi j ′k′

]
,
(
T p
i j ′k′ , I

p
i j ′k′ , F

p
i j ′k′

)〉
.

Therefore, the summation operator in constraint set (20) can
be considered separately to reduce the complexity of the
model; the refined model is given in constraint set (21)

1

12

[
CT
ihj ′ + 2C I

ih j ′ + CS
ihj ′

]
×

[
2 + TC

ihj ′ − I Cih j ′ − FC
ihj ′

]

≥ (
1 − Xihj ′k′

) 1

12

[
CT
ihj + 2C I

ih j + CS
ihj

]

×
[
2 + TC

ihj − I Cih j − FC
ihj

]

+Xihj ′k′
1

12

[
CT
ihj + pTi j ′k′ + 2

(
C I
ih j + pIi j ′k′

)
+ CS

ihj + pSi j ′k′
]

×
[
2 +

(
TC
ihj + T p

i j ′k′ − TC
ihj T

p
i j ′k′

)
− I Cih j I

p
i j ′k′ − FC

ihj F
p
i j ′k′

]

∀i ∈ n, h ∈ Ki , ∀ j, j ′ ∈ Rih, j 
= j ′, Vi j j ′ = 1; (21)

constraint set (21) adopts binary variable Xihj ′k′ to distin-
guish whether operation Oihj ′ is processed on machine k′;
if so,

(
1 − Xihj ′k′

)
equals 0 and the neutrosophic comple-

tion time C̃ih j ′ =
〈[
CT
ih j ′ ,C

I
ih j ′ ,C

S
ih j ′

]
,
(
TC
ih j ′ , I

C
ih j ′ , F

C
ihj ′

)〉

is determined. In other cases, naturally, C̃ih j ′ ≥ C̃ih j .
With the similar method, other constraint sets (14)–(17)

can also be converted into the corresponding constraint sets;
nevertheless, the resultant constraint sets are very complex,
and more importantly, massive binary variables with con-
straints hinder the application of the model. For the MILP
models of the IPPS problem with crisp real parameters and
variables [14], the results cannot be obtained in reason-
able time; for the models of uncertain IPPS problem, one
cannot obtain the optimal solutions also, since themodel pro-
posed above is more complex than the previous ones [14].
Instead, we try to solve this problem using the soft computing
approach.

TLBO-based algorithm

The improved TLBO algorithm

By far, there are many nature-inspired meta-heuristic algo-
rithms; among these algorithms, the genetic algorithm is the
most classical algorithm. GA, which hires the Darwin’s ’the
survival of the fittest’, can provide promising solutions for
many optimization problems. Nevertheless, the critical fail-
ing of GA stems from the parameter setting: the values of key
parameters in GA, e.g., the crossover probability, will affect
the effectiveness of the solutions. For other meta-heuristics,
the determination of parameters is also very empirical. For
example, in particle swarm optimization (PSO) algorithm,
some parameters, the inertia weight for example, should also
be properly determined. In view of this, Rao et al. paid effort
in developing novel parameter-free meta-heuristics and they
proposed the TLBO algorithm, which simulates the efforts
of the influence of teachers on the students.
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The TLBO algorithm is also developed based on the
swarm intelligence mechanism; in the algorithm, the most
knowledgeable individual in the population is mimicked as
the teacher and other individuals are the learners. The teacher
tries his best to disseminate knowledge to the learners to
improve the knowledge levels of the population. Obviously,
the knowledge level of the teacher will influence the learn-
ers; in many times, learners may require a more superior,
qualified, or sophisticated teacher to teach them; besides,
the learner may surpass their teacher. In such a case, a new
teacher will be selected among the latest population. On
the other hand, acquiring knowledge can also be realized
by learning from each other; that is, the learners can also
improve their knowledge level by consulting other advanced
learners. Therefore, the TLBO algorithm consists of two
phases: the teacher phase and the learner phase, and there is
no probability-related parameter setting requirement in both
the two phases.

However, the TLBO algorithm is originally designed for
unconstrained non-linear continuous optimization problems;
meanwhile, there is only one teacher fromwhomstudents can
learn. Therefore, the algorithm should be improved properly
to adapt to the uncertain IPPS problem which is a discrete
optimization problem. In this research, the original TLBO
algorithm is properly improved by employing the coding
and the decoding scheme discussed below. Moreover, differ-
ent teachers may be good at different subjects and only one
teacher in the algorithm is usually not enough to improve the
students’ knowledge level. There has the practical signifi-
cance: the algorithm will be trapped into local optimum with
only one teacher in the IPPS problem optimization, since
the diversity of the population is largely limited. Therefore,
top 5% of the individuals are deemed as the teachers in the
improved TIBO algorithm.

