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1. Introduction

In classical set theory, an element either belongs or does not belong to the
set, as the membership of elements in a set is interpreted in binary terms
according to a divalent case. In fuzzy set theory, introduced by Zadeh [1],
the gradual assessment of the membership of elements in a set is permitted
by a membership function valued in the real unit interval [0, 1]. In fuzzy set
theory, classical divalent sets are usually called crisp sets. Fuzzy set theory
is a generalization of the classical set theory. Intuitionistic fuzzy sets are sets
whose elements have degrees of membership and non-membership. Intuition-
istic fuzzy sets have been introduced by Atanassov [2] as an extension of the
notion of fuzzy set, which itself extends the classical notion of a set. Neu-
trosophic set theory is a generalization of the intuitionistic set, classical set,
fuzzy set, paraconsistent set, dialetheist set, paradoxist set, tautological set
based on Neutrosophy [3]. An element x(T, I, F') belongs to the set in the
following way: it is true in the set with a degree of ¢ € [0, 1], indeterminate
with a degree of ¢ € [0,1], and it is false with a degree of f € [0,1]. Es-
pecially recently, neutrosophy found a significant degree of applications and
attracted attention. Ye [6] [7, [8, @l 10, 11 12| 13|, 14}, 15, 16, 17, 18, 19], Lui
and his colleagues [20} 2], 22, 23] 25 [26], 27, 28], Biswas and his colleagues
[29, 130, 3T, 132} [33], 341, 35], Mondal and his colleagues [36, 138,39, [40], Zang and
his colleagues [4T], [42] 43, [44] 45] [46, [47] published many papers containing
significant and innovative methods on decision making under neutrosophic
environment,.

In our work, we determine rational social choice solely by the preferences
of individuals in a society. A rational choice is possible only if every individual
in the society is rational. Social choice theory investigates solutions to the
problem of making a collective decision on a fair and democratic ground. The
main purpose and subject area of social choice theory is to study the decision
making problem for collectives to make a collective decision in a democratic
manner. Of course our main concern will be to devise a method to make a
cumulative decision rather than judging how fair the decisions of individuals
are. The collective decision will manifest itself in neutrosophic values that
the individuals assign for the preferences. Every individual is assumed to be
able to assign to every preference some neutrosophic comparison value as
pairs. We benefit from fuzzy and intuitionistic fuzzy social choice in solving
the decision problems concerning neutrosophic social choice. Some of the
most well known works in fuzzy social choice and fuzzy decision making
can be found in [48, 49, 50 511 52, 53]. For the intuitionistic fuzzy choice,
we refer the reader to [54] [55] [56]. Many of the computational social choice
theories that have been studied are based on rational individuals and their
consistent preferences. Knowing the fact that the consistency of these pairwise
comparisons forms the main theme, such theories devise appropriate methods
based on the winner of the consensus of the group or based on an ordering
of preferences with respect to a priority as a result of the voting of each
individual. In any social choice, the consensus winner is defined as the choice



of the dominant individual or the collective decision of rational individuals.
The goal is to determine the best preference picked by the group. For the
fuzzy solutions of finding a consensus, we refer the reader to Kacprzyk and
Nurmi [57]. We introduce a mathematical model for determining a consensus
winner after a collective decision, in case there is any In case of otherwise, we
present a model which orders the preferences with respect to their weights.
We also give an example the last part of the paper to explain the model
better.

2. Fundamental definitions

Here, we give some definitions of fundamental concepts related to our study
scope such as fuzzy set, intuitionistic fuzzy set (IFS), neutrosophic set and
single-valued neutrosophic set.

Definition 2.1. [I] Given a universal set U, with a generic element denoted
by z, a fuzzy set X in U is a defined as a set of ordered pairs:

X = {(z,ux(z))|z € U} where px : U — [0,1] is called the mem-
bership function of A and px (x) represents the degree of membership of the
element z in X.

Definition 2.2. [2] An intuitionistic fuzzy set X over a universe of discourse
U is represented as:

X = {(z,px(z),vx(x))|r € U} where ux : U —— [0,1] and vx :
U —— [0,1] are called respectively the membership function of A and the
non-membership function of A for x in X. The degree of non-membership of
the element z in X is normally defined as px(x) =1 — vx(z).

Definition 2.3. [3| 4] Let U be a universe of discourse, then a neutrosophic
set is defined as:

N ={(z,T(z),I(x), F(x)) : €U}
which is identified by a truth-membership function T : U ~—]07,17],

indeterminacy-membership function Iy : U —]0~, 1*[ and falsity-membership
function Fy : U —]07, 17].

