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Abstract Directed hypergraphs are widely used as a tool to solve andmodel the prob-
lems appearing in computer science and operations research. Bipolar neutrosophic
models are more flexible and applicable because these models study neutrosophic
behavior positively as well as negatively. In this research study, we present a new
frame work for handling bipolar neutrosophic information by combining the bipo-
lar neutrosophic sets with directed hypergraphs. We introduce certain new concepts,
including bipolar neutrosophic directed hypergraphs, regular bipolar neutrosophic
directed hypergraphs, homomorphism and isomorphism on bipolar neutrosophic
directed hypergraphs. Further, we study some isomorphic properties of strong bipolar
neutrosophic directed hypergraphs. In particular, we consider interesting applications
of bipolar neutrosophic directed hypergraphs in decision-making, and we develop
efficient algorithm to solve decision-making problems.
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1 Introduction

Classical set theory is the most fundamental concept of mathematics, which inherits
the collection of distinct individuals or items that share some common property. If an
element belongs to some set, membership value 1 is assigned to that element, other-
wise 0 will be its membership value. That is, there are only two possible membership
values for the elements of a classical set, 0 and 1. This crisp membership function
deals suitably for mathematics and binary operations, but it does not describe nicely
the real World phenomena which cannot be characterized in completely false or com-
pletely truemanner. A fuzzy set, defined by Zadeh [33], permits its elements to possess
variable values of membership. The membership value 1 is given to those elements
that completely belong to the set and 0 is to those objects that are not in the set. An
element that partially belongs to the set will own a membership value between 0 and
1. Intuitionistic fuzzy sets (IFSs), generalization of fuzzy sets, were introduced by
Atanassov [11] in 1986. In 1994, Zhang [32] introduced bipolar fuzzy sets (BFSs) as
an extention of fuzzy sets. BFSs study the positive as well as the negative behavior of
realWorld problems. Bipolar valued fuzzy sets were introduced by Lee [18]. A variety
of decision making problems, which are based on two-sided information are solved
by using BF models. Neutrosophic sets (NSs), a generalized framework of fuzzy sets
and intuitionistic fuzzy sets, were introduced by Smarandache [27] in 1998. Mainly,
the concept of NS is to distinguish every assertion in three dimensional neutrosophic
space, where the individual dimension describes the truth (t), the indeterminacy (I )
and the falsehood ( f ) of the assertion, respectively, that is under consideration, where
t , I , f are independent real subsets of ] − 0, 1 + [ with no any restriction on their
sum. Wang et al. [29] introduced the single-valued neutrosophic sets (SVNSs) as a
subclass of the NSs to apply it more conveniently to engineering problems. Multicrite-
ria decision-making method and single-valued neutrosophic minimum spanning tree
and its clustering were studied by Ye [30,31]. Recently, as an extension of BFSs and
SVNSs, Deli et al. [15] defined bipolar neutrosophic sets (BNSs).

In 1975, fuzzygraphswere introducedbyRosenfeld [24].Bipolar fuzzygraphswere
introduced by Akram [1]. Akram et al. [6] applied the bipolar fuzzy digraphs in deci-
sion support systems.AkramandShahzadi [10] introduced single-valued neutrosophic
graphs. When there is indeterminacy in relations between vertices, the use of fuzzy
graphs [24] and its extended forms, including intuitionistic fuzzy graphs [22], bipolar
fuzzy graphs [1] are not appropriate. Broumi et al. [13] introduced bipolar single-
valued neutrosophic graphs. Akram and Sarwar [8] redefined the definition of bipolar
neutrosophic graphs and discussed applications of neutrosophic graphs. Hypergraphs,
a generalization of graphs, have beenwidely and deeply studied inBerge [12].A hyper-
graph is an extension of a classical graph in this way that a hyperedge can combine
two or more than two vertices. Hypergraphs have many applications in various fields,
including biological sciences, computer science and natural sciences. Just as hyper-
graphs are the generalization of ordinary graphs, directed hypergraphs [16] are the
extension of ordinary directed graphs. The crisp hypergraphs are insufficient to explain
all real World problems. To study the degree of dependence of an object to the other,
Kaufamnn [17] applied the concept of fuzzy sets to hypergraphs. Mordeson and Nair
[20] presented fuzzy graphs and fuzzy hypergraphs. The concept of interval-valued
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fuzzy sets was applied to hypergraphs by Chen [14]. Generalization and redefinition of
fuzzy hypergraphs were discussed by Lee-Kwang and Lee [19]. Samanta and Pal [28]
introduced bipolar fuzzy hypergraphs. Later on, certain properties of bipolar fuzzy
hypergraphs were discussed by Akram et al. [7]. Novel applications of m-polar fuzzy
hypergraphs were studied by Akram and Sarwar [9]. Isomorphism properties on fuzzy
hypergraphs and strong fuzzy hypergraphs were discussed by Radhamani and Radhika
[25], Radhika et al. [26], respectively. Parvathi and Thilagavathi [23] proposed intu-
itionistic fuzzy directed hypergraphs. Myithili et al. [21] introduced certain types of
intuitionistic fuzzy directed hypergraphs. On the other hand, Akram and Luqman [2]
discussed certain concepts of bipolar fuzzy directed hypergraphs. Akram and Luqman
[4] studied single-valued neutrosophic directed hypergraphs. They also discussed intu-
itionistic single-valued neutrosophic hypergraphs [5]. Akram and Luqman [3] intro-
duced bipolar neutrosophic hypergraphs. In this research study,we present a new frame
work for handling bipolar neutrosophic information by combining the bipolar neutro-
sophic sets with directed hypergraphs. We introduce certain new concepts, including
bipolar neutrosophic directed hypergraphs, homomorphism and isomorphism on bipo-
lar neutrosophic directed hypergraphs. Further, we study some isomorphic properties
of strong bipolar neutrosophic directed hypergraphs. In particular, we consider inter-
esting applications of bipolar neutrosophic directed hypergraphs in decision-making,
and we develop efficient algorithm to solve decision-making problems.
The layout of this paper is as follows: In Sect. 2, novel concepts of bipolar neutrosophic
directed hypergraphs, simple, elementary, support simple and sectionally elementary
bipolar neutrosophic directed hypergraphs are introduced. Further, concepts of homo-
morphism, weak isomorphism, co-weak isomorphism and isomorphism on bipolar
neutrosophic directed hypergraphs are discussed. We introduce strong bipolar neutro-
sophic directed hypergraphs and study their certain properties. Section 3 deals with
the discussion that how the concept of bipolar neutrosophic directed hypergraphs can
be used to understand and analyze the real World applications. In the last section, we
conclude our results.

2 Bipolar neutrosophic directed hypergraphs

Definition 2.1 [15] A bipolar neutrosophic set (BNS) N in V is defined as

N = {(e, t+N (e), I+
N (e), f +

N (e), t−N (e), I−
N (e), f −

N (e))|e ∈ V },

where t+N , I+
N , f +

N : V → [0, 1] and t−N , I−
N , f −

N : V → [−1, 0]. The positive mem-
bership values t+N (e), I+

N (e), f +
N (e) denote the truth, indeterminacy and falsity degrees

of a certain element e ∈ V , which indicate that the element captivates the property
of bipolar neutrosophic set N . The negative membership values t−N (e), I−

N (e), f −
N (e)

denote the truth, indeterminacy and falsity membership of e ∈ V , which indicate
the satisfaction of an element to some counter property corresponding to a bipolar
neutrosophic set N .

Definition 2.2 [15] Let N1 = {(e, t+N1
(e), I+

N1
(e), f +

N1
(e), t−N1

(e), I−
N1

(e), f −
N1

(e))|e ∈
V } and N2={(e, t+N2

(e), I+
N2

(e), f +
N2

(e), t−N2
(e), I−

N2
(e), f −

N2
(e))|e∈V } be two bipolar
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neutrosophic sets. Then their union is defined as (N1∪N2)(e) = {max{t+N1
(e), t+N2

(e)},
I+
N1

(e)+I+
N2

(e)

2 ,min{ f +
N1

(e), f +
N2

(e)},min{t−N1
(e), t−N2

(e)}, I−
N1

(e)+I−
N2

(e)

2 ,max{ f −
N1

(e),

f −
N2

(e)}}, for all e ∈ V .

Definition 2.3 [8] A bipolar neutrosophic relation on a non-empty set V is defined
as a bipolar neutrosophic subset of V × V of the form R = {(mn), t+R (mn), I+

R (mn),
f +
R (mn), t−R (mn), I−

R (mn), f −
R (mn)|mn ∈ V × V }, where t+R , I+

R , f
+
R , t−R , I

−
R , f

−
R

are defined by the mappings t+R , I
+
R , f

+
R : V ×V → [0, 1] and t−R , I−

R , f
−
R : V ×V →

[−1, 0].
Definition 2.4 The support of a BNS N = {(e, t+N (e), I+

N (e), f +
N (e), t−N (e), I−

N (e),
f −
N (e))|e ∈ V } is defined as supp(N ) = supp+(N )∪supp−(N ),where supp+(N ) =

{e ∈ V |t+N (e) �= 0, I+
N (e) �= 0, f +

N (e) �= 0} and supp−(N ) = {e ∈ V |t−N (e) �= 0,
I−
N (e) �= 0, f −

N (e) �= 0}. supp+(N ) is called the positive support and supp−(N ) is
called the negative support of N .

Definition 2.5 [8] A bipolar neutrosophic graph on a non-empty set V is an ordered
pair G = (A, B), where A is a bipolar neutrosophic set on V and B is a bipolar
neutrosophic relation in V such that

t+B (vy) ≤ t+A (v) ∧ t+A (y), I+
B (vy) ≤ I+

A (v) ∧ I+
A (y), f +

B (vy) ≤ f +
A (v) ∨ f +

A (y),

t−B (vy) ≥ t−A (v) ∨ t−A (y), I−
B (vy) ≥ I−

A (v) ∨ I−
A (y), f −

B (vy) ≥ f −
A (v) ∧ f −

A (y),

for all v, y ∈ V . Note that D(vy) = (0, 0, 0, 0, 0, 0) = 0, for all vy ∈ V × V \E .
Akram and Luqman [3] introduced the concept of bipolar neutrosophic hypergraphs.

Definition 2.6 [3] Let V be a non-empty set. A bipolar neutrosophic hypergraph H
on V is defined as an ordered pair H = (μ, ρ), where μ = {μ1, μ2, μ3, . . . , μn} is a
finite collection of bipolar neutrosophic subsets on V and ρ is a bipolar neutrosophic
relation on bipolar neutrosophic subsets μi such that

1. (i)

t+ρ (Ek) = t+ρ ({x1, x2, x3, . . . , xm}) ≤ min{t+μi
(x1), t

+
μi

(x2), . . . , t
+
μi

(xm)},
I+
ρ (Ek) = I+

ρ ({x1, x2, x3, . . . , xm}) ≤ min{I+
μi

(x1), I
+
μi

(x2), . . . , I
+
μi

(xm)},
f +
ρ (Ek) = f +

ρ ({x1, x2, x3, . . . , xm}) ≤ max{ f +
μi

(x1), f +
μi

(x2), . . . , f +
μi

(xm)}.