Encoding and decoding

In the proposed improved TLBO algorithm, an individual
stands for a solution and a solution can also be mapped
into a individual; this can be realized using the coding and
the decoding procedures. Like previous research [21,23,51],
the coding scheme, presented in Fig. 2a, considers opera-
tion combination selection, machine selection, and operation
permutation simultaneously. The coding scheme contains
three strings: the scheduling string, the process plan string,
and the operation string. The process plan string contains
only one position in which the operation combination ID is
recorded. By properly sequencing the operations belonging
to the selected operation combination and selecting the corre-
sponding machines, a feasible process plan can be obtained.
The operation string contains the information of each opera-
tions belonging to the job. Each job has exactly one process
plan string and operation string; therefore, the number of

jobs, e.g. |n|, corresponds to the number of process plan
strings as well as operation strings. According to Fig. 2, the
process plan string is attached to the corresponding operation
string. In an operation string, the sequence of each operations
is determined properly using the binary tree method [66]
according to the precedence relationships specified in the net-
work graph. The number of positions in the operation string
is exactly the number of operations of the selected operation
combination. In each position, the selected machine together
with the nominal processing time is given in the pair of brack-
ets. However, the number of positions of an operation string
depends on the number of operations of the selected opera-
tion combination, and it equals |Rih |. The scheduling string
contains

∑ |Rih |max positions and it is a permutation of job
IDs; if the actual number of operations in selected operation
combination is less than themaximumone, |Rih | < |Rih |max,
the vacant positions will be filled with 0s. In the scheduling
string, the operation-based coding paradigm is adopted to
avoid any possible infeasibility: if job ID i appears exactly j
times in current position, it means that the current operation
is located in the j th position of operation string of job i .

For example, there are three jobs in the IPPS instance in
Fig. 2a, they contain three, two, and four operations, respec-
tively. The third operation combination is selected in the first
job, and there are three operations in this combination. For all
the three jobs, there are totally nine operations; thus, there
are 9 nonzero positions in the scheduling string. The third
position of the scheduling string is number 3 and this num-
ber appears exactly for the second time: the third operation to
be scheduled is in the second position of the operation string
of job 3. This operation is the second operation of job 3 and
it will be processed by machine 2.

The decoding procedure is developed based on the active
scheduling paradigm in which the insertions of operations
are allowed to shorten the makespan. The final makespan
is a TNS number; therefore, the decoding procedure will
be developed based on the existing deterministic parameter-
based scheduling method with some improvements. In the
following, the decoding procedure proposed in this research
are described.

1. Based on the coding scheme, especially the the schedul-
ing string and the operation string, determine the schedul-
ing sequence according to which the operations will be
allocated on machines one by one.

2. For each operation to be scheduled, determine the
machine as well as the neutrosophic processing times

t̃i jk =
〈[
t Ti jk, t

I
i jk, t

S
i jk

]
,
(
T t
i jk, I

t
i jk, F

t
i jk

)〉
.

3. If current operation Oi jk is to be scheduled on the
machine on which previous operations have located, idle
time slots are required to be checked one by one. This
process can further be divided into four situations below:
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Fig. 2 Coding scheme with crossover operator

3.1 If there is no job predecessor (JP) or machine pre-
decessor (MP), the starting time is regarded as
〈[0, 0, 0], (0.0, 1.0, 1.0)〉. Calculate the score func-
tion (SF) value of the slot end time (SET): SF(SET )

which is the starting time of the slot end opera-
tion. Calculate the SF value of the current operation
end time (COET): SF(〈[0, 0, 0], (0.0, 1.0, 1.0)〉 +〈[
t Ti jk, t

I
i jk, t

S
i jk

]
,
(
T t
i jk, I

t
i jk, F

t
i jk

)〉
) = SF(COET ).

If SF(COET ) ≤ SF(SET ), insert current opera-
tion into this time slot. This procedure is illustrated
in Fig. 3a, where the curves representing indetermi-
nacy and falsity are not given. In the Gantt chart with
neutrosophic processing times, the curves of start-
ing times are given below horizontal lines, while the
neutrosophic completion times are above horizontal
lines.

3.2 If the current operation has JP and has no MP, the
starting time of the time slot depends on the comple-
tion time of JP: t̃ J P . If SF(t̃ J P + t̃i jk) ≤ SF(SET ),
insert current operation into this time slot. This pro-
cedure is illustrated in Fig. 3b.

3.3 If the current operation has MP and has no JP, the
starting time of the time slot depends on the com-
pletion time of MP: t̃M P . If SF(t̃M P + t̃i jk) ≤
SF(SET ), insert current operation into this time slot.
This procedure is illustrated in Fig. 3c.

3.4 If the current operation has both the MP and JP,
the starting time of the time slot depends on the
maximum completion time between JP and MP:
max

{
t̃ J P , t̃M P

}
. The starting time of current oper-

ation can be determined as
〈
t T = max

{
t TJ P , t TMP

}
,

t I = max
{
t IJ P , t IMP

}
, t S = max

{
t SJ P , t SMP

}〉
. If

SF
(〈[

t T , t I , t S
]
,
(
T t
J P , I tJ P , Ft

J P

)〉) ≤ SF(〈[
t T , t I , t S

]
,
(
T t
MP , I tMP , Ft

MP

)〉) ≤ SF(SET ),
the slot starting time is

〈[
t TJ P , t IJ P , t SJ P

]
,(

T t
MP , I tMP , Ft

MP

)〉
; otherwise, if SF

(〈[
t T , t I , t S

]
,(

T t
MP , I tMP , Ft

MP

)〉) ≤ SF
(〈[

t T , t I , t S
]
,(

T t
J P , I tJ P , Ft

J P

)〉) ≤ SF(SET ), the slot starting
time is

〈[
t TJ P , t IJ P , t SJ P

]
,
(
T t
J P , I tJ P , Ft

J P

)〉
. If either

of the two cases holds, insert current operation into
this time slot. This procedure is illustrated in Fig. 3d.