Definition 2.4. [3| 4] Let U be a universe of discourse, then a single valued
neutrosophic set is defined as:

N = {(&,T(@), I(z), F(z)) : @ € U}
where, a truth-membership function Ty : U — [0, 1], indeterminacy-membership
function Iy : U — [0, 1] and falsity-membership function Fy : U — [0, 1]
with 0 < Tv(x) + In(x) + Fn(z) < 3. A single-valued neutrosophic number
(SVNN) is denoted by a a = (T, I, F).

Definition 2.5. [5] Let a be a single-valued neutrosophic number, an accuracy
function H of a single-valued neutrosophic number can be represented as
follows:
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where for all a, H(a) € [0,1]. H is a order relation which gives an accuracy
score of information of a. If H(a1) = H(a2), then a; = ao, that is, they have
the same information. If H(a;) < H(agz), then as is larger than a;, denoted
by a1 < as.

H(a)

3. Accuracy function and distributed indeterminacy form

We would like to discuss the accuracy function H used so far in almost all pa-
pers in neutrosophic studies. For a neutrosophic value, the accuracy function
H is calculated by the values T', I and F. However, in a process of making a
decision, such independent values may not yield results consistent with the
decision-making process on objects. Suppose, one has truth, falsity and inde-
terminacy applied on a concept (or idea). We can not speak about these truth
values by eliminating the indeterminacy. The reason is that we make a deci-
sion on the basis of including indeterminacy and the truth-maker gives the
values by taking into account the indeterminacy. Sorensen [58| [59] [60], who
published some papers on truth-maker theory, buries the theory of indetermi-
nacy in the truth-maker theory. In a similar approach, we desire to calculate
the the accuracy function by considering the indeterminacy as dependent on
T and F'. The direct application of this idea to neutrosophic decision making
helps us to approximate the outcomes with a better precision by distributing
the indeterminacy on neutrosophic values. Let H be an accuracy function.
This time we reflect the indeterminacy value on the truth and falsity val-
ues by the following way: let a = (T}, I, Fi,) be a single valued neutrosophic
number with truth value T, indeterminacy value I,, and falsity value F,. Dis-
tributed Indeterminacy Form (DIF) of a is aprr = (To — Tula,0, Fy — Fol,).
Here, we distribute indeterminacy effect on truth and falsity. In other words,
we decrease the power of truth and falsity in proportion to the magnitude
of indeterminacy. Our aim here is to determine how the value of truth and
falsity is affected by the growth of indeterminacy. We give an example to
an accuracy function H. Despite that H(0.5,0.5,0.6) = 0.475, we have that
H(0.5,0.6,0.6) = 0.48. In other words, even though the precision should have
been decreased when the indeterminacy increases, we observe here the op-
posite. This at first might seem contradictory but the situation will become
clear in a moment. Therefore, DIF gives us a method to keep a neutrosophic
number as least as possible in the ordering of the preferences in proportional
to the increment of the indeterminacy value, provided that the truth or fal-
sity values are fixed.

Self Comparison. Any comparisons on the same alternative should be as-
signed as an balanced value by rational individuals. The values 0.5, (0.5,0.5),
and (0.5,0.5,0.5) are assigned respectively for self-comparison by individu-
als in fuzzy set, intuitionistic fuzzy set and neutrosophic set. Assigned self



comparison of a neutrosophic value a is (0.5,0.5,0.5) and outcome of this
number under H function is naturally H(a) = 0.5. The DIF of this value is
aprr = (0.25,0,0.25) and H(0.25,0,0.25) = 0.375. This in turn gives us a re-
sult quite different from self-comparison. One of the most important reasons
that we introduce the distributed indeterminacy concept is the effect of inde-
terminacy over the other two values, i.e truth and falsity. Moreover, we would
like to see this effect as a rational assignment in the self-comparison process,
so we would like to use the triplet (0.5,0,0.5) instead of (0,5,0.5,0.5). As it
can be seen, we pull the indeterminacy factor down to zero. Moreover, the
DIF of (0.5,0,0.5) is equal to itself, that is (0.5, 0,0.5). Furthermore, the im-
age of (0.5,0,0.5) under the function H takes the value 0.5, which is just the
appropriate value for the self-comparison process.

4. Reciprocal property and hesitation function

4.1. Reciprocal property in fuzzy theory

[61] A fuzzy preference relation R = (r;;) on a finite set of alternatives
X is a relation in X x X that is characterised by a membership function
pr + X x X +— [0,1]. Pairwise comparisons concentrate simply on two
alternatives at a time which enable individuals when expressing their pref-
erences. If an individual prefers an alternative x; to another alternative xz;,
then she/he should not simultaneously prefers x; to x;. Then, the compar-
ison outcomes preference of an alternative numerical representation into a
reciprocal preference relation R is:

Tij = 1 & x; - Z;

Tij = 0 < Tj > T;

Tij = 0.5 & Tj ~ T
Binary crisp preference relations or [0, 1]-valued (fuzzy) preference relations
are used in fuzzy social choice theory. z;; = 1 shows the absolute degree of
preference for x; over ;. A definite preference for x; over z; is r;; € (0.5,1).
Indifference between z; and x; is r;; = 0.5. Reciprocal [0, 1]-valued relations
(R = (rij; Yi,j: 0 <ry <1, +rj = 1) are constantly used in fuzzy set
theory for representing preferences.

