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Abstract: Recently, various types of single valued neutrosophic (SVN) rough set models were
presented based on the same inclusion relation. However, there is another SVN inclusion relation
in SVN sets. In this paper, we propose a new type of SVN covering rough set model based on the
new inclusion relation. Furthermore, the graph and matrix representations of the new SVN covering
approximation operators are presented. Firstly, the notion of SVN β2-covering approximation
space is proposed, which is decided by the new inclusion relation. Then, a type of SVN covering
rough set model under the SVN β2-covering approximation space is presented. Moreover, there
is a corresponding SVN relation rough set model based on a SVN relation induced by the SVN
β2-covering, and two conditions under which the SVN β2-covering can induce a symmetric SVN
relation are presented. Thirdly, the graph and matrix representations of the new SVN covering rough
set model are investigated. Finally, we propose a novel method for decision making (DM) problems
in paper defect diagnosis under the new SVN covering rough set model.

Keywords: single valued neutrosophic set; covering; symmetric relation; graph representation;
matrix representation; paper defect diagnosis

1. Introduction

Rough set theory, as a tool to deal with various types of data in data mining, was proposed by
Pawlak [1,2] in 1982. Then rough set theory has been extended to generalize rough sets based on other
notions such as binary relations [3], neighborhood systems [4], and coverings [5].

Covering-based rough sets [6–9] were proposed to deal with the type of covering data.
In application, they have been applied to knowledge reduction [10,11], decision rule synthesis [12,13],
and other fields [14,15]. In theory, covering-based rough set theory has been connected with matroid
theory [16–18], lattice theory [19,20], and fuzzy set theory [21–23]. Zadeh’s fuzzy set theory [24]
addresses the problem of how to understand and manipulate imperfect knowledge. It has been used
in various applications [25–28]. Recent investigations have attracted more attention on combining
covering-based rough set and fuzzy set theories. There are many fuzzy covering rough set models
proposed by researchers, such as Ma [29] and Yang et al. [30].

Smarandache [31] and Wang et al. [32] presented single valued neutrosophic (SVN) sets, which
can be regarded as an extension of intuitionistic fuzzy sets [33]. Both neutrosophic sets and rough
sets can deal with partial and uncertainty information [34]. Therefore, it is necessary to combine them.
Recently, Mondal and Pramanik [35] presented the concept of rough neutrosophic set. Yang et al. [36]
presented a SVN rough set model based on SVN relations. Wang and Zhang [37] presented two
types of SVN covering rough set models. All these SVN rough set models are presented based on an
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inclusion relation which is named type-1 inclusion relation and denoted by ⊆1. The definition of ⊆1 is
shown as follows; for any A, B ∈ SVN(U),

A ⊆1 B iff TA(x) ≤ TB(x), IB(x) ≤ IA(x) and FB(x) ≤ FA(x) for all x ∈ U.

Under the type-1 inclusion relation, for two SVN numbers α = 〈a, b, c〉 and β = 〈d, e, f 〉, we have
α ≤1 β⇔ a ≤ d, b ≥ e and c ≥ f . The definition of SVN β-covering approximation space is presented
as follows (see the work by the authors of [37]).

Let U be a universe and SVN(U) be the SVN power set of U. For a SVN number β = 〈a, b, c〉, we
call Ĉ = {C1, C2, · · · , Cm}, with Ci ∈ SVN(U)(i = 1, 2, ..., m), a SVN β-covering of U, if for all x ∈ U,
Ci ∈ Ĉ exists such that Ci(x) ≥1 β. We also call (U, Ĉ) a SVN β-covering approximation space.

However, there exists another inclusion relation in the work by the authors of [38], which is called
type-2 inclusion relation and denoted by ⊆2. The definition of ⊆2 is introduced as follows; for any
A, B ∈ SVN(U),

A ⊆2 B iff TA(x) ≤ TB(x), IA(x) ≤ IB(x) and FB(x) ≤ FA(x) for all x ∈ U.

Under the type-2 inclusion relation, for two SVN numbers α = 〈a, b, c〉 and β = 〈d, e, f 〉, we have
α ≤2 β⇔ a ≤ d, b ≤ e and c ≥ f .

In the definition of SVN β-covering approximation space, if Ci(x) ≥1 β is replaced by Ci(x) ≥2 β,
there will be a new SVN covering approximation space (we call it a SVN β2-covering approximation
space in this paper). In Example 1 in this paper, we find the following statements.

(1) Let β = 〈0.5, 0.1, 0.8〉. Then Ĉ is a SVN β2-covering of U, but it is not a SVN β-covering of U.
(2) Let β = 〈0.5, 0.3, 0.8〉. Then Ĉ is a SVN β-covering of U, but it is not a SVN β2-covering of U.

That is to say, the SVN β2-covering approximation space is a new SVN covering approximation
space, which is different from the SVN β-covering approximation space. Since different inclusion
relations (⊆1 and ⊆2) have different union and intersection operations, the SVN β2-covering
approximation space has different union and intersection operations from the SVN β-covering
approximation space. Hence, notions and corresponding SVN covering rough set models of SVN
β-covering approximation space do not apply to SVN β2-covering approximation space, which is the
justification for studying this topic. Therefore, the investigation of the SVN β2-covering approximation
space and its corresponding SVN covering rough set model is very important. It not only can manage
some issues that the SVN β-covering approximation space can not deal with, but also constructs a new
type of SVN covering rough set model. This is our motivation of this research.

In this paper, we present some new concepts in SVN β2-covering approximation space, as well
as their properties. Then the type-2 SVN covering rough set model under the SVN β2-covering
approximation space is proposed. On the one hand, the graph and matrix representations of the type-2
SVN covering rough set model are investigated respectively. Moreover, some relationships between
the type-2 SVN covering rough set model and other SVN rough set models are presented. One the
other hand, we present a method to DM problems in paper defect diagnosis, which is an important
topic in paper making industries, under the type-2 SVN covering rough set model. Many researchers
have studied decision making (DM) problems by rough set models [39–42]. Hence, the proposed DM
method is compared with other methods which are presented by Liu [43], Ye [44], Yang et al. [36], and
Wang et al. [37] respectively.