4. If the current operation cannot be arranged at any idle
time slot on a certain machine, it can only be appended at
the bottom of the machine. In such a case, as the situation
in Step 3.4, the starting time of the current operation is
determined by the maximum completion time between
its JP and MP.

5. Return to Step 2 to schedule the next operation till all the
operations have been processed.

Genetic operators

The crossover procedure is the main genetic operator, and it
is responsible for the learning process. In GA, the excellent
gene fragments in parents are passed on to their offsprings
through the crossover procedure; similarly, the teacher will
disseminate knowledge to the learners in TLBO and this is
also realized byperforming the crossover between the teacher
and the learners (the teacher will not be changed after the
crossover procedure). As shown in Fig. 2b, c, there are two
levels in the crossover operator. For two individuals, e.g.,
parent 1 (P1) and parent 2 (P2) in figure, determine several
jobs randomly. Exchange the operation strings and the pro-
cess plan strings of the selected jobs, and keep other strings
as they are. In Fig. 2b, jobs 2 and 3 are selected and the
corresponding operation strings and process plan strings are
exchanged. Depending on the selected operation combina-
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Fig. 3 Decoding scheme

tion, the amount of operations needed to complete a job
may be distinct; therefore, this will affect the job IDs in
the scheduling strings in both individuals. As presented in

Fig. 2b, the scheduling strings in both P1 and P2 are adjusted
accordingly: the job IDs of unselected jobs in P1(P2) are kept
in the sameposition inO1(O2), and the job IDs of the selected
jobs in P2(P1) are placed at the void positions in offsprings
O1(O2) with the same sequence as they are originally in the
scheduling string in P2(P1). Finally, the void position(s) will
be filled with 0s to avoid any possible infeasibility. In this
case, operation combination 4 of job 3 contains only three
operations and there will be 8 operations only in O2; thus, a
0 is added in O2. The resultant two offsprings, O1 and O2,
are also given in Fig. 2b. In ’teacher’ phase, P1 and P2 stand
for the teacher and the learner, respectively, and the teacher
is recovered as it is before the crossover process. In ’learner’
phase, P1 and P2 are two randomly selected individuals.

There is another kind of crossover operator: the crossover
in process planning level. The operations in the same opera-
tion combination may have different permutations as long
as the precedence relationships in the network graph are
satisfied. For the operations of the same job in P1 and P2,
if they have the identical operation combination (have the
same number in the corresponding process plan strings),
the crossover operator between operation strings can be
performed. The single point crossover [67] is adopted to
maintain the feasibility of the two process plan strings. For
instance, the first operation combination has been selected
by the same job and the single point crossover is performed.
A crossover point is randomly determined; the operations
before the crossover point keep untouched and the positions
after the crossover point are filled with the remainder oper-
ations in the other operation string. As a result, two distinct
process plans are generated in Fig. 2c. The work flow of the
whole algorithm is depicted in Fig. 4.

Experiments with discussions

To simulate the real-life situations, three scenarios, e.g., large
uncertainty, medium uncertainty, and small uncertainty, are
designed. According to Fig. 5a, some parameters are defined
to describe the three scenarios: the fluctuation |α|, the range
of the truth membership function T , the range of the indeter-
minacy membership function I , and the range of the falsity
membership function F . By properly setting these parame-
ters, these three scenarios can be simulated. For example, the
large uncertainty scenario corresponds to larger |α|, I , F val-
ues and smaller T value, while small |α|, I , F values mean
the uncertainty has been reduced. The |α| value determines
the upper bounds of the t T , t S values according to Fig. 5a
and the t I is the nominal processing time of an operation.
Table 2 gives the range of these parameters in different sce-
narios. It can be found out that the t T , t S values are uniformly
sampled from the range

[
(1 − α) t I , t I

]
and

[
t I , (1 + α) t I

]

respectively; furthermore, the maximum truth and indeter-
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Fig. 4 The work flow of the algorithm

Table 2 Parameter setting in three scenarios

Small uncertainty Medium uncertainty Large uncertainty

|α| = 5% |α| = 10% |α| = 15%

T ∈ [0.75, 1.0] T ∈ [0.5, 0.75] T ∈ [0.25, 0.5]
I ∈ [0.0, 0.25] I ∈ [0.25, 0.5] I ∈ [0.5, 1.0]
F = 1.0 − T F = 1.0 − T F = 1.0 − T

minacy membership values (the amplitude values) are also
uniformly sampled in the given ranges. The maximum fal-
sity membership value can be calculated as F = 1.0 − T .
Figure 5b gives an example of the actual neutrosophic pro-
cessing time. For instance, if the truth and the indeterminacy
membership values are 0.62 and 0.31 in the medium uncer-
tainty case, the falsity membership value is 1−0.62 = 0.38.