4.2. Reciprocal property and hesitation function in intuitionistic fuzzy the-
ory
[62] An intuitionistic fuzzy preference relation P on a finite set of alter-
natives X = {x1,...,2,} is characterised by a membership function pup :
X x X — [0,1] and a non-membership function vp : X x X — such that
0 < pp(xi,zj)+vp(ri,z;) <1,V(z;,z;) € X x X. As is in a fuzzy preference
relation, an intuitionistic fuzzy preference relation is represented by a matrix
P = (pi;) with p;; =< p4j,vi5 >,Vi,5 = 1,2,...,n. Obviously, when the hesi-
tancy function is the null function we have that p;; +v;; = 1 (¥4, j) and the



intuitionistic fuzzy preference relation P = (p;;) is mathematically equiva-
lent to the reciprocal fuzzy preference relation R = (r;;), with rj; = p;;. An
intuitionistic fuzzy preference relation is referred to as reciprocal when the
following additional conditions are imposed:

(1) Wiz = Vi; = 0.5, Vi € {1, ,n}
(11) Wij = Vji, VZ,] S {1, ,n}

In intuitionistic fuzzy studies, the relations do not have to have reciprocity but
must satisfy r;; < 1—r;; due to intuitionistic index. In other words, for an IF'S
A, ma(x) determined by the following expression: m4(z) = 1 — pa(z) —va(x)
is called the hesitancy degree of the element z € X to the set A, and
ma(z) €[0,1], Vz € X.

4.3. Reciprocal property and hesitation function in neutrosophy theory

Let S = {s1, 52,3, ..., Sn.} be a set of alternatives (or options) and m be set
of individuals. Each individual declares his or her own preferences over S
which are represented by an individual neutrosophic preference relation Ry,
such that:

Ng, : S xS+—10,1] x [0,1] x [0, 1]

which is traditionally represented by a matrix Ry, = [rfj = Ng, (rF, rf)], i,j =
1,2,3,.,nk=1,2,3, ..., m.

[(0.5,0.5,0.5) rk, rk, ke
5 (0.5,0.5,0.5) rhs 5,
Ry =
k) T (0.5,0.5,0.5) rky
i rhy rky (0.5,0.5,0.5)

The matrix above shows that neutrosophic preferences of an individual k
among si, Sz, 3, S4. N, (81, $1) = Ng, (S2,52) = Ng, (83, 83) = Ng, (84,84) =
(0.5,0.5,0.5), Ng, (s1,52) = 7%y, Ng,(s3,54) = r5,, ... etc. Our assumption
requires that there is no largeness when an alternative compares to itself.
Almost all the research on decision making do not assign any value or assign
zero degree in their underlying discourse for self-comparisons. We follow a
completely computational approach in this study. On the other hand, zeros
given in previous studies may lead us to a false perception to compare any
s;. If a neutrosophic preference function mu, mu(s;,s;) =0, then s; is def-
initely larger than s;. If we had a rational individual, mu(s;, s;) would have



been 0.5, because if we do self-comparison, an alternative can not have any
advantage or different information over itself. We use H function in Defini-
tion 2.5 for both accuracy and to be a neutrosophic index of SVNNs. If 4 = 7,
then we take Ng, (s;,s;) to be (0.5,0.5,0.5) without DIF, and (0.5,0,0.5)
with DIF. So, we have the following matrix:

—(0.5,0,0.5) r’fQ r’fg r’f4 ]
5 (0.5,0,0.5) rhs &
Ry =
rk &, (0.5,0,0.5) ks
h rhy rky (0.5,0,0.5))

The function H (called neutrosophic index or neutrosophic hesitation func-
tion) assigns each a;; neutrosophic value to a number in [0, 1].