The rest of this paper is organized as follows. Section 2 reviews some fundamental definitions
about covering-based rough sets and SVN sets. In Section 3, some concepts and properties in
SVN β2-covering approximation space are studied. The relationship between the SVN β-covering
approximation space and the SVN β2-covering approximation space is presented. In Section 4, we
present the type-2 SVN covering rough set model. Some relationships between the type-2 SVN covering
rough set model and other SVN rough set models are presented. Moreover, a SVN relation can be
induced by the SVN β2-covering, so a corresponding SVN relation rough set model and two conditions
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under which the SVN β2-covering can induce a symmetric SVN relation are presented. In Section 5,
some new graphs and graph operations are presented. Based on this, the graph representation of the
type-2 SVN covering approximation operators is shown. In Section 6, some new matrices and matrix
operations are also presented, and the matrix representation of the type-2 SVN covering approximation
operators is presented. In Section 7, a novel method to paper defect diagnosis is presented under
the type-2 SVN covering rough set model. Moreover, the proposed method is compared with other
methods. This paper is concluded and further work is indicated in Section 8.

2. Basic Definitions

Suppose U is a nonempty and finite set called universe.

Definition 1. (Covering [45,46]) Let U be a universe and C be a family of subsets of U. If none of subsets in C
is empty and ∪C = U, then C is called a covering of U.

The pair (U, C) is called a covering approximation space.

Definition 2. (SVN set [32]) Let U be a nonempty fixed set. A SVN set A in U is defined as an object of the
following form.

A = {〈x, TA(x), IA(x), FA(x)〉 : x ∈ U},

where TA : U → [0, 1] is called the degree of truth-membership of the element x ∈ U to A, IA : U → [0, 1]
is called the degree of indeterminacy-membership of the element x ∈ U to A, FA(x) : U → [0, 1] is called the
degree of falsity-membership. They satisfy 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3 for all x ∈ U. The family of all
SVN sets in U is denoted by SVN(U). For convenience, a SVN number is represented by α = 〈a, b, c〉, where
a, b, c ∈ [0, 1] and a + b + c ≤ 3.

For the inclusion relation of neutrosophic sets, there are two different definitions in the literature.
An original definition is proposed by Smarandache [31,47], we call it type-1 inclusion relation in this
paper, denoted by ⊆1. For set theory, union and intersection operations are corresponding to inclusion
relation. Hence, there are corresponding union and intersection operations defined as follows; for any
A, B ∈ SVN(U),

(1) A ⊆1 B iff TA(x) ≤ TB(x), IB(x) ≤ IA(x) and FB(x) ≤ FA(x) for all x ∈ U;
(2) A ∩1 B = {〈x, TA(x) ∧ TB(x), IA(x) ∨ IB(x), FA(x) ∨ FB(x)〉 : x ∈ U};
(3) A ∪1 B = {〈x, TA(x) ∨ TB(x), IA(x) ∧ IB(x), FA(x) ∧ FB(x)〉 : x ∈ U}.

Specially, for two SVN numbers, α = 〈a, b, c〉 and β = 〈d, e, f 〉 , α ≤1 β⇔ a ≤ d, b ≥ e and c ≥ f .
Under the type-1 inclusion relation, Wang and Zhang [37] presented the definition of SVN

β-covering approximation space.

Definition 3. [37] Let U be a universe and SVN(U) be the SVN power set of U. For a SVN number
β = 〈a, b, c〉, we call Ĉ = {C1, C2, · · · , Cm}, with Ci ∈ SVN(U)(i = 1, 2, ..., m), a SVN β-covering of U,
if for all x ∈ U, Ci ∈ Ĉ exists such that Ci(x) ≥1 β. We also call (U, Ĉ) a SVN β-covering approximation space.

Definition 4. [37] Let Ĉ be a SVN β-covering of U and Ĉ = {C1, C2, . . . , Cm}. For any x ∈ U, the SVN
β-neighborhood Ñβ

x of x induced by Ĉ can be defined as

Ñβ
x = ∩1{Ci ∈ Ĉ : Ci(x) ≥1 β}. (1)

Another one is used in some papers [32,38], we call it type-2 inclusion relation in this paper,
denote it by ⊆2. Hence, the type-2 inclusion relation, corresponding union and intersection operations
are shown as follows; for any A, B ∈ SVN(U),
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(1) A ⊆2 B iff TA(x) ≤ TB(x), IA(x) ≤ IB(x) and FB(x) ≤ FA(x) for all x ∈ U;
(2) A ∩2 B = {〈x, TA(x) ∧ TB(x), IA(x) ∧ IB(x), FA(x) ∨ FB(x)〉 : x ∈ U};
(3) A ∪2 B = {〈x, TA(x) ∨ TB(x), IA(x) ∨ IB(x), FA(x) ∧ FB(x)〉 : x ∈ U}.

Specially, for two SVN numbers α = 〈a, b, c〉 and β = 〈d, e, f 〉 , α ≤2 β⇔ a ≤ d, b ≤ e and c ≥ f .
For the above inclusion relations of neutrosophic sets, the following operations use the same

definition in this paper [32,36].

(4) A = B iff A ⊆1 B and B ⊆1 A, iff A ⊆2 B and B ⊆2 A;
(5) A′ = {〈x, FA(x), 1− IA(x), TA(x)〉 : x ∈ U};
(6) A⊕ B = {〈x, TA(x) + TB(x)− TA(x) · TB(x), IA(x) · IB(x), FA(x) · FB(x)〉 : x ∈ U}.