(ii)

t−ρ (Ek) = t−ρ ({x1, x2, x3, . . . , xm}) ≥ max{t−μi
(x1), t

−
μi

(x2), . . . , t
−
μi

(xm)},
I−
ρ (Ek) = I−

ρ ({x1, x2, x3, . . . , xm}) ≥ max{I−
μi

(x1), I
−
μi

(x2), . . . , I
−
μi

(xm)},
f −
ρ (Ek) = f −

ρ ({x1, x2, x3, . . . , xm}) ≥ min{ f −
μi

(x1), f −
μi

(x2), . . . , f −
μi

(xm)},

for all x1, x2, x3, . . ., xm ∈ V .
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2.
⋃

i supp(μi (x)) = V , for all μi ∈ μ.

We now present the concept of bipolar neutrosophic directed hypergraphs.

Definition 2.7 A bipolar neutrosophic directed hypergraph (BNDHG) with underly-
ing set V is an ordered pair G = (σ, ε), where σ is non-empty set of vertices and ε is
a set of bipolar neutrosophic directed hyperarcs (or hyperedges).

A bipolar neutrosophic directed hyperarc (or hyperedge) εi ∈ ε is an ordered pair
(T (εi ), H(εi )), such that T (εi ) ⊂ V , T (εi ) �= ∅, is called its tail and H(εi ) �= T (εi )

is its head.

Definition 2.8 Let G = (σ, ε) be a BNDHG. The order of G, denoted by O(G),
is defined as O(G) = (O+(G), O−(G)), where O+(G) = ∑

x∈V ∧σ+
i (x) and

O−(G) = ∑
x∈V ∨σ−

i (x).
The size of G, denoted by S(G), is defined as S(G) = (S+(G), S−(G)), where

S+(G) = ∑
Ek⊂V ε+(Ek), S−(G) = ∑

Ek⊂V ε−(Ek).

In a bipolar neutrosophic directed hypergraph, the vertices ui and u j are adjacent
vertices if they both belong to the same bipolar neutrosophic directed hyperedge. Two
bipolar neutrosophic directed hyperedges εi and ε j are called adjacent if they have
non-empty intersection, i.e., supp(εi ) ∩ supp(ε j ) �= ∅, i �= j .

Definition 2.9 A bipolar neutrosophic directed hypergraph G = (σ, ε) is simple if it
contains no repeated directed hyperedges, i.e., if ε j , εk ∈ ε and ε j ⊆ εk , then ε j = εk .

A bipolar neutrosophic directed hypergraph G = (σ, ε) is said to be support simple
if ε j , εk ∈ ε, supp(ε j ) =supp(εk) and ε j ⊆ εk , then ε j = εk .

A bipolar neutrosophic directed hypergraph G = (σ, ε) is strongly support simple
if ε j , εk ∈ ε and supp(ε j ) = supp(εk), then ε j = εk .

Example 2.1 Consider a bipolar neutrosophic directed hypergraph G = (σ, ε),
where σ = {σ1, σ2, σ3, σ4} be the family of bipolar neutrosophic subsets on V =
{v1, v2, v3, v4, v5, v6}, as shown in Fig. 1, such that

σ1 = {
(v1, 0.1, 0.2, 0.3,−0.1,−0.2,−0.3), (v2, 0.2, 0.2, 0.3,−0.2,

−0.2,−0.3), (v5, 0.3, 0.2, 0.3,−0.3,−0.2,−0.3)
}
,

σ2 = {
(v1, 0.1, 0.2, 0.3,−0.1,−0.2,−0.3), (v3, 0.4, 0.2, 0.3,−0.4,

−0.2,−0.3), (v6, 0.3, 0.2, 0.3,−0.3,−0.2,−0.3)
}
,

σ3 = {
(v6, 0.1, 0.2, 0.3,−0.1,−0.2,−0.3), (v4, 0.2, 0.2, 0.3,−0.2,

−0.2,−0.3), (v5, 0.3, 0.2, 0.3,−0.3,−0.2,−0.3)
}
,

σ4 = {
(v6, 0.1, 0.2, 0.3,−0.1,−0.2,−0.3), (v2, 0.2, 0.2, 0.3,−0.2,

−0.2,−0.3), (v5, 0.3, 0.2, 0.3,−0.3,−0.2,−0.3)
}
.
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Fig. 1 Bipolar neutrosophic directed hypergraph

Bipolar neutrosophic relation ε is defined as

ε(v1, v2, v5) = (0.1, 0.2, 0.3,−0.1,−0.2,−0.3),

ε(v1, v3, v6) = (0.1, 0.2, 0.3,−0.1,−0.2,−0.3),

ε(v6, v4, v5) = (0.1, 0.2, 0.3,−0.1,−0.2,−0.3),

ε(v6, v2, v5) = (0.1, 0.2, 0.3,−0.1,−0.2,−0.3).

Note that, G is simple, strongly support simple and support simple, that is, it con-
tains no repeated directed hyperedges and if whenever ε j , εk ∈ ε and supp(ε j ) =
supp(εk), then ε j = εk . Further, o(G) = (1.1, 1.2, 1.8,−1.1,−1.2,−1.8) and
s(G) = (0.4, 0.6, 1.4,−0.4,−0.6,−1.4).

Definition 2.10 (i) The height of a bipolar neutrosophic directed hypergraph G =
(σ, ε), denoted by h(G), is defined as h(G) = {max(εl), max(εm), min(εn)|εl ,
εm , εn ∈ ε}, where εl = max t+ε j

(xi ), εm = max I+
ε j

(xi ), εn = min f +
ε j

(xi ).

(ii) The depth of a bipolar neutrosophic directed hypergraph G = (σ, ε), denoted by
d(G), is defined as d(G) = {min(εl), min(εm), max(εn)|εl , εm , εn ∈ ε}, where
εl = min t−ε j

(xi ), εm = min I−
ε j

(xi ), εn = max f −
ε j

(xi ).

The functions t+ε j
(xi ), I+

ε j
(xi ) and f +

ε j
(xi ) denote the positive truth, indeterminacy

and falsity membership values of vertex xi to the hyperedge ε j , respectively,
t−ε j

(xi ), I−
ε j

(xi ) and f −
ε j

(xi ) denote the negative truth, indeterminacy and falsity
membership values of vertex xi to the hyperedge ε j , respectively.

Definition 2.11 Let ε = (ε−, ε+) be a directed hyperedge in a BNDHG. Then the
vertex set ε− is called the in-set and the vertex set ε+ is called the out-set of the directed
hyperedge ε. It is not necessary that the sets ε−, ε+ will be disjoint. The hyperedge ε

is called the join of the vertices of ε− and ε+.
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Definition 2.12 The in-degree D−
G (v) of a vertex v is defined as the sum of member-

ship degrees of all those directed hyperedges such that v is contained in their out-set,
i.e.,

D−
G (v) =

⎛

⎝
∑

v∈H(Ek)

ε+(Ek),
∑

v∈H(Ek )

ε−(Ek)

⎞

⎠ .

The out-degree D+
G (v) of a vertex v is defined as the sum of membership degrees

of all those directed hyperedges such that v is contained in their in-set, i.e.,

D+
G (v) =

⎛

⎝
∑

v∈T (Ek )

ε+(Ek),
∑

v∈T (Ek )

ε−(Ek)

⎞

⎠ .

Definition 2.13 A bipolar neutrosophic directed hypergraph G = (σ, ε) is called
k-regular if in-degrees and out-degrees of all the vertices in G are same.

Example 2.2 Consider a bipolar neutrosophic directed hypergraph G = (σ, ε) as
shown in Fig. 2, where σ = {σ1, σ2, σ3, σ4} is the family of bipolar neutrosophic
subsets on V = {v1, v2, v3, v4, v5, v6} and

σ1 = {
(v1, 0.1, 0.1, 0.1,−0.2,−0.2,−0.2), (v2, 0.1, 0.1, 0.1,−0.2,−0.2,−0.2),

(v5, 0.1, 0.1, 0.1,−0.2,−0.2,−0.2)
}
,

σ2 = {
(v1, 0.1, 0.1, 0.1,−0.2,−0.2,−0.2), (v3, 0.1, 0.1, 0.1,−0.2,−0.2,−0.2),

(v6, 0.1, 0.1, 0.1,−0.2,−0.2,−0.2)
}
,

σ3 = {
(v6, 0.1, 0.1, 0.1,−0.2,−0.2,−0.2), (v4, 0.1, 0.1, 0.1,−0.2,−0.2,−0.2),

(v3, 0.1, 0.1, 0.1,−0.2,−0.2,−0.2)
}
,

σ4 = {
(v2, 0.1, 0.1, 0.1,−0.2,−0.2,−0.2), (v4, 0.1, 0.1, 0.1,−0.2,−0.2,−0.2),

(v5, 0.1, 0.1, 0.1,−0.2,−0.2,−0.2)
}
.

v1(0.1, 0.1, 0.1,−0.2,−0.2,−0.2)

v2(0.1, 0.1, 0.1,−0.2,−0.2,−0.2)

v5(0.1, 0.1, 0.1,−0.2,−0.2,−0.2) v3(0.1, 0.1, 0.1,−0.2,−0.2,−0.2)

v6(0.1, 0.1, 0.1,−0.2,−0.2,−0.2)

v4(0.1, 0.1, 0.1,−0.2,−0.2,−0.2)

(0.1, 0.1, 0.1,−
0.2,−

0.2,−
0.2)

(0.1
, 0.1

, 0.1
,−0.2

,−0.2
,−0.2

)

(0.1, 0.1, 0.1,−
0.2,−

0.2,−
0.2)

(0
.1
,0
.1
,0
.1
,−

0
.2
,−

0
.2
,−

0
.2)

Fig. 2 Regular BNDHG
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The bipolar neutrosophic relation ε is defined as

ε(v1, v2, v5) = (0.1, 0.1, 0.1,−0.2,−0.2,−0.2),

ε(v1, v3, v6) = (0.1, 0.1, 0.1,−0.2,−0.2,−0.2),

ε(v6, v4, v3) = (0.1, 0.1, 0.1,−0.2,−0.2,−0.2),

ε(v2, v4, v5) = (0.1, 0.1, 0.1,−0.2,−0.2,−0.2).

By routine calculations, we see that the bipolar neutrosophic directed hypergraph is
regular.

Note that, D−
G (v1) = (0.1, 0.1, 0.1,−0.2,−0.2,−0.2) = D+

G (v1) and D−
G (v2) =

(0.1, 0.1, 0.1,−0.2,−0.2,−0.2) = D+
G (v2). Similarly, D−

G (v3) = D+
G (v3), D

−
G (v4)

= D+
G (v4), D

−
G (v5) = D+

G (v5) and D−
G (v6) = D+

G (v6). Hence G is regular bipolar
neutrosophic directed hypergraph.

We now discuss the basic properties of isomorphism on bipolar neutrosophic
directed hypergraphs.

Definition 2.14 Let G = (σ, ε) and G ′ = (σ ′, ε′) be two bipolar neutrosophic
directed hypergraphs, where σ = {σ1, σ2, σ3, . . . , σk} and σ ′ = {σ ′

1, σ
′
2, σ

′
3, . . . , σ

′
k}.

A homomorphism of BNDHGs χ : G → G ′ is a mapping χ : V → V ′ which satisfies

1.