1+ T(aij) — I(ay)(1 — T'(ay)) — Faiy)( — 1(ai;))

H(a;j) = 5

Now, we have a new matrix, Ry = [H(r};) = H*(Ng, (s;, s;))] where i,j =
1,2,3,..,n; k=1,2,3,...,m. With a more explicit expression,

[H((0.5,0,0.5)) H(rk,) H(rky) H(rk) ]
R H(rk) H((0.5,0,0.5)) H(rky) H(rk)
H(rk) H(rk,) H((0.5,0,0.5)) H(rk)

H(rf)) H(rf,) H(rks) H((0.5,0,0.5))]

We find more appropriate to use the notion of hesitation in order to
have consistency between the choosers (individuals) and the chooser’s pref-
erence. Here, we benefit from the intuitionistic fuzzy sets (IFS). In utilizing
IFS, we provide a hybrid account of the neutrosophic accuracy function by
hesitation. Here, we will adapt intuitionistic index to our study since we will
be using the function H as a solid index throughout the paper. Not every
H*(r;;) need to be reciprocal, i.e. H*(r;;) # 1—H"(r;;) but should be quasi-
reciprocal. That is, H(rfj) <1- H(r;?i), for each 4,7 = 1,...,n. If k is not
quasi-reciprocal, we call k is not a rational individual. That is, k is an #r-
rational indwidual. If i = j, then we just take Ngy(a;,a;) = (0.5,0.5,0.5)
because H((0.5,0.5,0.5)) = 0.5 irrespective of DIF of neutrosophic numbers.
Furthermore, when we consider DIF, for information for a rational individual
on the same preference is (0.5, 0,0.5) from now on, and H((0.5,0,0.5)) = 0.5



as desired.

[(0.5,0,0.5) DIF(rk,) DIF(rk,) DIF(rk))]

DIF(r%) (0.5,0,0.5) DIF(rk,) DIF(rk,)
DIF(Ry) =
DIF(r%) DIF(r%) (0.5,0,0.5) DIF(rk,)

| DIF(rf,) DIF(rk,) DIF(rk;)  (0.5,0,0.5)

R; : preference matrix of ith individual,
DIF(R;) : DIF of preference matrix of ith individual,
R : range of preference matrix of ith individual under H function,

rH(ij) : represents the element at the row i and column j of R for
individual k

hE(ij) : distribution of individual k’s votes for each pairwise comparison
of alternative’s value is determined by the size from 0.5 obtained from
RHE,

[[h*]] : the matrix obtained by each element of h*(ij),

[[Hi;]] : matrix of the group vote,

Ay : the degree for preference k assigned by the group ,

a¥ : majority determination value for preference k from the group

ij -
(the element at the row i and column j of [[h*]]),

Hfj : majority determination value for preference k from the group
under H function,

Hy,, : average majority determination value of the group under H
function,

H, : consensus winner determination matrix,

C(s;) : social aggregation function for alternative (preference) s;,



Practical Example 4.1. Suppose that there are three experts my, mq, ms and
four facilities s1, sa, S3, S4 in the same business industry. We assume that
all experts are rational and so we consider all neutrosophic values satisfy
quasi-reciprocal property. We also assume the self-comparison value to be
(0.5,0,0.5). Each expert assigns his/her neutrosophic opinion value by com-
paring the facilities in pairs as follows:

R, is the set of assigned values (preferences of ) by m; to pairs in the
facilities where 1 <1 < 3.

R, = {(s1,51) = (0.5,0,0.5), (s1, 52) = (0.45,0.24,0.27), (s1, s3) = (0.31,0.14, 0.66),
(81, 54) = (08, 03, 0), (SQ, 51) = (01, 0.45, 052), (82, 82) = (05, 0, 0. 5), (82, 53)
(0.48,0.26,0.37), (s, 54) = (0.2,0.7,0.8), (s3,51) = (0.61,0.43,0.71), (53, 52) =
(0.31,0,0.71), (s3,s3) = (0.5,0,0.5), (s3,54) = (0.76, 0.23,0. 27), (s4, 5 ) =
(0.1,0.6,0.9), (54, s2) = (0.81,0.55,0.33), (54, s3) = (0.11,0.32,0.59), (54, 54) =
(0.5,0,0.5)}

Ron, = {(51,51) = (0.5,0,0.5), (51, 52) = (0.2,0.4,0.7), (51, 53) = (0.21,0.55,0.95),
(s1,54) = (0.4,0.5,0.3), (s2, s1) = (0.29,0.53,0.38), (0.29, 0.53,0.38), (52, 55) =

(0.5, 0 0.5), (s2,53) = (0.62,0.45,0.16), (52, 4) = (0.2,0.7,0.8), (s3,51) = (0.72,0.15,0.18)
(0.11,0.13,0.79), (s3, 83) = (0.5,0,0.5), (s3,54) = (0.51,0.45,0.53), (54, 81) =
(0.15,0.35,0.23), (54, 52) = (0.81,0.55,0.33), (54, 53) = (0.17,0.57,0.36), (54, 54) =
(0.5,0,0.5)}