3. SVN β2-Covering Approximation Space

In this section, the definition of SVN β2-covering approximation space is presented. There are
two basic concepts—SVN β2-covering and SVN β2-neighborhood—in this new approximation space.

Definition 5. Let U be a universe and SVN(U) be the SVN power set of U. For a SVN number β = 〈a, b, c〉,
we call Ĉ = {C1, C2, · · · , Cm}, with Ci ∈ SVN(U)(i = 1, 2, ..., m), a SVN β2-covering of U, if for all x ∈ U,
Ci ∈ Ĉ exists such that Ci(x) ≥2 β. We also call (U, Ĉ) a SVN β2-covering approximation space.

In Definition 5, if Ci(x) ≥2 β is replaced by Ci(x) ≥1 β, then Ĉ = {C1, C2, · · · , Cm} is called a
SVN β-covering of U in [37]. By the definitions of ≥1 and ≥2, we know if Ĉ is a SVN β2-covering of U,
then Ĉ is not necessarily a SVN β-covering. To show the difference between SVN β-covering and SVN
β2-covering, we use the work presented by the authors of [37] in the following example.

Example 1. Let U = {x1, x2, x3, x4, x5}, Ĉ = {C1, C2, C3, C4} and β = 〈0.5, 0.1, 0.8〉. We can see that Ĉ is
a SVN β2-covering of U in Table 1, but it is not a SVN β-covering of U.

Table 1. The tabular representation of Ĉ in [37].

U C1 C2 C3 C4

x1 〈0.7, 0.2, 0.5〉 〈0.6, 0.2, 0.4〉 〈0.4, 0.1, 0.5〉 〈0.1, 0.5, 0.6〉
x2 〈0.5, 0.3, 0.2〉 〈0.5, 0.2, 0.8〉 〈0.4, 0.5, 0.4〉 〈0.6, 0.1, 0.7〉
x3 〈0.4, 0.5, 0.2〉 〈0.2, 0.3, 0.6〉 〈0.5, 0.2, 0.4〉 〈0.6, 0.3, 0.4〉
x4 〈0.6, 0.1, 0.7〉 〈0.4, 0.5, 0.7〉 〈0.3, 0.6, 0.5〉 〈0.5, 0.3, 0.2〉
x5 〈0.3, 0.2, 0.6〉 〈0.7, 0.3, 0.5〉 〈0.6, 0.3, 0.5〉 〈0.8, 0.1, 0.2〉

Conversely, if Ĉ is a SVN β-covering of U, then Ĉ is not necessarily a SVN β2-covering.
In Example 1, suppose β = 〈0.5, 0.3, 0.8〉. Then Ĉ is a SVN β-covering of U, but it is not a SVN
β2-covering of U.

By the definition of SVN β-neighborhood, the notion of SVN β2-neighborhood is presented in the
following definition.

Definition 6. Let Ĉ be a SVN β2-covering of U and Ĉ = {C1, C2, . . . , Cm}. For any x ∈ U, the SVN

β2-neighborhood Ñβ2

x of x induced by Ĉ can be defined as

Ñβ2

x = ∩2{Ci ∈ Ĉ : Ci(x) ≥2 β}. (2)

Note that Ci(x) is a SVN number 〈TCi (x), ICi (x), FCi (x)〉. Hence, Ci(x) ≥2 β means TCi (x) ≥ a,
ICi (x) ≥ b and FCi (x) ≤ c, where SVN number β = 〈a, b, c〉.
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Remark 1. Let Ĉ be a SVN β2-covering of U, β = 〈a, b, c〉 and Ĉ = {C1, C2, . . . , Cm}. For any x ∈ U,

Ñβ2

x = ∩2{Ci ∈ Ĉ : TCi (x) ≥ a, ICi (x) ≥ b, FCi (x) ≤ c}. (3)

Example 2. Let (U, Ĉ) be a SVN β2-covering approximation space in Example 1 and β = 〈0.5, 0.1, 0.8〉. Then

Ñβ2

x1 = C1 ∩2 C2, Ñβ2

x2 = C1 ∩2 C2 ∩2 C4, Ñβ2

x3 = C3 ∩2 C4, Ñβ2

x4 = C1 ∩2 C4, Ñβ2

x5 = C2 ∩2 C3 ∩2 C4.

Hence, all SVN β2-neighborhoods are shown in Table 2:

Table 2. The tabular representation of Ñβ2

xk (k = 1, 2, 3, 4, 5).

Ñβ2

xk x1 x2 x3 x4 x5

Ñβ2

x1 〈0.6, 0.2, 0.5〉 〈0.5, 0.2, 0.8〉 〈0.2, 0.3, 0.6〉 〈0.4, 0.1, 0.7〉 〈0.3, 0.2, 0.6〉
Ñβ2

x2 〈0.1, 0.2, 0.6〉 〈0.5, 0.1, 0.8〉 〈0.2, 0.3, 0.6〉 〈0.4, 0.1, 0.7〉 〈0.3, 0.1, 0.6〉
Ñβ2

x3 〈0.1, 0.1, 0.6〉 〈0.4, 0.1, 0.7〉 〈0.5, 0.2, 0.4〉 〈0.3, 0.3, 0.5〉 〈0.6, 0.1, 0.5〉
Ñβ2

x4 〈0.1, 0.2, 0.6〉 〈0.5, 0.1, 0.7〉 〈0.4, 0.3, 0.4〉 〈0.5, 0.1, 0.7〉 〈0.3, 0.1, 0.6〉
Ñβ2

x5 〈0.1, 0.1, 0.6〉 〈0.4, 0.1, 0.8〉 〈0.2, 0.2, 0.6〉 〈0.3, 0.3, 0.7〉 〈0.6, 0.1, 0.5〉

According to Definitions 3–6, we know that “Let Ĉ be a SVN β2-covering of U. If Ĉ is also a SVN

β-covering of U, then Ñβ2

x and Ñβ
x have no inclusion relations (⊆1 and ⊆2) for all x ∈ U. To explain

this statement, the following example is presented.