∧t+σi (u) ≤ ∧t+
σ ′
i
(χ(u)),∧I+

σi
(u) ≤ ∧I+

σ ′
i
(χ(u)),∨ f +

σi
(u) ≥ ∨ f +

σ ′
i
(χ(u)),

∨t−σi (u) ≥ ∨t−
σ ′
i
(χ(u)),∨I−

σi
(u) ≥ ∨I−

σ ′
i
(χ(u)),∧ f −

σi
(u) ≤ ∧ f −

σ ′
i
(χ(u)),

for all u ∈ V .
2.

t+ε (u1, u2, u3, . . . , uk) ≤ t+
ε′ (χ(u1), χ(u2), χ(u3), . . . , χ(uk)),

I+
ε (u1, u2, u3, . . . , uk) ≤ I+

ε′ (χ(u1), χ(u2), χ(u3), . . . , χ(uk)),

f +
ε (u1, u2, u3, . . . , uk) ≥ f +

ε′ (χ(u1), χ(u2), χ(u3), . . . , χ(uk)),

t−ε (u1, u2, u3, . . . , uk) ≥ t−
ε′ (χ(u1), χ(u2), χ(u3), . . . , χ(uk)),

I−
ε (u1, u2, u3, . . . , uk) ≥ I−

ε′ (χ(u1), χ(u2), χ(u3), . . . , χ(uk)),

f −
ε (u1, u2, u3, . . . , uk) ≤ f −

ε′ (χ(u1), χ(u2), χ(u3), . . . , χ(uk)),

for all {u1, u2, u3, . . . , uk} = Ei ⊂ V .

Note that, for a homomorphism χ : G → G ′, χ(ε) = (T (χ(ε)), H(χ(ε))) is an
hyperarc in G ′ if ε = (T (ε), H(ε)) is an hyperarc in G.
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Definition 2.15 A weak isomorphism χ : G → G ′ is a mapping χ : V → V ′ which
is a bijective homomorphism and satisfies

∧t+σi (v) = ∧t+
σ ′
i
(χ(v)),∧I+

σi
(v) = ∧I+

σ ′
i
(χ(v)),∨ f +

σi
(v) = ∨ f +

σ ′
i
(χ(v)),

∨t−σi (v) = ∨t−
σ ′
i
(χ(v)),∨I−

σi
(v) = ∨I−

σ ′
i
(χ(v)),∧ f −

σi
(v) = ∧ f −

σ ′
i
(χ(v)),

for all v ∈ V .

Definition 2.16 A co-weak isomorphism χ : G → G ′ is a mapping χ : V → V ′
which is a bijective homomorphism and satisfies

t+ε (x1, x2, x3, . . . , xk) = t+
ε′ (χ(x1), χ(x2), χ(x3), . . . , χ(xk)),

I+
ε (x1, x2, x3, . . . , xk) = I+

ε′ (χ(x1), χ(x2), χ(x3), . . . , χ(xk)),

f +
ε (x1, x2, x3, . . . , xk) = f +

ε′ (χ(x1), χ(x2), χ(x3), . . . , χ(xk)),

t−ε (x1, x2, x3, . . . , xk) = t−
ε′ (χ(x1), χ(x2), χ(x3), . . . , χ(xk)),

I−
ε (x1, x2, x3, . . . , xk) = I−

ε′ (χ(x1), χ(x2), χ(x3), . . . , χ(xk)),

f −
ε (x1, x2, x3, . . . , xk) = f −

ε′ (χ(x1), χ(x2), χ(x3), . . . , χ(xk)),

for all {x1, x2, x3, . . . , xk} = Ei ⊂ V .

Definition 2.17 An isomorphism of BNDHGsχ : G → G ′ is amappingχ : V → V ′
which is bijective homomorphism and satisfies

1.

∧t+σi (u) = ∧t+
σ ′
i
(χ(u)),∧I+

σi
(u) = ∧I+

σ ′
i
(χ(u)),∨ f +

σi
(u) = ∨ f +

σ ′
i
(χ(u)),

∨t−σi (u) = ∨t−
σ ′
i
(χ(u)),∨I−

σi
(u) = ∨I−

σ ′
i
(χ(u)),∧ f −

σi
(u) = ∧ f −

σ ′
i
(χ(u)),

for all u ∈ V .
2.

t+ε (u1, u2, u3, . . . , uk) = t+
ε′ (χ(u1), χ(u2), χ(u3), . . . , χ(uk)),

I+
ε (u1, u2, u3, . . . , uk) = I+

ε′ (χ(u1), χ(u2), χ(u3), . . . , χ(uk)),

f +
ε (u1, u2, u3, . . . , uk) = f +

ε′ (χ(u1), χ(u2), χ(u3), . . . , χ(uk)),

t−ε (u1, u2, u3, . . . , uk) = t−
ε′ (χ(u1), χ(u2), χ(u3), . . . , χ(uk)),

I−
ε (u1, u2, u3, . . . , uk) = I−

ε′ (χ(u1), χ(u2), χ(u3), . . . , χ(uk)),

f −
ε (u1, u2, u3, . . . , uk) = f −

ε′ (χ(u1), χ(u2), χ(u3), . . . , χ(uk)),

for all {u1, u2, u3, . . . , uk} = Ei ⊂ V .

If two bipolar neutrosophic directed hypergraphs G and G ′ are isomorphic, we denote
it as G ∼= G ′.
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Example 2.3 Let σ = {σ1, σ2, σ3} and σ ′ = {σ ′
1, σ

′
2, σ

′
3} be the families of bipolar

neutrosophic subsets on V = {v1, v2, v3, v4, v5, v6} and V ′ = {v′
1, v

′
2, v

′
3, v

′
4, v

′
5, v

′
6},

respectively, as:

σ1 = {(v1, 0.1, 0.2, 0.3,−0.1,−0.2,−0.3), (v2, 0.2, 0.2, 0.3,−0.2,

−0.2,−0.3), (v5, 0.3, 0.2, 0.3,−0.3,−0.2,−0.3),

(v6, 0.4, 0.2, 0.5,−0.4,−0.2,−0.5)},
σ2 = {(v1, 0.1, 0.2, 0.3,−0.1,−0.2,−0.3), (v3, 0.4, 0.2, 0.3,−0.4,

−0.2,−0.3), (v6, 0.3, 0.2, 0.3,−0.3,−0.2,−0.3)},
σ3 = {(v6, 0.1, 0.2, 0.3,−0.1,−0.2,−0.3), (v4, 0.2, 0.2, 0.3,−0.2,

−0.2,−0.3), (v5, 0.3, 0.2, 0.3,−0.3,−0.2,−0.3)},

and

σ ′
1 = {(v′

4, 0.1, 0.2, 0.3,−0.1,−0.2,−0.3), (v′
3, 0.2, 0.2, 0.3,

−0.2,−0.2,−0.3), (v′
6, 0.3, 0.2, 0.3,−0.3,

−0.2,−0.3), (v′
5, 0.4, 0.2, 0.5,−0.4,−0.2,−0.5)},

σ ′
2 = {(v′

4, 0.1, 0.2, 0.3,−0.1,−0.2,−0.3), (v′
2, 0.4, 0.2, 0.3,−0.4,

−0.2,−0.3), (v′
5, 0.3, 0.2, 0.3,−0.3,−0.2,−0.3)},

σ ′
3 = {(v′

5, 0.1, 0.2, 0.3,−0.1,−0.2,−0.3), (v′
1, 0.2, 0.2, 0.3,−0.2,

−0.2,−0.3), (v′
6, 0.3, 0.2, 0.3,−0.3,−0.2,−0.3)}.

The bipolar neutrosophic relations ε and ε′ are defined as

ε(v1, v2, v5, v6) = (0.1, 0.2, 0.5,−0.1,−0.2,−0.5),

ε(v1, v3, v6) = (0.1, 0.2, 0.3,−0.1,−0.2,−0.3),

ε(v6, v4, v5) = (0.1, 0.2, 0.3,−0.1,−0.2,−0.3),

ε′(v′
4, v

′
3, v

′
6, v

′
5) = (0.1, 0.2, 0.5,−0.1,−0.2,−0.5),

ε′(v′
4, v

′
2, v

′
5) = (0.1, 0.2, 0.3,−0.1,−0.2,−0.3),

ε′(v′
5, v

′
1, v

′
6) = (0.1, 0.2, 0.3,−0.1,−0.2,−0.3).

Define a mapping χ : V → V ′ as χ(v1) = v′
4, χ(v2) = v′

3, χ(v3) = v′
2, χ(v4) = v′

1,
χ(v5) = v′

6 and χ(v6) = v′
5. Note that,

σ1(v1) = (0.1, 0.2, 0.3,−0.1,−0.2,−0.3) = σ ′
1(v

′
4) = σ ′

1(χ(v1)),

σ1(v2) = (0.2, 0.2, 0.3,−0.2,−0.2,−0.3) = σ ′
1(v

′
3) = σ ′

1(χ(v2)),

σ2(v3) = (0.4, 0.2, 0.3,−0.4,−0.2,−0.3) = σ ′
2(v

′
2) = σ ′

2(χ(v3)),

σ3(v4) = (0.2, 0.2, 0.3,−0.2,−0.2,−0.3) = σ ′
3(v

′
1) = σ ′

3(χ(v4)),

σ3(v5) = (0.3, 0.2, 0.3,−0.3,−0.2,−0.3) = σ ′
3(v

′
6) = σ ′

3(χ(v5)).
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v2(0.2, 0.2, 0.3,−0.2,−0.2,−0.3)

v5(0.3, 0.2, 0.3,−0.3,−0.2,−0.3)

v4(0.2, 0.2, 0.3,−0.2,−0.2,−0.3)

v6(0.1, 0.2, 0.3,−0.1,−0.2,−0.3)

v3(0.4, 0.2, 0.3,−0.4,−0.2,−0.3)

v1(0.1, 0.2, 0.3,−0.1,−0.2,−0.3), )

(0.1, 0.2, 0.3,−0.1,−0.2,−0.3)

0(
.1
,0
.2
,0

.5
,−

0
.1
,−

0
.2
,−

0
.
)5

(0
.1
, 0
.2
, 0
.3
,−

0.
1,
−0

.2
,−

0.
3)

Fig. 3 G

v1(0.2, 0.2, 0.3,−0.2,−0.2,−0.3), )

v2(0.4, 0.2, 0.3,−0.4,−0.2,−0.3)

v3(0.2, 0.2, 0.3,−0.2,−0.2,−0.3)

v4(0.1, 0.2, 0.3,−0.1,−0.2,−0.3)

v5(0.4, 0.2, 0.5,−0.4,−0.2,−0.5)

v6(0.3, 0.2, 0.3,−0.3,−0.2,−0.3)

(0.1,
0.2, 0

.5,−0.1,−0.2,−
0.5)

(0.1, 0.2, 0.3,−0.1,−0.2,−0.3)

(0
.1
,0
.2
,0
.3
,−

0
.1
,−

0
.2
,−

0
.3)

Fig. 4 G′

Similarly, σ(v) = σ ′(χ(v)), for all v ∈ V and ε({v1, v2, v3, . . . , vk})= ε′({χ(v1),

χ(v2), χ(v3), . . . , χ(vk)}), for all vk ∈ V . Hence G and G ′ are isomorphic and the
corresponding BNDHGs are shown in Figs. 3 and 4, respectively.

Note that, χ(ε) = (T (χ(ε), H(χ(ε))) is an hyperarc in G ′ if ε = (T (ε), H(ε)) is
an hyperarc in G.

Remark 2.1 A weak isomorphism of bipolar neutrosophic directed hypergraphs pre-
serves the membership degrees of vertices but not necessarily the membership degrees
of directed hyperedges. A co-weak isomorphism of bipolar neutrosophic directed
hypergraphs preserves the membership degrees of directed hyperedges but not neces-
sarily the membership degrees of vertices.