Ry = {(s1,51) = (0.5,0,0.5), (s1,52) = (0.3,0.45,0.7), (s1, s3) = (0.1,0.85,0.78), (51, 54)
= (0.4,0.5,0.3), (s2,51) = (0.36,0.51,0.39), (s, 52) = (0.5,0,0.5), (2, 53) =
(0.62,0.45,0.16), (52, 51) = (0.1,0.8,0.21), (53, 51) = (0.92,0.1,0.16), (53, 52) =
(0.11,0.13,0.79), (s3,53) = (0.5,0,0.5), (53, 54) = (0.23,0.45,0.74), (54, 51) =
(0.15,0.35,0.23), (54, 52) = (0.6,0.2,0.1), (54, 53) = (0.57,0.57,0.36), (54, 54) =
(0.5,0,0.5)}

Rm4 = {(51, 81) = (057 0, 05), (817 52) = (02, 0.4, 07), (817 53) = (025, 087, 038), (81, 84)
= (0.4,0.5,0.3), (s2,51) = (0.29,0.53,0.38), (s2, 52) = (0.5,0,0.5), (s2, 53) =
(0.62,0.45,0.16), (s9, 54) = (0.34,0.66,0.21), (s3,51) = (0.73,0.87,0.56), (53, 59) =
(0.14,0.19,0.79), (s3, 53) = (0.5,0,0.5), (s3,54) = (0.21,0.45,0.66), (s4,51) =
(0.16,0.35,0.23), (s4, 52) = (0.6,0.4,0.8), (54, s3) = (0.68,0.57,0.36), (54, 54) =
(0.5,0,0.5)}

We now represent each Ry, in matriz form and then calculate their dis-
tributed indeterminacy forms DIF(Ryy,,).

(0.5,0,0.5)  (0.45,0.24,0.27) (0.31,0.14,0.66)  (0.8,0.3,0)
(0.1,0.45, 0.52) (0.5,0,0.5)  (0.48,0.26,0.37)  (0.2,0.7,0.8)
(0.61,0.43,0.71)  (0.31,0,0.71) (0.5,0,0.5)  (0.76,0.23,0.27)
(0.1,0.6,0.9)  (0.81,0.55,0.33) (0.11,0.32,0.59)  (0.5,0,0.5)

Ry, =
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(0.5,0.5,0.5) (0.342,0,0.2052)  (0.2666, 0, 0.5676) (0.56,0,0)
DIF(R,,) = | (0:055,0,0.286) (0.5,0,0.5) (0.3552,0,0.2738)  (0.06,0,0.24)
™ (0.3477,0,0.4047)  (0.31,0,0.71) (0.5,0,0.5) (0.5852, 0, 0.2079)
(0.04,0,0.36)  (0.3645,0,0.1485) (0.0748,0,0.4012) (0.5,0,0.5)
(0.5,0,0.5) (0.2,0.4,0.7)  (0.21,0.55,0.95)  (0.4,0.5,0.3)
ko _ [|(029,0.53,038)  (05,0,05)  (0.62,0.45,0.16)  (0.2,0.7,0.8)
™2 = 1(0.72,0.15,0.18)  (0.11,0.13,0.79)  (0.5,0,0.5)  (0.51,0.45,0.53)
(0.15,0.35,0.23)  (0.81,0.55,0.33) (0.17,0.57,0.36)  (0.5,0,0.5)
(0.5,0.5,0.5) (0.12,0,0.42)  (0.0945,0,0.4275) (0.2,0,0.15)
DIF(R,,,) — | (0:1363,0,0.1786) (0.5,0,0.5) (0.341, 0, 0.088) (0.06,0,0.24)
ma (0.612,0,0.153)  (0.0957, 0, 0.6873) (0.5,0,0.5) (0.2805, 0,0.2915)
(0.0975,0,0.1495)  (0.3645,0,0.1485) (0.0731,0,0.1548) (0.5,0,0.5)
(0.5,0,0.5), (0.3,0.45,0.7), (0.76, 0.35, 0.38), (0.4, 0.5, 0.3)
R |(0:36,0.51,039), (0.5,0,0.5), (0.62,0.45,0.16), (0.46, 0.46,0.21)
™3 = 1(0.92,0.86,0.35), (0.11,0.13,0.79), (0.5,0,0.5), (0.23,0.45, 0.74)
(0.15,0.35,0.23), (0.6,0.4,0.8), (0.57, 0.57, 0.36), (0.5, 0, 0.5)
(0.5,0,0.5) (0.165,0,0.385)  (0.494, 0, 0.247) (0.2,0,0.15)
DIF(Ry,,) — | (01764,0,0.1911) (0.5,0,0.5) (0.341,0,0.088)  (0.2484,0,0.1134)
™a (0.1288,0,0.049)  (0.0957, 0, 0.6873) (0.5,0,0.5) (0.1265, 0,0.407)
(0.0975,0,0.1495)  (0.36,0,0.48)  (0.2451,0,0.1548) (0.5,0,0.5)
(0.5,0,0.5), (0.2,0.4,0.7), (0.51, 0.35,0.38), (0.4, 0.5, 0.3)
R |(0.29,0.53,038),(0.5,0,0.5), (0.62,0.45,0.16), (0.34,0.66,0.21)
™4 = 1(0.73,0.87,0.56), (0.14,0.19,0.79), (0.5, 0, 0.5), (0.21, 0.45, 0.66)
(0.16,0.35,0.23), (0.6, 0.4, 0.8), (0.68, 0.57, 0.36), (0.5, 0, 0.5)
(0.5,0,0.5) (0.12,0,0.42) (0.3315, 0, 0.247) (0.2,0,0.15)
DIF(R,,,) — | (01363,0,0.1786) (0.5,0,0.5) (0.341,0,0.088)  (0.1156,0,0.0714)
™ (0.0949, 0,0.0728)  (0.1134, 0, 0.6399) (0.5,0,0.5) (0.1155, 0, 0.363)
(0.104, 0, 0.1495) (0.36,0,0.48)  (0.2924,0,0.1548) (0.5,0,0.5)