Example 3. Let U = {x1, x2, x3, x4, x5}, Ĉ = {C1, C2, C3, C4} and β = 〈0.5, 0.2, 0.8〉, where Ĉ is shown in
Table 1 of Example 1. By Definitions 3 and 5, we know that Ĉ is a SVN β2-covering and also a SVN β-covering
of U. Then

Ñβ2

x1 = C1 ∩2 C2, Ñβ2

x2 = C1 ∩2 C2, Ñβ2

x3 = C3 ∩2 C4, Ñβ2

x4 = C4, Ñβ2

x5 = C2 ∩2 C3.

Ñβ
x1 = C1 ∩1 C2, Ñβ

x2 = C2 ∩1 C4, Ñβ
x3 = C3, Ñβ

x4 = C1, Ñβ
x5 = C4.

Hence, all SVN β2-neighborhoods and SVN β2-neighborhoods are shown in Tables 3, and 4 respectively:
By Tables 3 and 4, we see that for all xk ∈ U (k = 1, 2, 3, 4, 5)

• Ñβ2

xk ⊆1 Ñβ
xk is not established, since Ñβ2

x2 *1 Ñβ
x2 .

• Ñβ
xk ⊆1 Ñβ2

xk is not established, since Ñβ
x3 *1 Ñβ2

x3 .

• Ñβ2

xk ⊆2 Ñβ
xk is not established, since Ñβ2

x4 *2 Ñβ
x4 .

• Ñβ
xk ⊆2 Ñβ2

xk is not established, since Ñβ
x5 *2 Ñβ2

x5 .

Hence, Ñβ2

xk and Ñβ
xk have no inclusion relations (⊆1 and ⊆2) for all xk ∈ U.

In a SVN β2-covering approximation space (U, Ĉ), we present the following properties of the
SVN β2-neighborhood.
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Table 3. The tabular representation of Ñβ2

xk (k = 1, 2, 3, 4, 5).

Ñβ2

xk x1 x2 x3 x4 x5

Ñβ2

x1 〈0.6, 0.2, 0.5〉 〈0.5, 0.2, 0.8〉 〈0.2, 0.3, 0.6〉 〈0.4, 0.1, 0.7〉 〈0.3, 0.2, 0.6〉
Ñβ2

x2 〈0.6, 0.2, 0.5〉 〈0.5, 0.2, 0.8〉 〈0.2, 0.3, 0.6〉 〈0.4, 0.1, 0.7〉 〈0.3, 0.2, 0.6〉
Ñβ2

x3 〈0.1, 0.1, 0.6〉 〈0.4, 0.1, 0.7〉 〈0.5, 0.2, 0.4〉 〈0.3, 0.3, 0.5〉 〈0.6, 0.1, 0.5〉
Ñβ2

x4 〈0.1, 0.5, 0.6〉 〈0.6, 0.1, 0.7〉 〈0.6, 0.3, 0.4〉 〈0.5, 0.3, 0.2〉 〈0.8, 0.1, 0.2〉
Ñβ2

x5 〈0.4, 0.1, 0.5〉 〈0.4, 0.2, 0.8〉 〈0.2, 0.2, 0.6〉 〈0.3, 0.5, 0.7〉 〈0.6, 0.3, 0.5〉

Table 4. The tabular representation of Ñβ
xk (k = 1, 2, 3, 4, 5).

Ñβ
xk x1 x2 x3 x4 x5

Ñβ
x1 〈0.6, 0.2, 0.5〉 〈0.5, 0.3, 0.8〉 〈0.2, 0.5, 0.6〉 〈0.4, 0.5, 0.7〉 〈0.3, 0.3, 0.6〉

Ñβ
x2 〈0.1, 0.5, 0.6〉 〈0.5, 0.2, 0.8〉 〈0.2, 0.3, 0.6〉 〈0.4, 0.5, 0.7〉 〈0.7, 0.3, 0.5〉

Ñβ
x3 〈0.4, 0.1, 0.5〉 〈0.4, 0.5, 0.4〉 〈0.5, 0.2, 0.4〉 〈0.3, 0.6, 0.5〉 〈0.6, 0.3, 0.5〉

Ñβ
x4 〈0.7, 0.2, 0.5〉 〈0.5, 0.3, 0.2〉 〈0.4, 0.5, 0.2〉 〈0.6, 0.1, 0.7〉 〈0.3, 0.2, 0.6〉

Ñβ
x5 〈0.1, 0.5, 0.6〉 〈0.6, 0.1, 0.7〉 〈0.6, 0.3, 0.4〉 〈0.5, 0.3, 0.2〉 〈0.8, 0.1, 0.2〉

Proposition 1. Let Ĉ be a SVN β2-covering of U and Ĉ = {C1, C2, . . . , Cm}. Then Ñβ2

x (x) ≥2 β for each
x ∈ U.

Proof. For any x ∈ U, Ñβ2

x (x) = ( ∩2
Ci(x)≥2β

Ci)(x) ≥2 β.

Proposition 2. Let Ĉ be a SVN β2-covering of U and Ĉ = {C1, C2, . . . , Cm}. For all x, y, z ∈ U, if Ñβ2

x (y) ≥2

β, Ñβ2

y (z) ≥2 β, then Ñβ2

x (z) ≥2 β.

Proof. Let I = {1, 2, · · · , m}. Since Ñβ2

x (y) ≥2 β, for any i ∈ I, if Ci(x) ≥2 β, then Ci(y) ≥2 β.

Since Ñβ2

y (z) ≥2 β, for any i ∈ I, Ci(z) ≥2 β when Ci(y) ≥2 β. Then, for any i ∈ I, Ci(x) ≥2 β implies

Ci(z) ≥2 β. Therefore, Ñβ2

x (z) ≥2 β.