The kim’s benchmark [17], which contain 24 instances,
is adopted to test the proposed TLBO algorithm. All the 24
instances covers the small-scale, the medium-scale, and the
large-scale instances; in each instance, there are 15 machines
to process the operations. The objective is to minimize the

maximum completion time (score value) as mentioned in
objective function (18). The proposed algorithm is coded in
C++ language and is performed on a computer with an Intel
i5-9600 3.7GHz CPU and 16GB memory. The number of
individuals is set to 800 and the algorithm will be stopped
after 800 iterations. For each instance, 5 independent com-
putations are performed.

We first give the intuitive presentations on the conver-
gence of the algorithm. The convergence curves of both the
score value and the nominal makespan of Instance 24 with
large uncertainty (the last instance is the most complex one)
in Figs. 6 and 7. Since the score value of the makespan is
calculated using the truth, the indeterminacy, and the falsity
membership values using objective function (18), it is usu-
ally less than the nominalmakespan value.With teaching and
learning optimization processes going on, both the two val-
ues decrease; this reflects the effectiveness of the improved
TLBO algorithm. According to Fig. 6, the curve of nominal
makespan rises sometimes, while the other curve declines
all the way; reasons behind this are: 1) a scheduling scheme
with a large nominal makespan value may perform better in
resisting the uncertain in processing times and 2) the objec-
tive is guided by the score value of the makespan instead
of the nominal makespam. It is noteworthy that the nomi-
nal makespan value according to Figs. 6 and 7 is larger than
that of deterministic cases [50,51]. However, this is reason-
able, because compact operation permutations on machines
in a scheduling scheme with a small makespan value usu-
ally extrude the idle time between operations, and hence,
the scheduling scheme cannot absorb processing time fluc-
tuations. In other words, a scheduling scheme with a large
makespan value may be much more robust. The similar phe-
nomena can be observed in Fig. 7, where the plain TLBO
algorithm is adopted. Nevertheless, the resultant score value
of neutrosophic makespan is larger than the case in Fig. 6
(compare the red curves in both the figures). This indicates
that the improved TLBO algorithm performs better than the
plain TLBO algorithm. Later, the performances of the two
algorithms will be further compared.

In the following, the results obtained by both the two algo-
rithms are compared and corresponding results are listed
in Tables 3, 4, 5, 6, 7, and 8. The results obtained by the
improved TLBO algorithm and the plain TLBO algorithm
with large uncertainty in processing times are first compared.
For the nominal makespan values, the plain TLBO algorithm
performs better than the improved TLBO algorithm for most
of the 24 instances. It seems that the plain TLBO algorithm
is more promising; however, the nominal makespan value is
useless in uncertain IPPS problems, since the actual schedul-
ing scheme may lose effectiveness in real-life cases where
the processing times are undetermined. The score value of
neutrosophic makespan is more important; as can be seen
in the table, score values of neutrosophic makespan of the
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Fig. 5 The graph representation of membership functions of TNS

Fig. 6 The convergence curves of Instance 24 with improved TLBO
algorithm

Fig. 7 The convergence curves of Instance 24 with plain TLBO algo-
rithm

improved TLBO algorithm outperform those of plain TLBO
algorithm: the improved TLBO algorithm outperform the
plain TLBO algorithm for 23 instances among all the 24
instances, and corresponding results in Table 3 are shown
in bold. A smaller score value of neutrosophic makespan
means that the resultant scheduling scheme is more robust
with processing times contaminated with uncertainties. The
enhanced ’teacher’ phase of the proposed improved TLBO
algorithm renders the high diversity of individuals during
the learning process, and hence, more competitive results
can be observed. Besides, the maximum and the minimum
score values of the neutrosophic makespan of the improved
TLBO algorithm are also better than those of plain TLBO
algorithm; this further testifies that the proposed algorithm is
better than the plain TLBO algorithm in uncertain IPPS opti-
mization. As analyzed in the paragraph above, a scheduling
schemewith a large nominal makespan valuemay performed
better in uncertain processing time scenarios, since the idle
time slots can absorb the uncertainty or fluctuations in pro-
cessing times; it can be perceived that this conclusion holds
after comparing the average nominal makespan values and
the average score values obtained by the two algorithms in
Table 3. For example, the mean nominal makespan value of
Instance 1 of the improved TLBO algorithm is 486.20 and
it is larger than the one obtained by the plain TLBO algo-
rithm (458.20); but the average score value of this instance
is 392.63 with improved TLBO, and it is better than the one
of plain TLBO.