In isomorphism of crisp hypergraphs, isomorphic hypergraphs have same degree as
well as the order. The same also holds in bipolar neutrosophic directed hypergraphs.
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Theorem 2.1 Let G and G ′ be two isomorphic BNDHGs. Then they both have the
same order and size.

Proof Let G = (σ, ε) and G ′ = (σ ′, ε′) be two bipolar neutrosophic directed hyper-
graphs, where σ = {σ1, σ2,σ3,· · · ,σk} and σ ′ = {σ ′

1, σ
′
2, σ

′
3, . . . , σ

′
k} be the family of

bipolar neutrosophic sets defined on V and V ′,respectively. Let χ : V → V ′ be an
isomorphism between G and G ′ then

∧σ+
i (z) = ∧σ ′+

i (χ(z)), ∨σ−
i (z) = ∨σ ′−

i (χ(z)), for all z ∈ V and
ε(z1, z2, z3, . . . , zk) = ε′(χ(z1), χ(z2), χ(z3), . . . , χ(zk)), for all {z1, z2, z3, . . . ,

zk} = Ei ⊂ V .

O+(G) =
∑

z∈V
∧σ+

i (z) =
∑

z∈V
∧σ ′+

i (χ(z)) =
∑

z′∈V ′
∧σ ′+

i (z′) = O+(G ′),

O−(G) =
∑

z∈V
∨σ−

i (z) =
∑

z∈V
∨σ ′−

i (χ(z)) =
∑

z′∈V ′
∨σ ′+

i (z′) = O−(G ′),

S+(G) =
∑

Ek⊂V

ε+(Ek) =
∑

Ek⊂V

ε′+(χ(Ek)) =
∑

E ′
k⊂V ′

ε′+(E ′
k) = S+(G ′),

S−(G) =
∑

Ek⊂V

ε−(Ek) =
∑

Ek⊂V

ε′−(χ(Ek)) =
∑

E ′
k⊂V ′

ε′−(E ′
k) = S−(G ′).

This completes the proof.

Theorem 2.2 Isomorphism between bipolar neutrosophic hypergraphs is an equiva-
lence relation.

Proof Let G = (V, σ, ε), G ′ = (V ′, σ ′, ε′) and G ′′ = (V ′′, σ ′′, ε′′) be bipolar neu-
trosophic directed hypergraphs having underlying sets V , V ′ and V ′′, respectively.

i Reflexive: Consider the identity mapping χ : V → V, such that χ(z) = z, for all
z ∈ V . Then χ is bijective homomorphism and satisfies
∧σ+

i (z) = ∧σ ′+
i (χ(z)), ∨σ−

i (z) = ∨σ ′−
i (χ(z)), for all z ∈ V and

ε+(z1, z2, z3, . . . , zk) = ε′+(χ(z1), χ(z2), χ(z3), . . . , χ(zk)),

ε−(z1, z2, z3, . . . , zk) = ε′−(χ(z1), χ(z2), χ(z3), . . . , χ(zk)),

for all {z1, z2, z3, . . . , zk} = Ek ⊂ V . Hence χ is an isomorphism of bipolar
neutrosophic directed hypergraphs to itself. Thus reflexive relation is satisfied.

ii Symmetric: Let χ : V → V ′ be an isomorphism between G and G ′, then χ is
bijective mapping and χ(z) = z′, for all z ∈ V . From the isomorphism of χ , we
have ∧σ+

i (z) = ∧σ ′+
i (χ(z)), ∨σ−

i (z) = ∨σ ′−
i (χ(z)), for all z ∈ V and

ε+(z1, z2, z3, . . . , zk) = ε′+(χ(z1), χ(z2), χ(z3), . . . , χ(zk)),

ε−(z1, z2, z3, . . . , zk) = ε′−(χ(z1), χ(z2), χ(z3), . . . , χ(zk)),
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for all {z1, z2, z3, . . . , zk} = Ek ⊂ V . Since χ is bijective, χ−1 : V ′ → V exists
and χ−1(z′) = z, for all z′ ∈ V ′. Then ∧σ+

i χ−1(z′) = ∧σ ′+
i (z′), ∨σ−

i χ−1(z′) =
∨σ ′−

i (z′), for all z′ ∈ V ′ and

ε+(χ−1(z′1), χ−1(z′2), χ−1(z′3), . . . , χ−1(z′k)) = ε′+(z′1, z′2, z′3, . . . , z′k),
ε−(χ−1(z′1), χ−1(z′2), χ−1(z′3), . . . , χ−1(z′k)) = ε′−(z′1, z′2, z′3, . . . , z′k),

for all {z′1, z′2, z′3, . . . , z′k} = E ′
k ⊂ V ′. Hence we get a bijective mapping χ−1 :

V ′ → V, which is isomorphism from G ′ to G, i.e., G ∼= G ′ ⇒ G ′ ∼= G.
iii Transitive: Let χ : V → V ′ and Let λ : V ′ → V ′′ be an isomorphism of bipolar

neutrosophic directed hypergraphs G to G ′ and G ′ to G ′′, respectively, defined by
χ(z) = z′ and λ(z′) = z′′. Then λ ◦ χ : V → V ′′ is a bijective mapping from G
to G ′′ such that (λ ◦ χ)(z) = λ(χ(z)), for all z ∈ V . Since χ : V → V ′ is an
isomorphism, we have ∧σ+

i (z) = ∧σ ′+
i (χ(z)),∨σ−

i (z) = ∨σ ′−
i (χ(z)), for all

z ∈ V and

ε(z1, z2, z3, . . . , zk) = ε′(χ(z1), χ(z2), χ(z3), . . . , χ(zk)),

for all {z1, z2, z3, . . . , zk} = Ek ⊂ V . Since λ : V ′ → V ′′ is an isomorphism, we
have ∧σ ′+

i (z′) = ∧σ ′′+
i (λ(z′)), ∨σ ′−

i (z′) = ∨σ ′′−
i (λ(z′)), for all z′ ∈ V ′ and

ε′(z′1, z′2, z′3, . . . , z′k) = ε′′(λ(z′1), λ(z′2), λ(z′3), . . . , λ(z′k)),

for all {z′1, z′2, z′3, . . . , z′k} = E ′
k ⊂ V ′. Thus we have

∧σ+
i (z) = ∧σ ′+

i (χ(z)) = ∧σ ′+
i (z′) = ∧σ ′′+

i (λ(z′)) = ∧σ ′′+
i (λ(χ(z))),

for all z ∈ V , z′ ∈ V ′, z′′ ∈ V ′′,

ε(z1, z2, z3, . . . , zk) = ε′(χ(z1), χ(z2), χ(z3), . . . , χ(zk))

= ε′(z′1, z′2, z′3, . . . , z′k)
= ε′′(λ(z′1), λ(z′2), λ(z′3), . . . , λ(z′k))
= ε′′(λ(χ(z1)), λ(χ(z2)), λ(χ(z3)), . . . , λ(χ(zk))),

for all {z1, z2, z3, . . . , zk} = Ek ⊂ V , for all {z′1, z′2, z′3, . . . , z′k} = E ′
k ⊂ V ′.

Clearly, λ ◦ χ is an isomorphism from G to G ′′. Hence isomorphism of bipolar neu-
trosophic directed hypergraphs is an equivalence relation.

Theorem 2.3 A weak isomorphism between bipolar neutrosophic directed hyper-
graphs is a partial order relation.

Proof Let G = (V, σ, ε), G ′ = (V ′, σ ′, ε′) and G ′′ = (V ′′, σ ′′, ε′′) be bipolar neu-
trosophic directed hypergraphs having underlying sets V , V ′ and V ′′, respectively.
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i Reflexive: Consider the identity mapping χ : V → V, such that χ(z) = z, for all
z ∈ V . Then χ is bijective homomorphism and satisfies
∧σ+

i (z) = ∧σ ′+
i (χ(z)), ∨σ−

i (z) = ∨σ ′−
i (χ(z)), for all z ∈ V and

t+ε (z1, z2, z3, . . . , zk) ≤ t+
ε′ (χ(z1), χ(z2), χ(z3), . . . , χ(zk)),

I+
ε (z1, z2, z3, . . . , zk) ≤ I+

ε′ (χ(z1), χ(z2), χ(z3), . . . , χ(zk)),

f +
ε (z1, z2, z3, . . . , zk) ≥ f +

ε′ (χ(z1), χ(z2), χ(z3), . . . , χ(zk)),

t−ε (z1, z2, z3, . . . , zk) ≥ t−
ε′ (χ(z1), χ(z2), χ(z3), . . . , χ(zk)),

I−
ε (z1, z2, z3, . . . , zk) ≥ I−

ε′ (χ(z1), χ(z2), χ(z3), . . . , χ(zk)),

f −
ε (z1, z2, z3, . . . , zk) ≤ f −

ε′ (χ(z1), χ(z2), χ(z3), . . . , χ(zk)).

Hence χ is a weak isomorphism of bipolar neutrosophic directed hypergraphs to
itself. Thus reflexive relation is satisfied.

ii Anti symmetric: Let χ : V → V ′ be a weak isomorphism between G and G ′ and
λ : V ′ → V be a weak isomorphism between G ′ and G. Then χ is a bijective
mapping χ(z) = z′, satisfying
∧σ+

i (z) = ∧σ ′+
i (χ(z)), ∨σ−

i (z) = ∨σ ′−
i (χ(z)), for all z ∈ V and

t+ε (z1, z2, z3, . . . , zk) ≤ t+
ε′ (χ(z1), χ(z2), χ(z3), . . . , χ(zk)),

I+
ε (z1, z2, z3, . . . , zk) ≤ I+

ε′ (χ(z1), χ(z2), χ(z3), . . . , χ(zk)),

f +
ε (z1, z2, z3, . . . , zk) ≥ f +

ε′ (χ(z1), χ(z2), χ(z3), . . . , χ(zk)),

t−ε (z1, z2, z3, . . . , zk) ≥ t−
ε′ (χ(z1), χ(z2), χ(z3), . . . , χ(zk)),

I−
ε (z1, z2, z3, . . . , zk) ≥ I−

ε′ (χ(z1), χ(z2), χ(z3), . . . , χ(zk)),

f −
ε (z1, z2, z3, . . . , zk) ≤ f −

ε′ (χ(z1), χ(z2), χ(z3), . . . , χ(zk)), (1)

for all {z1, z2, z3, . . . , zk} = Ei ⊂ V and λ is a bijective mapping λ(z′) = z,
satisfying ∧σ+

i (z′) = ∧σ ′+
i (λ(z′)), ∨σ−

i (z′) = ∨σ ′−
i (λ(z′)), for all z′ ∈ V ′ and

t+ε (z′1, z′2, z′3, . . . , z′k) ≤ t+
ε′ (λ(z′1), λ(z′2), λ(z′3), . . . , λ(z′k)),

I+
ε (z′1, z′2, z′3, . . . , z′k) ≤ I+

ε′ (λ(z′1), λ(z′2), λ(z′3), . . . , λ(z′k)),
f +
ε (z′1, z′2, z′3, . . . , z′k) ≥ f +

ε′ (λ(z′1), λ(z′2), λ(z′3), . . . , λ(z′k)),
t−ε (z′1, z′2, z′3, . . . , z′k) ≥ t−

ε′ (λ(z′1), λ(z′2), λ(z′3), . . . , λ(z′k)),
I−
ε (z′1, z′2, z′3, . . . , z′k) ≥ I−