Proposition 3. Let Ĉ be a SVN β2-covering of U and Ĉ = {C1, C2, . . . , Cm}. For two SVN numbers β1, β2,

if β1 ≤2 β2 ≤2 β, then Ñβ2
1

x ⊆2 Ñβ2
2

x for all x ∈ U.

Proof. For all x ∈ U, since β1 ≤2 β2 ≤2 β, {Ci ∈ Ĉ : Ci(x) ≥2 β1} ⊇ {Ci ∈ Ĉ : Ci(x) ≥2 β2}.
Hence, Ñβ2

1
x = ∩2{Ci ∈ Ĉ : Ci(x) ≥2 β1} ⊆2 ∩2{Ci ∈ Ĉ : Ci(x) ≥2 β2} = Ñβ2

2
x for all x ∈ U.

Proposition 4. Let Ĉ be a SVN β2-covering of U. For any x, y ∈ U, Ñβ2

x (y) ≥2 β if and only if Ñβ2

y ⊆2 Ñβ2

x .

Proof. Suppose the SVN number β = 〈a, b, c〉.
(⇒): Since Ñβ2

x (y) ≥2 β,

T
Ñβ2

x
(y) = T ∩2

TCi
(x)≥a

ICi
(x)≥b

FCi
(x)≤c

Ci (y) =
∧

TCi
(x)≥a

ICi
(x)≥b

FCi
(x)≤c

TCi (y) ≥ a, I
Ñβ2

x
(y) = I ∩2

TCi
(x)≥a

ICi
(x)≥b

FCi
(x)≤b

Ci (y) =
∧

TCi
(x)≥a

ICi
(x)≥b

FCi
(x)≤c

ICi (y) ≥ b,

and



Symmetry 2019, 11, 1074 7 of 23

F
Ñβ2

x
(y) = F ∩2

TCi
(x)≥a

ICi
(x)≥b

FCi
(x)≤c

Ci (y) =
∨

TCi
(x)≥a

ICi
(x)≥b

FCi
(x)≤c

FCi (y) ≤ c.

Then,

{Ci ∈ Ĉ : TCi (x) ≥ a, ICi (x) ≥ b, FCi (x) ≤ c} ⊆ {Ci ∈ Ĉ : TCi (y) ≥ a, ICi (y) ≥ b, FCi (y) ≤ c}.

Therefore, for each z ∈ U,

T
Ñβ2

x
(z) =

∧
TCi

(x)≥a

ICi
(x)≥b

FCi
(x)≤c

TCi (z) ≥
∧

TCi
(y)≥a

ICi
(y)≥b

FCi
(y)≤c

TCi (z) = T
Ñβ2

y
(z),

I
Ñβ2

x
(z) =

∧
TCi

(x)≥a

ICi
(x)≥b

FCi
(x)≤c

ICi (z) ≥
∧

TCi
(y)≥a

ICi
(y)≥b

FCi
(y)≤c

ICi (z) = I
Ñβ2

y
(z),

F
Ñβ2

x
(z) =

∨
TCi

(x)≥a

ICi
(x)≥b

FCi
(x)≤c

FCi (z) ≤
∨

TCi
(y)≥a

ICi
(y)≥b

FCi
(y)≤c

FCi (z) = F
Ñβ2

y
(z).

Hence, Ñβ2

y ⊆2 Ñβ2

x .

(⇐): For any x, y ∈ U, since Ñβ2

y ⊆2 Ñβ2

x ,

T
Ñβ2

x
(y) ≥ T

Ñβ2
y
(y) ≥ a, I

Ñβ2
x
(y) ≥ I

Ñβ2
y
(y) ≥ b and F

Ñβ2
x
(y) ≤ F

Ñβ2
y
(y) ≤ c.

Therefore, Ñβ2

x (y) ≥2 β.

4. A Type of SVN Covering Rough Set Model Based on a New Inclusion Relation

In this section, we propose a type of SVN covering rough set model on the basis of the
SVN β2-neighborhoods, which is decided by a type-2 inclusion relation. Then, we investigate
some properties of the new lower and upper SVN covering approximation operators. Finally,
some relationships between this model and some other rough set models are presented.

4.1. Characteristics of the New Type of SVN Covering Rough Set Model Based on the New Inclusion Relation

Definition 7. Let (U, Ĉ) be a SVN β2-covering approximation space. For each A ∈ SVN(U), where A =

{〈x, TA(x), IA(x), FA(x)〉 : x ∈ U}, we define the type-2 SVN covering upper approximation C̃2(A) and
lower approximation C

∼
2(A) of A as

C̃2(A) = {〈x,∨y∈U [T
Ñβ2

x
(y) ∧ TA(y)],∨y∈U [I

Ñβ2
x
(y) ∧ IA(y)],∧y∈U [F

Ñβ2
x
(y) ∨ FA(y)]〉 : x ∈ U},

C
∼

2(A) = {〈x,∧y∈U [F
Ñβ2

x
(y) ∨ TA(y)],∧y∈U [(1− I

Ñβ2
x
(y)) ∨ IA(y)],∨y∈U [T

Ñβ2
x
(y) ∧ FA(y)]〉 : x ∈ U}.

(4)

If C̃2(A) 6= C
∼

2(A), then A is called the type-2 SVN covering rough set.
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Example 4. Let (U, Ĉ) be a SVN β2-covering approximation space in Example 1, β = 〈0.5, 0.1, 0.8〉 and

A = (0.6,0.3,0.5)
x1

+ (0.4,0.5,0.1)
x2

+ (0.3,0.2,0.6)
x3

+ (0.5,0.3,0.4)
x4

+ (0.7,0.2,0.3)
x5

. Then all SVN β2-neighborhoods Ñβ2

xk

(k = 1, 2, 3, 4, 5) are shown in Table 2 of Example 2. By Definition 7, we have

C̃2(A) = {〈x1, 0.6, 0.2, 0.5〉, 〈x2, 0.4, 0.2, 0.6〉, 〈x3, 0.6, 0.3, 0.5〉, 〈x4, 0.5, 0.2, 0.6〉, 〈x5, 0.6, 0.3, 0.5〉},

C
∼

2(A) = {〈x1, 0.6, 0.8, 0.5〉, 〈x2, 0.6, 0.8, 0.4〉, 〈x3, 0.4, 0.7, 0.5〉, 〈x4, 0.4, 0.7, 0.4〉, 〈x5, 0.6, 0.8, 0.3〉}.