Othermeta-heuristic algorithms includngGA, differential
evolution (DE) algorithm, and particle swarm optimization
(PSO) algorithm have been applied also in this research
for comparisons. In PSO algorithm, particles (individuals)
follow the best particle as well as the the historical opti-
mal solution of itself. In both the GA and DE algorithms,
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Table 3 Results comparisons with large uncertainty

Cases The improved TLBO The plain TLBO

NMa (max, min, mean) SVb (max, min, mean) NM (max, min, mean) SV (max, min, mean)

1 (509,465,486.20) (422.73,373.23,392.63) (469,450,458.20) (427.68,378.18,401.03)

2 (389,362,373.40) (323.52,308.16,316.29) (377,355,366.60) (342.54,313.31,329.28)

3 (421,360,376.40) (348.03,326.70,341.55) (384,359,368.60) (352.44,338.74,346.57)

4 (328,319,322.80) (306.90,269.36,295.30) (336,308,320.20) (314.82,278.24,302.06)

5 (363,330,350.40) (318.28,277.25,307.03) (365,321,336.60) (322.42,307.30,315.56)

6 (526,470,494.20) (387.09,343.53,354.87) (523,477,496.60) (387.72,350.27,371.93)

7 (402,376,387.40) (373.95,315.81,333.35) (392,377,381.80) (370.26,357.39,367.04)

8 (392,357,370.80) (339.57,315.46,324.81) (379,354,372.00) (342.54,318.50,330.76)

9 (509,466,491.80) (340.56,297.00,316.16) (524,476,497.60) (345.51,340.56,342.71)

10 (506,452,475.20) (430.65,389.25,415.53) (488,459,472.20) (433.62,369.27,408.08)

11 (416,366,384.00) (365.07,342.72,352.43) (403,366,379.80) (383.13,337.59,358.18)

12 (352,333,339.40) (327.69,313.68,322.38) (350,330,338.60) (336.30,319.68,325.43)

13 (569,482,514.80) (428.67,360.79,393.51) (531,479,501.60) (449.67,388.08,421.58)

14 (460,387,421.80) (378.70,337.59,362.64) (461,415,431.20) (399.96,377.19,388.44)

15 (524,478,505.40) (362.34,345.33,352.40) (548,467,508.60) (391.38,341.55,373.30)

16 (488,462,479.80) (437.58,398.97,422.99) (516,456,480.00) (454.41,403.92,427.07)

17 (446,401,422.80) (380.81,350.46,366.46) (481,428,443.20) (408.87,393.03,401.56)

18 (406,364,380.20) (346.50,324.03,333.42) (426,370,389.40) (379.17,324.47,352.17)

19 (516,471,497.00) (446.49,396.58,427.75) (557,484,510.80) (438.57,419.76,427.88)

20 (495,423,448.00) (400.95,370.26,389.64) (491,430,450.20) (431.64,392.45,411.65)

21 (536,485,508.60) (404.91,378.03,391.81) (522,457,490.40) (436.59,407.88,428.08)

22 (578,524,545.20) (439.13,409.05,424.40) (562,504,524.20) (470.42,433.75,461.04)

23 (507,437,470.20) (422.73,401.66,414.43) (474,439,458.60) (455.43,413.53,428.27)

24 (559,521,544.20) (509.85,462.29,486.47) (584,521,559.40) (530.64,482.31,509.31)

aNM: The nominal makespan value
bSV: The score value of the neutrosophic makespan

the crossover probabilities are set to 0.6; the scaling fac-
tor in DE and the mutation probability in GA are set to 1.0
and 0.05, respectively. As the case in the proposed TLBO
algorithm, 800 individuals are employed in the three algo-
rithms respectively and each algorithm will be stopped after
800 iterations. Five independent computations are performed
for each instance. Corresponding results with comparisons
are presented in Tables 4, 5, and 6. According to Table
4, the improved TLBO algorithm performs better than GA
for large-scale instances, while GA performs better than the
improved TLBO algorithm for some small-scale instances.
This reveals that the improved TLBO algorithm has better
exploration and exploitation capacities because the solution
space ismore complex in large-scale instances; in such a case,
GA may be trapped into local optimum. Such phenomenon
can also be observed in DE and PSO algorithms according to
Tables 5 and 6: an individual mainly refers to or imitates the
global best individual, and hence, it lacks genetic diversity.
Therefore, such individuals are not likely to produce high-
quality solutions. From Tables 5 and 6, it can be perceived

that the improved TLBO algorithm performs totally better
than the DE and the PSO algorithms.