Now we apply H function to DIF(R;) and then obtain RY.

0.5 0.5684 0.3495 0.78
0.3844 0.5 0.5407 0.41

Ry =
m 0.4715 0.3 0.5 0.6886
0.34 0.608 0.3368 0.5
1 H (45 0.5
pm (i) = 4 b rml(w)é
0, otherwise



o O O
—_ o =

) =

_—_0 O =
OO = O

0 0

0.5 0.35 0.3335 0.525
0.4788 0.5 0.6265 0.41

RE =
m2 0.7295 0.2041 0.5  0.4945
0.474 0.474 0.4591 0.5
1 H (55 0.5
B2 (Z]) _ ’ Tmz (7’])>
0, otherwise
0 0 0 1
mer |0 0 1 0
0 0 0O
0.5 0.39 0.6234  0.525
RH _ 0.4926 0.5 0.6265  0.5675
ms 7 (0.5399 0.2041 0.5 0.35975
0.474 0.4399 0.54515 0.5
1 H (5 0.5
Wiy = b Tme () >
0, otherwise
0 01 1
0 0 1 1
m3|] —
0 010
0.5 0.35 0.5422 0.525
RH _ 0.4788 0.5  0.6265 0.5221
ma 1 0.511 0.2367 0.5  0.3762

0477 0.439 0.5688 0.5

1, rH (ij)>0.5
0, otherwise

hme (i) = {

11
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[[n™]] =

o= OO
o O OO
O = =
O R~

The next step is to collect and compare the preferences. To do this, we
sum the columns of [[H;;]] and divide it to number of the alternatives.

A= = 37 (1Ha)

where 1 <k <m

1

_— Zm: al‘c‘, { 7& j
Hﬂ'm‘ = m =1 . )

0, 1=17

where 4,5 =1,2,..nmand k =1,2,...,m.

p G e 1401040 1
e 4 N 4 s
1 1 3
Hﬂ'13 = 57 T4 — 1, H7'l'21 =0, Hﬂ'23 =1, H7r24 = 5) H‘ﬂ'sl = Zv Hﬂ'32 =0,
1 1 1
H7T34 = 5’ T4 0, H7F42 = Z? H7T43 = 5
_ 1 1 _
— — — 1
4 2
1
0 — 1 —
2
H, =
3 1
e 0 _ -
4
1 1
0 - - _
L 4 2 |

We now define the notion of a consensus winner.

Definition 4.2. [63] s; € W is called a consensus winner if and only if Vs; #
s; : 745 > 0.5, where r;; € H.

In our example above, there is no winner. Of course, it is easy to define that
a—consensus winner and others. So, we propose a social aggregation average
function to calculate the order of s; in the group is the extent to which
individuals is not against option s;.
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1 .
C(s;) = — DinjTij, Where i, j =1,2,....m.
3 1 9 6
C(s1) = 16 C(s2) = 16 C(s3) = 16 C(s4) = 16

Then, C(s3) > C(s4) > C(s1) > C(s2).