ε′ (λ(z′1), λ(z′2), λ(z′3), . . . , λ(z′k)),
f −
ε (z′1, z′2, z′3, . . . , z′k) ≤ f −

ε′ (λ(z′1), λ(z′2), λ(z′3), . . . , λ(z′k)), (2)

for all {z′1, z′2, z′3, . . . , z′k} = E ′
i ⊂ V ′. The inequalities (1) and (2) hold true

only if G and G ′ contain the same directed hyperedges having same membership
degrees. Hence G and G ′ are equivalent.

iii Transitive: Let χ : V → V ′ and let λ : V ′ → V ′′ be weak isomorphism of bipolar
neutrosophic directed hypergraphs G to G ′ and G ′ to G ′′, respectively, defined by
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χ(z) = z′ and λ(z′) = z′′. Then λ ◦ χ : V → V ′′ is a bijective mapping from G
to G ′′ such that (λ ◦ χ)(z) = λ(χ(z)), for all z ∈ V . Since χ : V → V ′ is a weak
isomorphism, we have
∧σ+

i (z) = ∧σ ′+
i (χ(z)), ∨σ−

i (z) = ∨σ ′−
i (χ(z)), for all z ∈ V and

t+ε (z1, z2, z3, . . . , zk) ≤ t+
ε′ (χ(z1), χ(z2), χ(z3), . . . , χ(zk)),

I+
ε (z1, z2, z3, . . . , zk) ≤ I+

ε′ (χ(z1), χ(z2), χ(z3), . . . , χ(zk)),

f +
ε (z1, z2, z3, . . . , zk) ≥ f +

ε′ (χ(z1), χ(z2), χ(z3), . . . , χ(zk)),

t−ε (z1, z2, z3, . . . , zk) ≥ t−
ε′ (χ(z1), χ(z2), χ(z3), . . . , χ(zk)),

I−
ε (z1, z2, z3, . . . , zk) ≥ I−

ε′ (χ(z1), χ(z2), χ(z3), . . . , χ(zk)),

f −
ε (z1, z2, z3, . . . , zk) ≤ f −

ε′ (χ(z1), χ(z2), χ(z3), . . . , χ(zk)),

for all {z1, z2, z3, . . . , zk} = Ek ⊂ V . Similarly λ is a weak isomorphism, we
have ∧σ ′+

i (z′) = ∧σ ′′+
i (λ(z′)), ∨σ ′−

i (z′) = ∨σ ′′−
i (λ(z′)), for all z′ ∈ V ′ and

t+
ε′ (z′1, z′2, z′3, . . . , z′k) ≤ t+

ε′′(λ(z′1), λ(z′2), λ(z′3), . . . , λ(z′k)),
I+
ε′ (z′1, z′2, z′3, . . . , z′k) ≤ I+

ε′′(λ(z′1), λ(z′2), λ(z′3), . . . , λ(z′k)),
f +
ε′ (z′1, z′2, z′3, . . . , z′k) ≥ f +

ε′′ (λ(z′1), λ(z′2), λ(z′3), . . . , λ(z′k)),
t−
ε′ (z′1, z′2, z′3, . . . , z′k) ≥ t−

ε′′(λ(z′1), λ(z′2), λ(z′3), . . . , λ(z′k)),
I−
ε′ (z′1, z′2, z′3, . . . , z′k) ≥ I−

ε′′(λ(z′1), λ(z′2), λ(z′3), . . . , λ(z′k)),
f −
ε′ (z′1, z′2, z′3, . . . , z′k) ≤ f −

ε′′ (λ(z′1), λ(z′2), λ(z′3), . . . , λ(z′k)),

for all {z′1, z′2, z′3, . . . , z′k} = E ′
k ⊂ V ′. From the above conditions, we have

∧σ+
i (z) = ∧σ ′+

i (χ(z)) = ∧σ ′+
i (z′) = ∧σ ′′+

i (λ(z′)) = ∧σ ′′+
i (λ(χ(z))),

∨σ−
i (z) = ∨σ ′−

i (χ(z)) = ∨σ ′−
i (z′) = ∨σ ′−

i (z′) = ∨σ ′′−
i (λ(χ(z))), for all

z ∈ V and

t+ε (z1, z2, z3, . . . , zk) ≤ t+
ε′ (χ(z1), χ(z2), χ(z3), . . . , χ(zk))

= t+
ε′ (z′1, z′2, z′3, . . . , z′k)

≤ t+
ε′′(λ(z′1), λ(z′2), λ(z′3), . . . , λ(z′k))

= t+
ε′′(λ(χ(z1)), λ(χ(z2)), λ(χ(z3)), . . . , λ(χ(zk))),

I+
ε (z1, z2, z3, . . . , zk) ≤ I+

ε′ (χ(z1), χ(z2), χ(z3), . . . , χ(zk))

= I+
ε′ (z′1, z′2, z′3, . . . , z′k)

≤ I+
ε′′(λ(z′1), λ(z′2), λ(z′3), . . . , λ(z′k))

= I+
ε′′(λ(χ(z1)), λ(χ(z2)), λ(χ(z3)), . . . , λ(χ(zk))),

f +
ε (z1, z2, z3, . . . , zk) ≥ f +

ε′ (χ(z1), χ(z2), χ(z3), . . . , χ(zk))

= f +
ε′ (z′1, z′2, z′3, . . . , z′k)
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≥ f +
ε′′ (λ(z′1), λ(z′2), λ(z′3), . . . , λ(z′k))

= f +
ε′′ (λ(χ(z1)), λ(χ(z2)), λ(χ(z3)), . . . , λ(χ(zk))).

Similarly, we have

t−ε (z1, z2, z3, . . . , zk) ≥ t−
ε′ (χ(z1), χ(z2), χ(z3), . . . , χ(zk))

= t−
ε′ (z′1, z′2, z′3, . . . , z′k)

≥ t−
ε′′(λ(z′1), λ(z′2), λ(z′3), . . . , λ(z′k))

= t−
ε′′(λ(χ(z1)), λ(χ(z2)), λ(χ(z3)), . . . , λ(χ(zk))),

I−
ε (z1, z2, z3, . . . , zk) ≥ I−

ε′ (χ(z1), χ(z2), χ(z3), . . . , χ(zk))

= I−
ε′ (z′1, z′2, z′3, . . . , z′k)

≥ I−
ε′′(λ(z′1), λ(z′2), λ(z′3), . . . , λ(z′k))

= I−
ε′′(λ(χ(z1)), λ(χ(z2)), λ(χ(z3)), . . . , λ(χ(zk))),

f −
ε (z1, z2, z3, . . . , zk) ≤ f −

ε′ (χ(z1), χ(z2), χ(z3), . . . , χ(zk))

= f −
ε′ (z′1, z′2, z′3, . . . , z′k)

≤ f −
ε′′ (λ(z′1), λ(z′2), λ(z′3), . . . , λ(z′k))

= f −
ε′′ (λ(χ(z1)), λ(χ(z2)), λ(χ(z3)), . . . , λ(χ(zk))).

for all {z1, z2, z3, . . . , zk} = Ek ⊂ V , for all {z′1, z′2, z′3, . . . , z′k} = E ′
k ⊂ V ′.

Clearly, λ ◦ χ is a weak isomorphism from G to G ′′. Hence weak isomorphism of
bipolar neutrosophic directed hypergraphs is a partial order relation.

Remark 2.2 If G and G ′ are isomorphic bipolar neutrosophic directed hypergraphs,
then their vertices preserve degrees but the converse is not true, that is, if degrees are
preserved then BNDHGs may or may not be isomorphic.

To check whether the two BNDHGs are isomorphic or not, it is mandatary that
they have same number of vertices having same degrees and same number of directed
hyperedges.

Remark 2.3 • If twobipolar neutrosophic directedhypergraphs areweak isomorphic
then they have same orders but converse may or may not be true.

• If two bipolar neutrosophic directed hypergraphs are co-weak isomorphic then
they are of same size but the same size of BNDHGs does not imply to the co-weak
isomorphism.

• Any two isomorphic BNDHGs have same order and size but the converse may or
may not be true.

Definition 2.18 A bipolar neutrosophic directed hyperpath of length k in a bipolar
neutrosophic directed hypergraph is defined as a sequence x1,E1, x2,E2, . . . ,Ek, xk+1
of distinct vertices and directed hyperedges such that
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1. ε(Ei ) > 0, i = 1, 2, 3, . . . , k,
2. xi , xi+1 ∈ Ei .

The consecutive pairs (xi , xi+1) are called the directed arcs of the directed hyperpath.

Definition 2.19 Let s and t be any two arbitrary vertices in a bipolar neutrosophic
directed hypergraph and they are connected through a directed hyperpath of length k
then the strength of that directed hyperpath is ηk(s, t) = (η+

k (s, t), η−
k (s, t)), where

the positive strength is defined as

η+
k (s, t) = {

t+ε (E1) ∧ t+ε (E2) ∧ t+ε (E3) ∧ · · · ∧ t+ε (Ek), I
+
ε (E1) ∧ I+

ε (E2) ∧ I+
ε (E3)

∧ · · · ∧ I+
ε (Ek), f +

ε (E1) ∨ f +
ε (E2) ∨ t+ε (E3) ∨ · · · ∨ t+ε (Ek)

}

and the negative strength is defined as

η−
k (s, t)={t−ε (E1)∨t−ε (E2) ∨ t−ε (E3) ∨ · · · ∨ t−ε (Ek), I

−
ε (E1) ∨ I−

ε (E2) ∨ I−
ε (E3)

∨ · · · ∨ I−
ε (Ek), f −

ε (E1) ∧ f −
ε (E2) ∧ t−ε (E3) ∧ · · · ∧ t−ε (Ek)}, x ∈ E1, y ∈ Ek,

where E1,E2,E3, . . . ,Ek are directed hyperedges.
The strength of connectedness between x and y is defined as

η∞(s, t) = {sup t (η+
k (s, t)), sup I (η+

k (s, t)), inf f (η+
k (s, t)), inf t (η−

k (s, t)),

inf I (η−
k (s, t)), sup f (η−

k (s, t))|k = 1, 2, 3, . . .}.

Definition 2.20 A strong arc in a bipolar neutrosophic directed hypergraph is defined
as η(s, t) ≥ η∞(s, t).

Definition 2.21 A bipolar neutrosophic directed hypergraph is said to be connected
if η∞(s, t) > 0, for all s, t ∈ V , that is, there exists a bipolar neutrosophic directed
hyperpath between each pair of vertices.