In the following, results of medium uncertainty and small
uncertainty scenarios are compared and analyzed. Based on
the number of jobs in an instance, the 24 instances can be
classified into three types: the small-scale, the medium-, and
the large-scale instances. Typical instances covering the three
types of instances are selected and the results are briefly sum-
marized in Tables 7 and 8. Similar situations can be observed
inTables 7 and 8: the average score values of the neutrosophic
makespan yielded by the improved TLBO algorithm are bet-
ter than those of the plain TLBO algorithm in both medium
uncertainty and small uncertainty cases. This also reflects the
superiority of the improved TLBO algorithm. Also presented
in the tables, the average nominal makespan values yielded
by the improved TLBO algorithm are larger than the ones
obtained by the plain TLBO algorithm; again, this means
that a scheduling scheme with a large nominal makespan
value can resist the risk of processing time fluctuations and
a so-called ‘optimal’ scheduling scheme in the determinis-
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Table 4 Results comparisons between the improved TLBO and GA with large uncertainty

Cases The improved TLBO GA

NMa (max, min, mean) SVb (max, min, mean) NM (max, min, mean) SV (max, min, mean)

1 (509,465,486.20) (422.73,373.23,392.63) (488,446,469.60) (369.27,321.75,345.31)

2 (389,362,373.40) (323.52,308.16,316.29) (379,354,368.60) (327.69,302.94,317.07)

3 (421,360,376.40) (348.03,326.70,341.55) (406,371,389.20) (346.44,321.75,330.43)

4 (328,319,322.80) (306.90,269.36,295.30) (335,314,321.40) (292.05,251.46,275.24)

5 (363,330,350.40) (318.28,277.25,307.03) (370,325,344.00) (317.52,286.16,307.14)

6 (526,470,494.20) (387.09,343.53,354.87) (538,479,501.00) (389.07,344.52,374.56)

7 (402,376,387.40) (373.95,315.81,333.35) (402,383,394.00) (348.48,307.78,324.16)

8 (392,357,370.80) (339.57,315.46,324.81) (377,363,369.80) (321.46,310.86,316.44)

9 (509,466,491.80) (340.56,297.00,316.16) (509,441,475.40) (377.29,298.96,342.33)

10 (506,452,475.20) (430.65,389.25,415.53) (512,480,500.00) (438.57,370.75,391.94)

11 (416,366,384.00) (365.07,342.72,352.43) (398,365,388.80) (349.47,344.96,346.97)

12 (352,333,339.40) (327.69,313.68,322.38) (376,333,358.40) (326.70,303.893,317.05)

13 (569,482,514.80) (428.67,360.79,393.51) (538,487,508.60) (435.60,364.32,399.39)

14 (460,387,421.80) (378.70,337.59,362.64) (462,400,432.80) (365.31,327.82,348.85)

15 (524,478,505.40) (362.34,345.33,352.40) (500,469,490.20) (414.81,344.54,379.04)

16 (488,462,479.80) (437.58,398.97,422.99) (552,477,506.80) (433.62,387.09,410.04)

17 (446,401,422.80) (380.81,350.46,366.46) (444,393,429.20) (394.02,364.80,378.28)

18 (406,364,380.20) (346.50,324.03,333.42) (398,369,382.40) (357.39,329.31,344.62)

19 (516,471,497.00) (446.49,396.58,427.75) (578,483,515.60) (453.78,389.07,416.27)

20 (495,423,448.00) (400.95,370.26,389.64) (464,422,449.60) (424.20,369.27,398.87)

21 (536,485,508.60) (404.91,378.03,391.81) (508,470,490.60) (426.69,378.69,398.52)

22 (578,524,545.20) (439.13,409.05,424.40) (552,502,530.40) (444.76,418.84,433.42)

23 (507,437,470.20) (422.73,401.66,414.43) (489,446,468.40) (453.42,420.31,435.23)

24 (559,521,544.20) (509.85,462.29,486.47) (591,502,541.40) (509.02,481.89,491.20)

aNM: The nominal makespan value
bSV: The score value of the neutrosophic makespan

tic case however will result in vulnerability or fragility in
the performance. This research therefore also indicates that
considering only the optimal makespan value in determin-
istic processing time scenarios is not enough to deal with
real-life situations on the shop floor. This research therefore
gives some clues for the optimization method of scheduling
problems with uncertain processing times.

Figure 8 gives a Gantt chart of Instance 24 with deter-
ministic processing times (nominal processing times) and
the corresponding neutrosophic version with large uncer-
tainty is presented in Fig. 9 where the scales of x-ordinate
are valued as score values of neutrosophic makespan. The
neutrosophic starting times are given below the horizontal
line, while the neutrosophic completion times are depicted
above the line. For the purpose of a clear view, only the
broken line presenting the truth membership T x is given for
each srarting/completion time in the Gantt chart. By compar-
ing the two Gantt charts, it can be found that the processing
sequences (operation permutations) on each machine in both
the two Gantt charts are identical; the Gantt chart in Fig. 9 is

the actual version of the one in Fig. 8. According to Fig. 8,
the last operation is operation 3.19 on machine M2 and other
operations are all completed earlier than operation 3.19; nev-
ertheless, the Gantt chart in Fig. 9 indicates that the actual
situation is different with the case in Fig. 8. Clearly, the idle
time between operations on machines 2, 3, 5−8, 13−15 is
quite necessary to absorb processing time fluctuations. It can
also be observed from Fig. 9 that the amplitude of the truth
membership value increases continuously with the optimiza-
tion process, because the truth membership values increases,
while the indeterminacy and the falsity membership values
decrease after each addition operation of two TNS numbers.