5. Conclusion

The main aim of this paper is to bring into attention the interplay between
neutrosophy and social choice theory. Within the framework of this inten-
tion, we have taken inheritance from the studies of fuzzy and intuitionistic
fuzzy social choice theory and developed the neutrosophic based social choice
theory. First we defined the DIF', which was used in Sorensen’s truth-maker
theory to distribute the indeterminacy on truth and falsity for neutrosophic
calculations. We believe that the notion of DIF will give a new breath and
different perspectives for neutrosophic studies. Through DIF, we emphasize
both hesitation and reciprocal characteristics in self-comparisons and other
pairwise comparisons to make a consistent decision maker. We determine a
consensus winner if any. In case of otherwise, we obtain orders of the given
alternatives by defining a social aggregation average function. The imple-
mentation in Python, given in the Appendix, is an algorithm computing the

output in the order of 11 seconds, where n is the input size (the number of

matrices), when executed in a mid-end computer.
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6. Appendix

A Python implementation [64, [65] of the group decision making method with
distributed indeterminacy form under neutrosophic environment is as follows:

from __future__ import division
from collections import defaultdict
import math

import sys

Ri=[ [ (0.5,0,0.5),(0.45,0.24,0.27), (0.31,0.14,0.66) , (0.8,0.3,0)]1,
[(0.1,0.45,0.52) , (0.5,0,0.5), (0.48,0.26,0.37) , (0.2,0.7,0.8)],
[(0.61,0.43,0.71) , (0.31,0,0.71) , (0.5,0,0.5) , (0.76,0.23,0.27)],
[(0.1,0.6,0.9) , (0.81,0.55,0.33) , (0.11,0.32,0.59) , (0.5,0,0.5)]1]

R2=[ [ (0.5,0,0.5),(0.2,0.4,0.7), (0.21,0.55,0.95) , (0.4,0.5,0.3)],
[(0.29,0.53,0.38) , (0.5,0,0.5), (0.62,0.45,0.16) , (0.2,0.7,0.8)],
[(0.72,0.15,0.18) , (0.11,0.13,0.79) , (0.5,0,0.5) , (0.51,0.45,0.53)],
[(0.15,0.35,0.23) , (0.81,0.55,0.33) , (0.17,0.57,0.36) , (0.5,0,0.5)] ]

R3=[ [ (0.5,0,0.5),(0.3,0.45,0.7), (0.1,0.85,0.78) , (0.4,0.5,0.3)],
[(0.36,0.51,0.39) , (0.5,0,0.5), (0.62,0.45,0.16) , (0.1,0.8,0.21)],
[(0.92,0.1,0.16) , (0.11,0.13,0.79) , (0.5,0,0.5) , (0.23,0.45,0.74)],
[(0.15,0.35,0.23) , (0.6,0.2,0.1) , (0.57,0.57,0.36) , (0.5,0,0.5)] ]

R4=[ [ (0.5,0,0.5),(0.2,0.4,0.7), (0.25,0.87,0.38) , (0.4,0.5,0.3)],
[(0.29,0.53,0.38) , (0.5,0,0.5), (0.62,0.45,0.16) , (0.34,0.66,0.21)],
[(0.73,0.87,0.56) , (0.14,0.19,0.79) , (0.5,0,0.5) , (0.21,0.45,0.66)],
[(0.16,0.35,0.23) , (0.6,0.4,0.8) , (0.68,0.57,0.36) , (0.5,0,0.5)] ]

AllTogether= {’R1’: [[ (0.5,0,0.5),(0.45,0.24,0.27), (0.31,0.14,0.66) , (0.8,0.3,0)],
[(0.1,0.45,0.52) , (0.5,0,0.5), (0.48,0.26,0.37), (0.2,0.7,0.8)],
[(0.61,0.43,0.71) , (0.31,0,0.71) , (0.5,0,0.5) , (0.76,0.23,0.27)],
[(0.1,0.6,0.9) , (0.81,0.55,0.33) , (0.21,0.32,0.59) , (0.5,0,0.5)1],
’R2°: [[ (0.5,0,0.5),(0.2,0.4,0.7), (0.21,0.55,0.95) , (0.4,0.5,0.3)],
[(0.29,0.53,0.38) , (0.5,0,0.5), (0.62,0.45,0.16) , (0.83,0.46,0.21)],
[(0.72,0.15,0.18) , (0.11,0.13,0.79) , (0.5,0,0.5) , (0.51,0.45,0.53)],
[(0.15,0.35,0.23) , (0.6,0.4,0.8) , (0.47,0.57,0.36) , (0.5,0,0.5)1],
’R3’: [[ (0.5,0,0.5),(0.3,0.45,0.7), (0.76,0.35,0.38) , (0.4,0.5,0.3)],

[(0.36,0.51,0.39) , (0.5,0,0.5), (0.62,0.45,0.16) , (0.46,0.46,0.21)],
[(0.92,0.86,0.35) , (0.11,0.13,0.79) , (0.5,0,0.5) , (0.23,0.45,0.74)],
[(0.15,0.35,0.23) , (0.6,0.4,0.8) , (0.57,0.57,0.36) , (0.5,0,0.5)]1],
’R4’: [[ (0.5,0,0.5),(0.2,0.4,0.7), (0.51,0.35,0.38) , (0.4,0.5,0.3)],
[(0.29,0.53,0.38) , (0.5,0,0.5), (0.62,0.45,0.16) , (0.34,0.66,0.21)],
[(0.73,0.87,0.56) , (0.14,0.19,0.79) , (0.5,0,0.5) , (0.21,0.45,0.66)],
[(0.16,0.35,0.23) , (0.6,0.4,0.8) , (0.68,0.57,0.36) , (0.5,0,0.5)11}

def AccuracyFunction(T,I,F):