Let the SVN universe set be U = {〈x, 1, 1, 0〉 : x ∈ U} and the SVN empty set be ∅ = {〈x, 0, 0, 1〉 :
x ∈ U}, which are decided by the type-2 inclusion relation ⊆2. Some basic properties of the type-2
SVN covering upper and lower approximation operators are presented in the following proposition.

Proposition 5. Let Ĉ be a SVN β2-covering of U. Then the type-2 SVN covering upper and lower
approximation operators in Definition 7 satisfy the following properties for all A, B ∈ SVN(U).

(1) C
∼

2(U) = U, C̃2(∅) = ∅;

(2) C̃2(A′) = (C
∼

2(A))′, C
∼

2(A′) = (C̃2(A))′;

(3) If A ⊆2 B, then C
∼

2(A) ⊆2 C
∼

2(B), C̃2(A) ⊆2 C̃2(B);

(4) C
∼

2(A ∩2 B) = C
∼

2(A) ∩2 C
∼

2(B), C̃2(A ∪2 B) = C̃2(A) ∪2 C̃2(B);

(5) C
∼

2(A ∪2 B) ⊇2 C
∼

2(A) ∪2 C
∼

2(B), C̃2(A ∩2 B) ⊆2 C̃2(A) ∩2 C̃2(B).

Proof.(1) Since the SVN universe set is U = {〈x, 1, 1, 0〉 : x ∈ U} and the SVN empty set is
∅ = {〈x, 0, 0, 1〉 : x ∈ U},

C
∼

2(U) = {〈x,∧y∈U [F
Ñβ2

x
(y) ∨ TU(y)],∧y∈U [(1− I

Ñβ2
x
(y)) ∨ IU(y)],∨y∈U [T

Ñβ2
x
(y) ∧ FU(y)]〉 : x ∈ U}

= {〈x, 1, 1, 0〉 : x ∈ U}

= U,

and

C̃2(∅) = {〈x,∨y∈U [TÑβ2
x
(y) ∧ T∅(y)],∨y∈U [IÑβ2

x
(y) ∧ I∅(y)],∧y∈U [FÑβ2

x
(y) ∨ F∅(y)]〉 : x ∈ U}

= {〈x, 0, 0, 1〉 : x ∈ U}
= ∅;

(2)

C̃2(A′) = {〈x,∨y∈U [T
Ñβ2

x
(y) ∧ TA′ (y)],∨y∈U [I

Ñβ2
x
(y) ∧ IA′ (y)],∧y∈U [F

Ñβ2
x
(y) ∨ FA′ (y)]〉 : x ∈ U}

= {〈x,∨y∈U [T
Ñβ2

x
(y) ∧ FA(y)],∨y∈U [I

Ñβ2
x
(y) ∧ (1− IA(y))],∧y∈U [F

Ñβ2
x
(y) ∨ TA(y)]〉 : x ∈ U}

= (C
∼

2(A))′.

If we replace A by A′ in this proof, we can also prove C
∼

2(A′) = (C̃2(A))′.

(3) Since A ⊆2 B, TA(x) ≤ TB(x), IA(x) ≤ IB(x) and FB(x) ≤ FA(x) for all x ∈ U. Therefore

TC
∼

2(A)(x) = ∧y∈U [FÑβ2
x
(y) ∨ TA(y)] ≤ ∧y∈U [FÑβ2

x
(y) ∨ TB(y)] = TC

∼
2(B)(x),

IC
∼

2(A)(x) = ∧y∈U [(1− I
Ñβ2

x
(y)) ∨ IA(y)] ≤ ∧y∈U [(1− I

Ñβ2
x
(y)) ∨ IB(y)] = IC

∼
2(B)(x),

FC
∼

2(A)(x) = ∨y∈U [TÑβ2
x
(y) ∧ FA(y)] ≥ ∨y∈U [TÑβ2

x
(y) ∧ FB(y)] = FC

∼
2(B)(x).

Hence, C
∼

2(A) ⊆2 C
∼

2(B). In the same way, there is C̃2(A) ⊆2 C̃2(B);
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(4) Since

C
∼

2(A ∩2 B)

= {〈x,∧y∈U [F
Ñβ2

x
(y) ∨ TA∩2B(y)],∧y∈U [(1− I

Ñβ2
x
(y)) ∨ IA∩2B(y)],∨y∈U [T

Ñβ2
x
(y) ∧ FA∩2B(y)]〉 : x ∈ U}

= {〈x,∧y∈U [F
Ñβ2

x
(y) ∨ (TA(y) ∧ TB(y))],∧y∈U [(1− I

Ñβ2
x
(y)) ∨ (IA(y) ∧ IB(y))],∨y∈U [T

Ñβ2
x
(y) ∧ (FA(y)

∨FB(y))]〉 : x ∈ U}

= {〈x,∧y∈U [(F
Ñβ2

x
(y) ∨ TA(y)) ∧ (F

Ñβ2
x
(y) ∨ TB(y))],∧y∈U [((1− I

Ñβ2
x
(y)) ∨ IA(y)) ∧ (1− I

Ñβ2
x
(y))∨

IB(y))],∨y∈U [(T
Ñβ2

x
(y) ∧ FA(y)) ∨ (T

Ñβ2
x
(y) ∧ FB(y))]〉 : x ∈ U}

= C
∼

2(A) ∩2 C∼
2(B).