Conclusions

This research mainly focuses on the uncertain IPPS prob-
lem. The integration of process planning and scheduling
can achieve an efficient utilization of resources to reduce
conflicts in a flexible manufacturing system; nevertheless,
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Table 5 Results comparisons between the improved TLBO and PSO algorithms with large uncertainty

Cases The improved TLBO PSO

NMa (max, min, mean) SVb (max, min, mean) NM (max, min, mean) SV (max, min, mean)

1 (509,465,486.20) (422.73,373.23,392.63) (482,469,477.80) (477.18,464.31,473.02)

2 (389,362,373.40) (323.52,308.16,316.29) (386,362,375.20) (382.14,359.27,371.77)

3 (421,360,376.40) (348.03,326.70,341.55) (393,380,386.60) (389.28,376.20,383.18)

4 (328,319,322.80) (306.90,269.36,295.30) (323,314,319.00) (318.24,309.81,315.49)

5 (363,330,350.40) (318.28,277.25,307.03) (339,329,334.00) (335.61,324.61,330.37)

6 (526,470,494.20) (387.09,343.53,354.87) (490,485,487.60) (485.10,481.14,483.32)

7 (402,376,387.40) (373.95,315.81,333.35) (413,378,396.80) (398.97,374.22,383.51)

8 (392,357,370.80) (339.57,315.46,324.81) (382,368,375.40) (378.18,364.87,371.62)

9 (509,466,491.80) (340.56,297.00,316.16) (482,474,478.40) (478.46,469.28,474.43)

10 (506,452,475.20) (430.65,389.25,415.53) (503,481,496.20) (497.97,476.19,491.24)

11 (416,366,384.00) (365.07,342.72,352.43) (412,391,403.40) (408.38,388.39,400.23)

12 (352,333,339.40) (327.69,313.68,322.38) (377,352,367.60) (374.71,349.54,364.21)

13 (569,482,514.80) (428.67,360.79,393.51) (528,493,510.60) (522.72,488.07,506.38)

14 (460,387,421.80) (378.70,337.59,362.64) (450,418,432.20) (445.94,413.82,428.33)

15 (524,478,505.40) (362.34,345.33,352.40) (493,478,488.00) (490.24,473.22,483.95)

16 (488,462,479.80) (437.58,398.97,422.99) (529,508,513.60) (524.32,502.92,509.08)

17 (446,401,422.80) (380.81,350.46,366.46) (481,453,467.20) (477.11,448.79,463.13)

18 (406,364,380.20) (346.50,324.03,333.42) (423,390,406.80) (418.77,386.90,403.43)

19 (516,471,497.00) (446.49,396.58,427.75) (542,517,532.80) (537.24,514.33,528.68)

20 (495,423,448.00) (400.95,370.26,389.64) (496,458,473.40) (491.04,454.24,468.98)

21 (536,485,508.60) (404.91,378.03,391.81) (518,504,509.60) (513.56,499.65,504.91)

22 (578,524,545.20) (439.13,409.05,424.40) (578,533,560.00) (572.22,528.31,554.99)

23 (507,437,470.20) (422.73,401.66,414.43) (536,509,523.80) (531.11,504.17,518.91)

24 (559,521,544.20) (509.85,462.29,486.47) (617,581,600.80) (611.09,578.69,596.12)

aNM: The nominal makespan value
bSV: The score value of the neutrosophic makespan

Fig. 8 The Gantt chart of Instance 24 with nominal processing times
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Table 6 Results comparisons between the improved TLBO and DE algorithms with large uncertainty

Cases The improved TLBO DE

NMa (max, min, mean) SVb (max, min, mean) NM (max, min, mean) SV (max, min, mean)

1 (509,465,486.20) (422.73,373.23,392.63) (611,542,592.40) (469.26,455.40,465.30)

2 (389,362,373.40) (323.52,308.16,316.29) (590,468,533.00) (366.30,361.35,364.06)

3 (421,360,376.40) (348.03,326.70,341.55) (648,444,545.60) (378.18,368.28,373.82)

4 (328,319,322.80) (306.90,269.36,295.30) (556,446,512.20) (318.86,311.79,316.32)

5 (363,330,350.40) (318.28,277.25,307.03) (513,472,500.20) (336.34,321.75,329.27)

6 (526,470,494.20) (387.09,343.53,354.87) (746,554,666.60) (477.18,463.32,470.05)

7 (402,376,387.40) (373.95,315.81,333.35) (656,468,554.40) (381.15,376.20,378.23)

8 (392,357,370.80) (339.57,315.46,324.81) (576,458,524.40) (471.24,357.39,385.80)

9 (509,466,491.80) (340.56,297.00,316.16) (792,594,639.80) (474.21,462.89,467.85)

10 (506,452,475.20) (430.65,389.25,415.53) (848,679,760.20) (483.75,466.29,477.70)

11 (416,366,384.00) (365.07,342.72,352.43) (755,579,677.00) (400.05,395.01,398.09)

12 (352,333,339.40) (327.69,313.68,322.38) (599,459,549.60) (359.15,352.44,356.51)

13 (569,482,514.80) (428.67,360.79,393.51) (865,692,773.20) (495.09,485.10,490.21)