HV= (1+ T - I*x(1-T)-Fx(1-1))/2
return HV

de

=N

DIF(T,I,F):
Ti=math.fabs (T-I*T)
Fl=math.fabs (F-I*F)

DIFi=’> (C+str(T1)+’,’+str(0)+’, +str(F1)+’)’
return DIFi

Q
©
3

AccuracyIntedeteminacyDistubition(T,I,F):
Ti=math.fabs (T-I*T)
Fi=math.fabs (F-I*F)

ID=AccuracyFunction(T1,I,F1)
return ID



def RationalityChecker(R):
columnR=len(R)
idn=0

rowR=len(R[0])
for i in range(0,rowR-1):
if R[i][i] != (0.5, 0, 0.5):
print °(,’,i,i,") is not (0.5, 0, 0.5), so, s ",i, ’ is not rational agent’
idn=1

for i in range(0,rowR):
for j in range(0,rowR):
if i 1=j:
t1=R[i] [j] (0]
i1=R[i] [j1[1]
£1=R[i] [j][2]
Al=AccuracyIntedeteminacyDistubition(tl,il,f1)

t2=R[j][i] [0]
i2=R[j1[i][1]
£2=R[j]1[i][2]

A2=AccuracyIntedeteminacyDistubition(t2,i2,£2)

if A1 > 1-A2 : # Al must be less than or equal to 1-A2
idn=1

print R[i1[j]l, ’ and ’, R[jI[il, ’ does not satisfy hesitation property’

return idn

def RHcreation(X):
global RHtogether
RHtogether= defaultdict()
for i in K.keys():
columnAll=len(K[i])

rowAlll=len(K[i] [0])
rowAll2=len(K[i] [0])

for j in range(0,rowAlll):

for k in range(0,rowAll2):

t1=K[i] [j] (k] [0]
i1=K[i] [j] [x] [1]
£1=K[i] [j] (k] [2]
A=AccuracyIntedeteminacyDistubition(t1,il,f1)

if i not in RHtogether.keys():
RHtogether [i]=[A]

else:
RHtogether [i].extend ([A])

number= int (math.sqrt(len(RHtogether[il)))

m=0

new_list=[]

while m<len(RHtogether[il]):
new_list.append( RHtogether[i][m:m + number])
m+= number

RHtogether [i]=new_list

return RHtogether
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def OneZero(K):
global H
H=defaultdict ()
for i in K.keys():
columnAllin=len(K[i])

rowAll=len(K[i] [0])
for j in range(0,columnAllin):

for k in range(0,rowAll):
if K[i][j]1[k]1>0.5:
if i not in H:

H[i]l=[1]

else:

H[i].append (1)

else:
if i not in H:

H[i]=[0]

else:

H[i] .append(0)
number= int(math.sqrt(len(H[il)))
m=0
new_list=[]
while m<len(H[i]):

new_list.append( H[i][m:m + number])
m+= number

H[il=new_list
return H

de

=N

H_pi_ij(K):

global Hpij

Hpij= defaultdict()
columnAllin112=len(H)

for i in range(0,columnAllinii2):

Topij=0

for j in range(0,columnAllinii2):
Topij=0

for k in H.keys():
if i t= e
Topij = Topij + HI[k][il[j]

else:
Topij=0

aij=str(i+1)+str(j+1)
TopijAvarage= Topij/len(H)

if aij not in Hpij.keys():
TopijAvarage= Topij/len(H)
Hpijlaijl=TopijAvarage
else:
Hpijlaijl=TopijAvarage
return Hpij

de

=N

Alternative_Ordinary(Hpij):
global ORD
ORD= defaultdict()

Number_0f_Alternatives=int (math.sqrt(len(Hpij)))
for i in range(1,Number_Of_Alternatives+1):
istr=str(i)

Top=0
for k in Hpij.keys():



if istr==k[1]:
Top=Top+Hpi j [k]

TopJavarage= Top/Number_Of_Alternatives

if istr not in ORD.keys():
istA=’Alternative ’+istr
ORD [istA]=TopJavarage

else:
ORD [istA]=TopJavarage

return ORD

GroupDecisionWithID(m) :
for i in AllTogether.keys():
if RationalityChecker(AllTogether[i])==1:
print ’inconsistent agent’

Stepl=RHcreation(m)
Step2=0OneZero(Stepl)
Step3=H_pi_ij(Step2)
Step4=Alternative_Ordinary(Step3)

return Step4
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