Definition 2.22 A strong or effective bipolar neutrosophic directed hypergraph is
defined as

t+ε (Ek) = t+ε ({x1, x2, x3, . . . , xm}) = min{t+σi (x1), t+σi (x2), . . . , t+σi (xm)},
I+
ε (Ek) = I+

ε ({x1, x2, x3, . . . , xm}) = min{I+
σi

(x1), I
+
σi

(x2), . . . , I
+
σi

(xm)},
f +
ε (Ek) = f +

ε ({x1, x2, x3, . . . , xm}) = max{ f +
σi

(x1), f +
σi

(x2), . . . , f +
σi

(xm)},
t−ε (Ek) = t−ε ({x1, x2, x3, . . . , xm}) = max{t−σi (x1), t−σi (x2), . . . , t−σi (xm)},
I−
ε (Ek) = I−

ε ({x1, x2, x3, . . . , xm}) = max{I−
σi

(x1), I
−
σi

(x2), . . . , I
−
σi

(xm)},
f −
ε (Ek) = f −

ε ({x1, x2, x3, . . . , xm}) = min{ f −
σi

(x1), f −
σi

(x2), . . . , f −
σi

(xm)},

for all {x1, x2, x3, . . . , xm} = Ek ⊂ V .
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(v1, 0.1, 0.2, 0.1,−0.1,−0.2,−0.1)

(v2.0.2, 0.3, 0.2,−0.2,−0.3,−0.2)

(v3, 0.3, 0.4, 0.3,−0.3,−0.4,−0.3)

(v4, 0.4, 0.5, 0.4,−0.4,−0.5,−0.4)

(v5, 0
.5, 0.6

, 0.5,
−0.5,−0.6,−0.5)

(v7, 0.2, 0.3, 0.2,−0.2,−0.3,−0.2)

(v6, 0.1, 0.2, 0.1,−0.1,−0.2,−0.1)

(0
.1
, 0
.2
, 0
.2
,−

0
.1
,−

0
.2
,−

0
.2)

(0
.2
, 0
.3
, 0
.3
,−

0.
2,
−0

.3
,−

0.
3)

(0
.2
, 0

.3
, 0

.5
,−

0
.2
,−

0
.3
,−

0
.5)

(0.1,
0.2, 0

.4,−0.1,−0.2,−0.4)

Fig. 5 Strong bipolar neutrosophic directed hypergraph

Example 2.4 Consider a bipolar neutrosophic directed hypergraph G = (σ, ε), as
shown in Fig. 5.

Note that,

t+ε (E1) = t+ε ({v1, v2, v6}) = min{t+σi (v1), t+σi (v2), t+σi (x6)},
I+
ε (E1) = I+

ε ({v1, v2, v6}) = min{I+
σi

(v1), I
+
σi

(v2), I
+
σi

(x6)},
f +
ε (E1) = f +

ε ({v1, v2, v6}) = max{ f +
σi

(v1), f +
σi

(v2), f +
σi

(x6)},
t−ε (E1) = t−ε ({v1, v2, v6}) = max{t−σi (v1), t−σi (v2), t−σi (x6)},
I−
ε (E1) = I−

ε ({v1, v2, v6}) = max{I−
σi

(v1), I
−
σi

(v2), I
−
σi

(x6)},
f −
ε (E1) = f −

ε ({v1, v2, v6}) = min{ f −
σi

(v1), f −
σi

(v2), f −
σi

(x6)}.

Similarly, for all {x1, x2, x3, . . . , xk} = Ek ⊂ V , we have

t+ε (Ek) = t+ε ({v1, v2, . . . , vk}) = min{t+σi (v1), t+σi (v2), . . . , t+σi (xk)},
I+
ε (Ek) = I+

ε ({v1, v2, . . . , vk}) = min{I+
σi

(v1), I
+
σi

(v2), . . . , t
+
σi

(xk)},
f +
ε (Ek) = f +

ε ({v1, v2, . . . , vk}) = max{ f +
σi

(v1), f +
σi

(v2), . . . , t
+
σi

(xk)},
t−ε (Ek) = t−ε ({v1, v2, . . . , vk}) = max{t−σi (v1), t−σi (v2), . . . , t+σi (xk)},
I−
ε (Ek) = I−

ε ({v1, v2, . . . , vk}) = max{I−
σi

(v1), I
−
σi

(v2), . . . , t
+
σi

(xk)},
f −
ε (Ek) = f −

ε ({v1, v2, . . . , vk}) = min{ f −
σi

(v1), f −
σi

(v2), . . . , t
+
σi

(xk)}.

Hence, G is strong.

Theorem 2.4 LetG andG ′ be isomorphic bipolar neutrosophic directedhypergraphs,
then G is connected if and only if G ′ is connected.

Proof Let G = (V, σ, ε) and G ′ = (V ′, σ ′, ε′) be two bipolar neutrosophic directed
hypergraphs, where ε = {ε1, ε2, ε3, . . . , εk} and ε′ = {ε′

1, ε
′
2, ε

′
3, . . . , ε

′
k} are directed
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hyperedges of G and G ′. Let χ : G → G ′ be an isomorphism between G and G ′.
Suppose that G is connected such that

0 < η∞(s, t) = {sup t (η+
k (s, t)), sup I (η+

k (s, t)), inf f (η+
k (s, t)), inf t (η−

k (s, t)),

inf I (η−
k (s, t)), sup f (η−

k (s, t))|k = 1, 2, 3, . . .}
= {sup∧k

i=1t
+
ε (Ei ), sup∧k

i=1 I
+
ε (Ei ), inf ∨k

i=1 f
+
ε (Ei ),

inf ∨k
i=1t

−
ε (Ei ), inf ∨k

i=1 I
−
ε (Ei ), sup∧k

i=1 f
−
ε (Ei )|k=1, 2, 3, . . .}

= {sup∧k
i=1t

+
ε′ (χ(Ei )), sup∧k

i=1 I
+
ε′ (χ(Ei )), inf ∨k

i=1 f
+
ε′ (χ(Ei )),

inf ∨k
i=1t

−
ε′ (χ(Ei )), inf ∨k

i=1 I
−
ε′ (χ(Ei )),

sup∧k
i=1 f

−
ε′ (χ(Ei ))|k = 1, 2, 3, . . .}

= {sup t (η′+
k (χ(s), χ(t))), sup I (η′+

k (χ(s), χ(t))),

inf f (η′+
k (χ(s), χ(t))), inf t (η′−

k (χ(s), χ(t))),

inf I (η′−
k (χ(s), χ(t))), sup f (η′−

k (χ(s), χ(t)))|k = 1, 2, 3, . . .}
= η′∞(χ(s), χ(t)) > 0

Hence G ′ is connected. The converse part can be proved by following the same pro-
cedure.

Theorem 2.5 Let G = (V, σ, ε) and G ′ = (V ′, σ ′, ε′) be two isomorphic bipolar
neutrosophic directed hypergraphs. The arcs in G are strong if and only if their image
arcs in G ′ are strong.

Proof Let (s, t) be a strong arc in G such that η(s, t) ≥ η∞(s, t). Since G and G ′ are
isomorphic, then there is a bijective mapping χ : G → G ′ such that

η∞(s, t)≤η(s, t) = η′(χ(s), χ(t))⇒η′(χ(s), χ(t))≥η∞(s, t) = η′∞(χ(s), χ(t)),

which implies that (χ(s), χ(t)) is a strong arc in G ′.
Converse part is trivial.

Theorem 2.6 Let G be a strong connected bipolar neutrosophic directed hypergraph,
then every arc of G is a strong arc.

Proof Let G be a strong strong bipolar neutrosophic directed hypergraph such that

t+ε (Ek) = t+ε ({x1, x2, x3, . . . , xm}) = min{t+σi (x1), t+σi (x2), . . . , t+σi (xm)},
I+
ε (Ek) = I+

ε ({x1, x2, x3, . . . , xm}) = min{I+
σi

(x1), I
+
σi

(x2), . . . , I
+
σi

(xm)},
f +
ε (Ek) = f +

ε ({x1, x2, x3, . . . , xm}) = max{ f +
σi

(x1), f +
σi

(x2), . . . , f +
σi

(xm)},
t−ε (Ek) = t−ε ({x1, x2, x3, . . . , xm}) = max{t−σi (x1), t−σi (x2), . . . , t−σi (xm)},
I−
ε (Ek) = I−

ε ({x1, x2, x3, . . . , xm}) = max{I−
σi

(x1), I
−
σi

(x2), . . . , I
−
σi

(xm)},
f −
ε (Ek) = f −

ε ({x1, x2, x3, . . . , xm}) = min{ f −
σi

(x1), f −
σi

(x2), . . . , f −
σi

(xm)},

for all {x1, x2, x3, . . . , xm} = Ek ⊂ V in ε.
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There are following two cases:

1. If s and t are connected through only one directed hyperarc (s, t), then η(s, t) =
η∞(s, t).

2. If s and t are connected by two or more than two hyperpaths, then consider an
arbitrary directed hyperpath s = x1, E1, x2, E2, . . . , Ek, xk+1 = t . The strength
of the path is

η(s, t) = {∧k
i=1t

+
ε (Ei ), ∧k

i=1 I
+
ε (Ei ), ∨k

i=1 f
+
ε (Ei ), ∨k

i=1t
−
ε (Ei ), ∨k

i=1 I
−
ε (Ei ), ∧k

i=1 f
−
ε (Ei )}

= {∧k
i=1(∧m

j=1t
+
σi

(x j )), ∧k
i=1(∧m

j=1 I
+
σi

(x j )), ∨k
i=1(∨m

j=1 f
+
σi

(x j )), ∨k
i=1(∨m

j=1t
−
σi

(x j )),

∨k
i=1(∨m

j=1 I
−
σi

(x j )), ∧k
i=1(∧m

j=1 f
−
σi

(x j ))}
= min t+σi (x j ),min I+

σi
(x j ),max f +

σi
(x j ),max t−σi (x j ),max I−

σi
(x j ),min f −

σi
(x j )

≤ [∧t+σi (s)] ∧ [∧t+σi (t)], ≤ [∧I+
σi

(s)] ∧ [∧I+
σi

(t)], ≥ [∨ f +
σi

(s)] ∨ [∨ f +
σi

(t)],
≥ [∨t−σi (s)] ∨ [∨t−σi (t)], ≥ [∨I−

σi
(s))] ∨ [∨I−

σi
(t)], ≤ [∧ f −

σi
(s)] ∧ [∧ f −

σi
(t)]

η∞(s, t) = {sup t (η+
k (s, t)), sup I (η+

k (s, t)), inf f (η+
k (s, t)), inf t (η−

k (s, t)),

inf I (η−
k (s, t)), sup f (η−

k (s, t))}
= {sup(∨t+ε (Ei )), sup(∨I+

ε (Ei )), inf(∧ f +
ε (Ei )), inf(∧t−ε (Ei )),

inf(∨I−
ε (Ei )), sup(∨ f −

ε (Ei ))}
≤ [∧t+σi (s)] ∧ [∧t+σi (t)], ≤ [∧I+

σi
(s)] ∧ [∧I+

σi
(t)], ≥ [∨ f +

σi
(s)] ∨ [∨ f +

σi
(t)],

≥ [∨t−σi (s)] ∨ [∨t−σi (t)], ≥ [∨I−
σi

(s))] ∨ [∨I−
σi

(t)], ≤ [∧ f −
σi

(s)] ∧ [∧ f −
σi

(t)]
= η(s, t) (by using Eq. 3)

η∞(s, t) ≤ η(s, t) (3)

Hence every hyperarc in G is strong.

Theorem 2.7 Let G = (σ, ε) and G ′ = (σ ′, ε′) be isomorphic bipolar neutrosophic
directed hypergraphs, then G is strong if and only if G ′ is strong.