Similarly, we can obtain C̃2(A ∪2 B) = C̃2(A) ∪2 C̃2(B);
(5) Since A ⊆2 (A ∪2 B), B ⊆2 (A ∪2 B), (A ∩2 B) ⊆2 A and (A ∩2 B) ⊆2 B,

C
∼

2(A) ⊆2 C
∼

2(A ∪2 B), C
∼

2(B) ⊆2 C
∼

2(A ∪2 B), C̃2(A ∩2 B) ⊆2 C̃2(A) and C̃2(A ∩2 B) ⊆2 C̃2(B).

Hence, C
∼

2(A ∪2 B) ⊇2 C
∼

2(A) ∪2 C
∼

2(B), C̃2(A ∩2 B) ⊆2 C̃2(A) ∩2 C̃2(B).

4.2. Relationships between the New Model and Some Other Rough Set Models

In this subsection, we investigate some relationships between the type-2 SVN covering rough set
model and other two SVN rough set models respectively. Among these two SVN rough set models,
one is a SVN covering rough set model and the other is a SVN relation rough set model.

Wang and Zhang [37] presented the type-1 SVN covering rough set model under a SVN β-covering
approximation space, which is related to the type-1 inclusion relation. We consider whether the type-1
SVN covering approximate operators and the type-2 SVN covering approximate operators presented
in Section 4.1 have inclusion relations.

Definition 8. [37] Let (U, Ĉ) be a SVN β-covering approximation space. For each A ∈ SVN(U), where
A = {〈x, TA(x), IA(x), FA(x)〉 : x ∈ U}, we define the type-1 SVN covering upper approximation C̃(A) and
lower approximation C

∼
(A) of A as

C̃(A) = {〈x,∨y∈U [TÑβ
x
(y) ∧ TA(y)],∨y∈U [IÑβ

x
(y) ∧ IA(y)],∧y∈U [FÑβ

x
(y) ∨ FA(y)]〉 : x ∈ U},

C
∼
(A) = {〈x,∧y∈U [FÑβ

x
(y) ∨ TA(y)],∧y∈U [(1− IÑβ

x
(y)) ∨ IA(y)],∨y∈U [TÑβ

x
(y) ∧ FA(y)]〉 : x ∈ U}. (5)

If C̃(A) 6= C
∼
(A), then A is called the type-1 SVN covering rough set.

Let Ĉ be a SVN β2-covering of U and also be a SVN β-covering of U. By Definitions 7 and 9,
we know that the type-1 SVN covering approximate operators (C̃ and C

∼
) and the type-2 SVN covering

approximate operators (C̃2 and C
∼

2) are related to all SVN β-neighborhoods (Ñβ
x , for any x ∈ U) and

SVN β2-neighborhoods (Ñβ2

x , for any x ∈ U), respectively. By Example 3, we know that Ñβ2

x and Ñβ
x

have no inclusion relations (⊆1 and ⊆2) for all x ∈ U. Hence, the type-1 SVN covering approximate
operators and the type-2 SVN covering approximate operators also have no inclusion relations (⊆1

and ⊆2).
In the work by the authors of [36], a SVN relation R on U is defined as R =

{〈(x, y), TR(x, y), IR(x, y), FR(x, y)〉 : (x, y) ∈ U ×U}, where TR : U ×U → [0, 1], IR : U ×U → [0, 1]
and FR : U × U → [0, 1]. If for any x, y ∈ U, TR(x, y) = TR(y, x), IR(x, y) = IR(y, x) and
FR(x, y) = FR(y, x), then R is called a symmetric SVN relation.
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For a SVN β2-covering Ĉ of U, one can use the SVN β2-covering Ĉ induce a SVN relation RĈ on
U as

RĈ = {〈(x, y), TRĈ
(x, y), IRĈ

(x, y), FRĈ
(x, y)〉 : (x, y) ∈ U ×U},

where

TRĈ
(x, y) = T

Ñβ2
x
(y), IRĈ

(x, y) = I
Ñβ2

x
(y), FRĈ

(x, y) = F
Ñβ2

x
(y) for any x, y ∈ U.

The following two propositions present two conditions under which RĈ is a symmetric
SVN relation.

Proposition 6. Let Ĉ be a SVN β2-covering of U, and RĈ be the induced SVN relation on U by Ĉ. If Ñβ2

x (y) =

Ñβ2

y (x) for any x, y ∈ U, then RĈ is a symmetric SVN relation.

Proof. Since Ñβ2

x (y) = Ñβ2

y (x) for any x, y ∈ U, T
Ñβ2

x
(y) = T

Ñβ2
y
(x), I

Ñβ2
x
(y) = I

Ñβ2
y
(x) and F

Ñβ2
x
(y) =

F
Ñβ2

y
(x). Hence, TRĈ

(x, y) = TRĈ
(y, x), IRĈ

(x, y) = IRĈ
(y, x) and FRĈ

(x, y) = FRĈ
(y, x), i.e., RĈ is a

symmetric SVN relation.

Proposition 7. Let Ĉ be a SVN β2-covering of U, RĈ be the induced SVN relation on U by Ĉ, and C ∈ Ĉ.
If |Ĉ| = 1 and C(x) = C(y) for any x, y ∈ U, then RĈ is a symmetric SVN relation, where |Ĉ| denotes the
cardinality of Ĉ.

Proof. Since |Ĉ| = 1, C is the only one element of Ĉ. Since C(x) = C(y) for any x, y ∈ U, Ñβ2

x (y) =

Ñβ2

y (x). Hence, TRĈ
(x, y) = TRĈ

(y, x), IRĈ
(x, y) = IRĈ

(y, x) and FRĈ
(x, y) = FRĈ

(y, x), i.e., RĈ is a
symmetric SVN relation.

Then, the type-2 SVN covering rough set model defined in Section 4.1 can be viewed as a SVN
relation rough set model.