14 (460,387,421.80) (378.70,337.59,362.64) (747,644,681.00) (538.41,403.92,437.38)

15 (524,478,505.40) (362.34,345.33,352.40) (749,613,682.40) (476.19,466.29,471.83)

16 (488,462,479.80) (437.58,398.97,422.99) (973,653,819.80) (498.26,481.31,490.82)

17 (446,401,422.80) (380.81,350.46,366.46) (845,718,784.20) (619.74,449.46,488.66)

18 (406,364,380.20) (346.50,324.03,333.42) (693,619,648.20) (417.01,395.35,407.95)

19 (516,471,497.00) (446.49,396.58,427.75) (891,829,855.40) (526.30,507.87,517.74)

20 (495,423,448.00) (400.95,370.26,389.64) (782,625,717.00) (462.33,458.15,459.92)

21 (536,485,508.60) (404.91,378.03,391.81) (872,725,796.20) (497.97,489.27,494.65)

22 (578,524,545.20) (439.13,409.05,424.40) (998,863,915.80) (557.37,540.60,548.96)

23 (507,437,470.20) (422.73,401.66,414.43) (1034,797,905.80) (518.89,502.92,510.95)

24 (559,521,544.20) (509.85,462.29,486.47) (974,804,900.00) (598.25,590.24,594.28)

aNM: The nominal makespan value
bSV: The score value of the neutrosophic makespan

Table 7 Results comparisons
with medium uncertainty

Instance IDs Total jobs The improved TLBO The plain TLBO

NMa (mean) SVb (mean) NM (mean) SV (mean)

1 6 470.40 381.40 452.80 421.60

2 6 362.80 312.40 361.80 341.93

3 6 368.80 335.20 365.00 351.40

11 9 395.20 350.80 389.80 351.20

12 9 350.00 326.07 343.80 331.00

13 9 503.20 400.80 487.80 410.72

22 15 525.00 444.46 521.60 459.93

23 15 484.00 430.19 463.20 432.80

24 18 566.80 481.15 542.20 495.18

aNM: The nominal makespan value.
bSV: The score value of the neutrosophic makespan

due to the uncertain processing times, the implementation of
the so-called ’optimal’ scheduling scheme usually results in
deteriorations in the the performance of the manufacturing
system. To address such uncertain IPPS problems, this paper
presents a TNS-basedmethodology. The TNSs are employed

for the first time to model the uncertain processing times and
a TNS-basedmathematical model is also established to facil-
itate the problem. We further discuss the method on how to
convert an MILP model of the deterministic IPPS problem
into the TNS-based one. Due to the NP-hardness, the uncer-
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Table 8 Results comparisons
with small uncertainty

Instance IDs Total jobs The improved TLBO The plain TLBO

NMa (mean) SVb (mean) NM (mean) SV (mean)

1 6 465.80 393.80 462.80 407.20

2 6 373.60 324.60 366.00 332.60

3 6 371.80 342.40 357.00 346.00

11 9 377.20 349.40 380.60 361.80

12 9 354.20 328.80 346.60 327.80

13 9 496.00 397.43 491.40 428.60

22 15 529.00 441.60 529.40 477.61

23 15 469.40 421.87 491.80 465.72

24 18 544.40 494.22 527.40 498.76

aNM: The nominal makespan value.
bSV: The score value of the neutrosophic makespan

Fig. 9 The Gantt chart of Instance 24 in large uncertainty case

tain IPPSproblem is solvedby the improvedTLBOalgorithm
to seek for robust solutions. The outstanding feature of the
TLBO algorithm stems from parameter independency; more
teachers are included in the improved TLBO algorithm to
improve the individual diversity and hence intensify the
search ability of the algorithm. The score function is adopted
in neutrosophicmakespan determination and the correspond-
ing score value is treated as the objective. We test the Kim’s
benchmark in the experimental study and the results show
that the improved TLBO algorithm is better than the plain
TLBO algorithm in all the small uncertainty, the medium
uncertainty, and the large uncertainty scenarios.More impor-
tantly, we find out that a scheduling scheme with some idle
time slots may perform better, because these idle time slots
can absorb processing time fluctuations. Finally, two Gantt

charts with both nominal as well as neutrosophic processing
times are given.

To further improve the solution quality, e.g., the quality
of some small-scale instances, problem-specific neighbor-
hood structure can be deigned and incorporated into the
TLBO algorithm. In this research, the uncertain levels of
neutrosophic sets in experiments are determined based on the
predetermined scenarios; this relies on the actual data from
shop floor in real-life applications; therefore, prior knowl-
edge or data are required in applying neutrosophic set-based
optimization method. In addition, this research considers
only the neutrosophic makespan criterion. In many cases,
machine utilization is another important criterion; therefore,
the multi-objective uncertain IPPS problem can be listed as
the future research direction. In real-life situations, there are
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other kinds of uncertainties, such as machine breakdowns,
random job arrivals and preventive maintenance of machines
in scheduling. Such factors can be included in the uncertain
IPPS problems and considered in subsequent studies.
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