Proof Let χ : G → G ′ be the isomorphism between G and G ′, such that

∧t+σi (w) = ∧t+
σ ′
i
(χ(w)),∧I+

σi
(w) = ∧I+

σ ′
i
(χ(w)),∨ f +

σi
(w) = ∨ f +

σ ′
i
(χ(w)),

∨t−σi (w) = ∨t−
σ ′
i
(χ(w)),∨I−

σi
(w) = ∨I−

σ ′
i
(χ(w)),∧ f −

σi
(w) = ∧ f −

σ ′
i
(χ(w)),

for all w ∈ V .

t+ε (Ei ) = t+ε (w1, w2, w3, . . . , wk) = t+
ε′ (χ(w1), χ(w2), χ(w3), . . . , χ(wk)),

I+
ε (Ei ) = I+

ε (w1, w2, w3, . . . , wk) = I+
ε′ (χ(w1), χ(w2), χ(w3), . . . , χ(wk)),

f +
ε (Ei ) = f +

ε (w1, w2, w3, . . . , wk) = f +
ε′ (χ(w1), χ(w2), χ(w3), . . . , χ(wk)),

t−ε (Ei ) = t−ε (w1, w2, w3, . . . , wk) = t−
ε′ (χ(w1), χ(w2), χ(w3), . . . , χ(wk)),

I−
ε (Ei ) = I−

ε (w1, w2, w3, . . . , wk) = I−
ε′ (χ(w1), χ(w2), χ(w3), . . . , χ(wk)),

f −
ε (Ei ) = f −

ε (w1, w2, w3, . . . , wk) = f −
ε′ (χ(w1), χ(w2), χ(w3), . . . , χ(wk)),
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for all {w1, w2, w3, . . . , wk} = Ei ⊂ V . Let G be a strong bipolar neutrosophic
directed hypergraph and

t+
ε′ (E ′

i ) = t+
ε′ (χ(Ei )) = t+ε (Ei ) = ∧t+σi (wi ) = ∧t+

σ ′
i
(w′

i )

I+
ε′ (E ′

i ) = I+
ε′ (χ(Ei )) = I+

ε (Ei ) = ∧I+
σi

(wi ) = ∧I+
σ ′
i
(w′

i )

f +
ε′ (E ′

i ) = f +
ε′ (χ(Ei )) = f +

ε (Ei ) = ∨t+σi (wi ) = ∨t+
σ ′
i
(w′

i )

t−
ε′ (E ′

i ) = t−
ε′ (χ(Ei )) = t−ε (Ei ) = ∨t−σi (wi ) = ∨t−

σ ′
i
(w′

i )

I−
ε′ (E ′

i ) = I−
ε′ (χ(Ei )) = I−

ε (Ei ) = ∨I−
σi

(wi ) = ∨I−
σ ′
i
(w′

i )

f −
ε′ (E ′

i ) = f −
ε′ (χ(Ei )) = f −

ε (Ei ) = ∧ f −
σi

(wi ) = ∧ f −
σ ′
i
(w′

i )

Hence G ′ is a strong bipolar neutrosophic directed hypergraph. The converse part is
obvious.

Theorem 2.8 Let χ : G → G ′ be a co-weak isomorphism between G and G ′ and G ′
is strong. Then G is a strong bipolar neutrosophic directed hypergraph.

Proof Let χ : G → G ′ be a co-weak isomorphism betweenG andG ′, which satisfies

∧t+σi (x) ≤ ∧t+
σ ′
i
(χ(x)),∧I+

σi
(x) ≤ ∧I+

σ ′
i
(χ(x)),∨ f +

σi
(x) ≥ ∨ f +

σ ′
i
(χ(x)),

∨t−σi (x) ≥ ∨t−
σ ′
i
(χ(x)),∨I−

σi
(x) ≥ ∨I−

σ ′
i
(χ(x)),∧ f −

σi
(x) ≤ ∧ f −

σ ′
i
(χ(x)),

for all x ∈ V .

t+ε (x1, x2, x3, . . . , xk) = t+
ε′ (χ(x1), χ(x2), χ(x3), . . . , χ(xk)),

I+
ε (x1, x2, x3, . . . , xk) = I+

ε′ (χ(x1), χ(x2), χ(x3), . . . , χ(xk)),

f +
ε (x1, x2, x3, . . . , xk) = f +

ε′ (χ(x1), χ(x2), χ(x3), . . . , χ(xk)),

t−ε (x1, x2, x3, . . . , xk) = t−
ε′ (χ(x1), χ(x2), χ(x3), . . . , χ(xk)),

I−
ε (x1, x2, x3, . . . , xk) = I−

ε′ (χ(x1), χ(x2), χ(x3), . . . , χ(xk)),

f −
ε (x1, x2, x3, . . . , xk) = f −

ε′ (χ(x1), χ(x2), χ(x3), . . . , χ(xk)),

for all {x1, x2, x3, . . . , xk} = Ei ⊂ V . Since G ′ is strong, then

t+
ε′ (χ(x1), χ(x2), χ(x3), . . . , χ(xk))

= min{t+
σ ′
i
(χ(x1), t

+
σ ′
i
(χ(x2), t

+
σ ′
i
(χ(x3), . . . , t

+
σ ′
i
(χ(xk)}

= t+ε (x1, x2, x3, . . . , xk)

≤ min{t+σi (x1), t+σi (x2), t+σi (x3), . . . , t+σi (xk)}
≤ min{t+

σ ′
i
(χ(x1), t

+
σ ′
i
(χ(x2), t

+
σ ′
i
(χ(x3), . . . , t

+
σ ′
i
(χ(xk)}
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t+ε (x1, x2, x3, . . . , xk)

= min{t+σi (x1), t+σi (x2), t+σi (x3), . . . , t+σi (xk)}
I+
ε′ (χ(x1), χ(x2), χ(x3), . . . , χ(xk))

= min{I+
σ ′
i
(χ(x1), I

+
σ ′
i
(χ(x2), I

+
σ ′
i
(χ(x3), . . . , I

+
σ ′
i
(χ(xk)}

= I+
ε (x1, x2, x3, . . . , xk)

≤ min{I+
σi

(x1), I
+
σi

(x2), I
+
σi

(x3), . . . , I
+
σi

(xk)}
≤ min{I+

σ ′
i
(χ(x1), I

+
σ ′
i
(χ(x2), I

+
σ ′
i
(χ(x3), . . . , I

+
σ ′
i
(χ(xk)}

I+
ε (x1, x2, x3, . . . , xk)

= min{I+
σi

(x1), I
+
σi

(x2), I
+
σi

(x3), . . . , I
+
σi

(xk)}

Similarly,

f +
ε (x1, x2, x3, . . . , xk) = max{ f +

σi
(x1), f +

σi
(x2), f +

σi
(x3), . . . , f +

σi
(xk)}

t−ε (x1, x2, x3, . . . , xk) = max{t−σi (x1), t−σi (x2), t−σi (x3), . . . , t−σi (xk)}
I−
ε (x1, x2, x3, . . . , xk) = max{I−

σi
(x1), I

−
σi

(x2), I
−
σi

(x3), . . . , I
−
σi

(xk)}
f −
ε (x1, x2, x3, . . . , xk) = min{ f −

σi
(x1), f −

σi
(x2), f −

σi
(x3), . . . , f −

σi
(xk)}

Hence G is strong BNDHG.

3 Applications of BNDHGs in decision-making

Decision-making acts as a vital feature of current administration. Decisions are consid-
ered very important in this way that they determine both organizational andmanagerial
actions. A decision can be defined as “a series of action which is consciously cho-
sen from among a set of alternatives to achieve a desired result.” It is appeared as a
balanced commitment to action and a well organized judgment. Problems in almost
every conceivable discipline, including decision-making can be solved using graphical
models.

1. Affiliation with an apprenticeship group A social group is a unity of two or
more humans, sharing similar activities and characteristics, who interact with one
another. Social interactions can also occur on the Internet in online communities and
these relationships preclude the face-to-face interactions. Different social groups are
created on the basis of typical features, including education, apprenticeship, entertain-
ment, tourism, ethics and religion. It is bit difficult for an anonymous user to choose a
social group that fulfills his desires and objectives appropriately. We develop a bipo-
lar neutrosophic directed hypergraphical model depicting that how a user can join
the most beneficial apprenticeship group by following a step by step procedure. A
BNDHG illustrating a group of users as members of different apprenticeship groups
is shown in Fig. 6.

If a user wants to select the most appropriate educational group, that is, the most
effective one to promote and encourage a specific behavior or outcome, the following
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USER1

USER2

USER3

USER4

USER5
USER6

USER7

USER8

GROUP1 GROUP2

GROUP3

GROUP4

GROUP5

GROUP6

(0.5, 0.1, 0.4,−0.5,−0.1,−0.4) (0.6, 0.2, 0.3,−0.6,−0.2,−0.3)
(0.8, 0.1, 0.2,−0.8,−0.1,−0.2)

(0.7, 0.2, 0.1,−0.7,−0.2,−0.1)

(0.4, 0.1, 0.1,−0.4,−0.1,−0.1)

(0.5, 0.1, 0.1,−0.5,−0.1,−0.1)

(0.9, 0.2, 0.3,−0.9,−0.2,−0.3)

(0.9, 0.1, 0.2,−0.9,−0.1,−0.2)

(0.5, 0.2, 0.1,−0.5,−0.2,−0.1)

(0.4, 0.2, 0.3,−0.4,−0.2,−0.3)

(0.6, 0.1, 0.2,−0.6,−0.1,−0.2)

(0.2, 0
.1, 0.1

,−0.2.− 0.1,−0.1)

(0.8, 0.2, 0.1,−0.8,−0.2,−0.1)

(0.9, 0.1, 0.1,−0.9,−0.1,−0.1)

Fig. 6 Representation of members having affiliations with different groups using BNDHG

Table 1 Didactical behavior of
users towards apprenticeship
groups

Apprenticeship
groups

Didactical
behavior

Indeterminate
behavior

Irrelevant
to didactics

GROUP1 0.6 0.1 0.2

GROUP2 0.5 0.1 0.1

GROUP3 0.4 0.2 0.3

GROUP4 0.6 0.2 0.3

GROUP5 0.5 0.1 0.4

GROUP6 0.6 0.2 0.3

Table 2 Prenicious behavior of
users towards apprenticeship
groups

Apprenticeship
groups

Prenicious
behavior

Indeterminate
behavior

Extraneous
behavior

GROUP1 −0.6 −0.1 −0.2

GROUP2 −0.5 −0.1 −0.1

GROUP3 −0.4 −0.2 −0.3

GROUP4 −0.6 −0.2 −0.3

GROUP5 −0.5 −0.1 −0.4

GROUP6 −0.6 −0.2 −0.3

procedure can help him. Firstly, one should think about the collective contribution of
members towards the group, which can be find out by means of membership degrees
of BN directed hyperedges. The positive and negative contributions of users towards
a specific apprenticeship group are given in Tables 1 and 2, respectively.

It can be noted that GROUP1 has 60% didactical behavior, which is maximum
among all other groups, 10% indeterminacy and 20% is irrelevant to its objectives.
Moreover, it owns −60% of prenicious behavior, which is minimum as compared
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Table 3 Educational effects of
groups on the users

Apprenticeship
groups

Educational
effects

GROUP1 (0.9, 0.1, 0.1,−0.9,−0.1,−0.1)

GROUP2 (0.5, 0.2, 0.1,−0.5,−0.2, −0.1)

GROUP3 (0.9, 0.1, 0.2,−0.9,−0.1,−0.2)

GROUP4 (0.8, 0.1, 0.2, −0.8,−0.1,−0.2)

GROUP5 (0.5, 0.5, 0.1,−0.5,−0.5,−0.1)

GROUP6 (0.2, 0.1, 0.1,−0.2, −0.1,−0.1)

Table 4 Educational effects of groups on the users

Apprenticeship
groups

In-degrees Out-degrees

GROUP1 (0.6, 0.1, 0.2, −0.6,−0.1,−0.2) (0, 0, 0, 0, 0, 0)

GROUP2 (0.2, 0.1, 0.1, −0.2,−0.1,−0.1) (0.5, 0.1, 0.2,−0.5,−0.1,−0.2)

GROUP3 (1.2, 0.2, 0.6,−1.2,−0.2,−0.6) (0.5, 0.1, 0.2,−0.5,−0.1,−0.2)

GROUP4 (0.6, 0.1, 0.3,−0.6,−0.1,−0.3) (0, 0, 0, 0, 0, 0)

GROUP5 (0.5, 0.1, 0.4,−0.5,−0.1,−0.4) (0.2, 0.1, 0.1,−0.2,−0.1,−0.1)

GROUP6 (0.2, 0.1, 0.3, −0.2,−0.1,−0.3) (0.4, 0.2, 0.2,−0.4,−0.2,−0.2)

to all other groups and −20% of extraneous behavior. Thus, GROUP1 can be a most
appropriate choice for an anonymous user. Secondly, one should do his research on the
powerful impacts of all under consideration groups on theirmembers.Degrees ofmem-
bership of all group vertices depict their effects on their members as given in Table 3.

Note that, GROUP1 has maximum positive effects and minimum negative effects
on its members. Thirdly, a person can detect the influence of a group by calculating
its in-degree and out-degree as in-degrees interpret the percentage of users joining the
group and out-degrees interpret thepercentage of users leaving that group. In-degrees
and out-degrees of all Apprenticeship groups are given in Table 4.

Thus, an Apprenticeship group having maximum in-degrees and minimum out-
degrees will be the most suitable choice. It can be noted that GROUP1 and GROUP4
both have minimum out-degrees. To handle such type of situations, we will then
compare the in-degrees of these two groups. GROUP1 and GROUP4 both have same
positive truthmembership and positive indeterminacy but the falsitymembership value
is minimum in case of GROUP1 and the conditions are same in case of negative
membership values. Hence GROUP1 will be more suitable than GROUP4. Note that,
in all above cases that we have discussed, GROUP1 is the most appropriate choice
with the given data. So if any user wants to join an Apprenticeship group, by following
the above procedure, he should be affiliate with GROUP1, as this group has maximum
positive effects on the didactical behavior of its members and is more closely to the
educational objectives. The guide will help to think about selecting a group based on
the purpose of someone communication and understanding of the users. It will also
help to consider what information is best communicated through different groups.
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The method of searching out the most beneficial group is described in the following
algorithm.

Algorithm
1. Input the degree of membership of all vertices(users) x1, x2, . . . , xn .
2. Find the positive and negative contributions of users towards groups by calculating

the degree of membership of all directed hyperedges as:

t+ρ (Ek) ≤ min{t+μi
(x1), t

+
μi

(x2), . . . , t
+
μi

(xm)},
I+
ρ (Ek) ≤ min{I+

μi
(x1), I

+
μi

(x2), . . . , I
+
μi

(xm)},
f +
ρ (Ek) ≤ max{ f +

μi
(x1), f +

μi
(x2), . . . , f +

μi
(xm)},

t−ρ (Ek) ≥ max{t−μi
(x1), t

−
μi

(x2), . . . , t
−
μi

(xm)},
I−
ρ (Ek) ≥ max{I−

μi
(x1), I

−
μi

(x2), . . . , I
−
μi

(xm)},
f −
ρ (Ek) ≥ min{ f −

μi
(x1), f −

μi
(x2), . . . , f −

μi
(xm)}.

3. Obtain the most appropriate group as:

max t+ρ (Ek),max I+
ρ (Ek),min f +

ρ (Ek),min t−ρ (Ek),min I−
ρ (Ek),max f −

ρ (Ek)

4. Find the group having strong educational impacts on the users as:

max t+μi
(xk),max I+

μi
(xk),min f +

μi
(xk),min t−μi

(xk),min I−
μi

(xk),max f −
μi

(xk),

where all xk are the vertices representing the different groups.
5. Find the positive influence of groups xk on the users by calculating the in-degrees

D−(xk) as:
⎛

⎝
∑

xk∈H(Ek )

t+ε (Ek),
∑

xk∈H(Ek )

I+
ε (Ek),

∑

xk∈H(Ek )

f +
ε (Ek),

∑

xk∈H(Ek )

t−ε(Ek),
∑

xk∈H(Ek )

I−ε(Ek),
∑

xk∈H(Ek )

f −ε(Ek)

⎞

⎠

6. Find the negative influence of groups xk on the users by calculating the out-degrees
D+(xk) as:

⎛

⎝
∑

xk∈T (Ek )

t+ε (Ek),
∑

xk∈T (Ek )

I+
ε (Ek),

∑

xk∈T (Ek)

f +
ε (Ek),

∑

xk∈T (Ek )

t−ε(Ek),
∑

xk∈T (Ek)

I−ε(Ek),
∑

xk∈T (Ek )

f −ε(Ek)

⎞

⎠

7. Obtain the most effective group as: (max D−(xk),min D+(xk)).
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Inorganic Acids

Saturated Hydrocarbons

Cyanohydrins

Nitriles

Ethers

Phenols

Petrolum Oils

Phosphorus,

Aromatic Hydrocarbons

Olefins

Sulfur, Molten

(0.9, 0.1, 0.1,−0.9,−0.1,−0.1) (0.8, 0.1, 0.2,−0.8,−0.1,−0.2)

(0.8, 0.1, 0.2,−0.8,−0.1,−0.2)

(0.8, 0.1, 0.2,−0.8,−0.1,−0.2)

(0.9, 0.1, 0.1,−0.9,−0.1,−0.1)

(0.9, 0.1, 0.1,−0.9,−0.1,−0.1)

(0, 8, 0.1, 0.2,−0.8,−0.1,−0.2)

(0.7, 0.1, 0.2,−0.7,−0.1,−0.2)

(0.7, 0.1, 0.2,−0.7,−0.1,−0.2)(0.9, 0.1, 0.1,−0.9,−0.1,−0.1)

(0.8, 0.1, 0.1,−0.8,−0.1,−0.1)

Fig. 7 Safe combinations of compatible chemicals

2. Portrayal of compatible chemicals using isomorphic BNDHGs The formal
concept of “isomorphism” captures the informal notion that some objects have “the
same structure” if one ignores individual distinctions of “atomic” components of
objects. A hypergraph can exists in different forms having the same number of vertices,
hyperedges, and also the same connectivity. Such hypergraphs are called isomorphic.
Appropriate chemical storage plans are designed to control health and physical dyna-
mite associated with laboratory chemical storage. There are many chemicals which
are not compatible to each other and react when they are mixed. The recants can be
dangerous in such cases, so care must be taken when attempting to mix or store the
chemicals. Here, we describe that if a model representation of compatible groups is
given, then by using the isomorphism property we can represent any type of chem-
icals. Consider the groups of incompatible chemicals, which cannot interact with
each other, as the vertices of BNDHG G. Directed hyperedges between the groups
represent the safe combinations and absence of hyperedges depicts that the combi-
nations are unsafe. A BNDHG model illustrating the safe combinations is given in
Fig. 7.

Membership degrees of each chemical group represent that how they react posi-
tively or negatively when are mixed. For example, membership degree of Inorganic
Acids (0.9, 0.1, 0.1,−0.9,−0.1,−0.1) depict that these chemicals are 90% compat-
ible, 10% have indeterminacy and 10% have chances to explode. Similarly, negative
membership degrees describe the incompatibility of this group.

Now, if we have to represent the compatibilities of chemicals
{Phosphoric acid, Cyclohexane, Dicylcopentadiene, Gasolines, Carbolic oil, Ace-

tone cyanohydrin,Acetonitrile,Diethyl ether, Phosphorus, Sulfur,Benzene}belonging
to different groups as mentioned in above BNDHG, we will find out a BNDHG iso-
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(0.9, 0.1, 0.1,−0.9,−0.1,−0.1)

(0.8, 0.1, 0.2,−0.8,−0.1,−0.2)

(0.8, 0.1, 0.2,−0.8,−0.1,−0.2)

(0.8, 0.1, 0.2,−0.8,−0.1,−0.2)

(0.9, 0.1, 0.1,−0.9,−0.1,−0.1)

(0.9, 0.1, 0.1,−0.9,−0.1,−0.1)

(0, 8, 0.1, 0.2,−0.8,−0.1,−0.2)
(0.7

, 0.1
, 0.2

,−0.7,
−0.1,

−0.2)

(0.7, 0.1, 0.2,−0.7,−0.1,−0.2)
(0.9, 0.1, 0.1,−0.9,−0.1,−0.1)

(0.8, 0.1, 0.1,−0.8,−0.1,−0.1)

V1

V2

V3

V4

V5

V6

V7

V8

V9

V10

V11

Fig. 8 Isomorphic BNDHG G′

morphic to above. A BNDHG G ′ isomorphic to the above is given in Fig. 8. Define a
bijective mapping h : G → G ′, such that

h(Inorganic Acids) = V1, h(Aromatic Hydrocarbons) = V2,
h(Petroleum Oils) = V3, h(Phenols) = V4,
h(Saturated Hydrocarbons) = V5, h(Ethers) = V6,
h(Cyanohydrins) = V7, h(Niriles) = V8,
h(Sulfur, molten) = V9, h(Phosphorus) = V10,
h(Olefins) = V11.

It can be noted that

t+G (I norganicAcids) = t+G ′(V1), I+
G (I norganicAcids) = I+

G ′(V1),

f +
G (I norganicAcids) = f +

G ′(V1), t−G (I norganicAcids) = t−G ′(V1),

I−
G (I norganicAcids) = I−

G ′(V1), f −
G (I norganicAcids) = f −

G ′(V1).

Similarly, membership degrees of all groups are equal to their images.
Now determine the relative groups of all given elements and put that elements in

corresponding images boxes. For instance, Phosphoric acid belongs to the group of
Inorganic acids and the image of Inorganic Acids is V1. Hence Phosphoric acid will
be kept in V1 box. Similarly, Cyclohexane is an element of Saturated Hydrocarbons,
Dicylcopentadiene belongs to Olefins, Gasolines belongs to Petroleum Oils, Carbolic
oil is an element of Phenols, Acetone cyanohydrin belongs to Cyanohydrins, Ace-
tonitrile is in Nitriles, Diethyl ether belongs to Ethers, Benzene belongs to Aromatic
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Hydrocarbons and Phosphorus, Sulfur are mapped onto themselves. Thus these ele-
ments will be positioned at the places of V5, V11, V3, V4, V7, V8, V6, V2, V10 and V9,
respectively. Hence by using the isomorphism property of BNDHGs, we can check
the compatibility of chemicals by considering their preimages.

4 Conclusions

Theory of directed hypergraphs has fruitful applications in different fields, includ-
ing databases, social networking, computer networking and decision making. Bipolar
neutrosophic models serve as most powerful tools to discuss and model the prob-
lems in many areas, including decision-making, psychology and bipolarity in human
behaviors. Bipolar neutrosophic directed hypergraph models are more flexible and
applicable as they dissertate neutrosophic behavior positively as well as negatively. In
this research paper, we have applied the concept of bipolar neutrosophic sets to the
theory of directed hypergraphs. We have discussed the bipolar neutrosophic directed
hypergraphs and their certain properties. We aim to widen our research (1) Bipolar
fuzzy soft neutrosophic hypergraphs, (2) Interval valued neutrosophic hypergraphs,
(3)Fuzzy rough neutrosophic hypergraphs and (4)Bipolar fuzzy rough directed hyper-
graphs.
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