Definition 9. Let Ĉ be a SVN β2-covering of U, and RĈ be the induced SVN relation on U by Ĉ. For any
A ∈ SVN(U), the upper approximation R̃Ĉ(A) and lower approximation R

∼Ĉ
(A) of A are defined as

R̃Ĉ(A) = {〈x,∨y∈U [TRĈ
(x, y) ∧ TA(y)],∨y∈U [IRĈ

(x, y) ∧ IA(y)],∧y∈U [FRĈ
(x, y) ∨ FA(y)]〉 : x ∈ U},

R
∼Ĉ

(A) = {〈x,∧y∈U [FRĈ
(x, y) ∨ TA(y)],∧y∈U [(1− IRĈ

(x, y)) ∨ IA(y)],∨y∈U [TRĈ
(x, y) ∧ FA(y)]〉 : x ∈ U}.

Remark 2. Let Ĉ be a SVN β2-covering of U, and RĈ be the induced SVN relation on U by Ĉ. Then

R̃Ĉ(A) = C̃2(A),

R
∼Ĉ

(A) = C
∼

2(A).

5. Graph Representation of the Type-2 SVN Covering Rough Set Model

In this section, the graph representation of the type-2 SVN covering rough set model is presented.
Firstly, some new graphs and graph operations are presented. Then, we show the graph representation
of the type-2 SVN covering approximation operators defined in Definition 7. The order of elements in
U is given.

A graph is a pair G = (V, E) consisting of a nonempty set V of vertices and a set E of edges such
that E ⊆ U ×U. We shall often write V(G) for V and E(G) for E, particularly when several graphs are
being considered. Two vertices are adjacent if there is an edge with them as ends. A graph G = (V, E)
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is called bipartite if the vertex set V can be divided into two disjoint sets V1 and V2, such that every
edge connects a vertex in V1 to one in V2. One often writesG = (V1 ∪V2, E) to denote a bipartite graph
whose partition has the partite sets V1 and V2. A complete bipartite graph is a simple bipartite graph
such that two vertices are adjacent if and only if they are in different partite sets. A weighted graph is
a graph with numerical labels on the edges.

Firstly, the graph representation of the SVN β2-covering Ĉ is defined in the following definition.

Definition 10. Let Ĉ be a SVN β2-covering of U with U = {x1, x2, · · · , xn} and Ĉ = {C1, C2, · · · , Cm}.
For any A ∈ SVN(U), we define a completely weighted bipartite graph G(A) = (U ∪V, E), named completely
weighted bipartite graph associated with A, where V = {TA, IA, FA}, the weight w(TA, xk) = TA(xk),
w(IA, xk) = IA(xk) and w(FA, xk) = FA(xk) (k = 1, 2, · · · , n). For the SVN β-covering Ĉ, there are m
completely weighted bipartite graphs G(Ci) (i = 1, 2, · · · , m), and all G(Ci) are called the graph representation
of the SVN β2-covering Ĉ.

Example 5. Let (U, Ĉ) be a SVN β2-covering approximation space in Example 1 and β = 〈0.5, 0.1, 0.8〉.
Then G(Ci) (i = 1, 2, 3, 4) are the graph representation of the SVN β2-covering Ĉ. All G(Ci) (i = 1, 2, 3, 4) are
shown in Figures 1 and 2.

x1 x2 x3 x4 x5

TC1
IC1

FC1

0.7 0.2 0.5

0.5

0.3 0.2

0.4

0.5 0.2

0.6

0.1
0.7

0.3

0.2 0.6

(a) G(C1)

x1 x2 x3 x4 x5

TC2
IC2

FC2

0.6 0.2 0.4

0.5

0.2 0.8

0.2

0.3 0.6

0.4

0.5
0.7

0.7

0.3 0.5

(b) G(C2)

Figure 1. G(C1) and G(C2).

x1 x2 x3 x4 x5

TC3
IC3

FC3

0.4 0.1 0.5

0.4

0.5 0.4

0.5

0.2 0.4

0.3

0.6
0.5

0.6

0.3 0.5

(a) G(C3)

x1 x2 x3 x4 x5

TC4
IC4

FC4

0.1 0.5 0.7

0.6

0.1 0.7

0.6

0.3 0.4

0.5

0.3
0.2

0.8

0.1 0.2

(b) G(C4)

Figure 2. G(C3) and G(C4).

An intersection operation about G(A) and G(B) is presented in the following definition, for any
A, B ∈ SVN(U).

Definition 11. Let Ĉ be a SVN β2-covering of U with U = {x1, x2, · · · , xn} and Ĉ = {C1, C2, · · · , Cm}.
For any A, B, D ∈ SVN(U), we define a completely weighted bipartite graph G(D) = G(A) ∩2 G(B)
associated with D, where G(D) = (U ∪ {TD, ID, FD}, E) and

w(TD, xk) = w(TA, xk) ∧ w(TB, xk), w(ID, xk) = w(IA, xk) ∧ w(IA, xk) and
w(FD, xk) = w(FA, xk) ∨ w(FB, xk) (k = 1, 2, · · · , n).

Based on Definition 11 and the definition of A ∩2 B, the relationship between G(A ∩2 B) and
G(A) ∩2 G(B) can be obtained for any A, B ∈ SVN(U).
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Lemma 1. Let Ĉ be a SVN β2-covering of U. Then G(A ∩2 B) = G(A) ∩2 G(B) for any A, B ∈ SVN(U).

Proof. According to the definition of A ∩2 B and Definition 11, it is immediate.

By Definition 6, Ñβ2

xk ∈ SVN(U) for any xk ∈ U. Hence, any G(Ñβ2

xk ) is a completely weighted
bipartite graph, which can be represented in the following proposition.

Proposition 8. Let Ĉ be a SVN β2-covering of U with U = {x1, x2, · · · , xn}, Ĉ = {C1, C2, · · · , Cm} and
β = 〈a, b, c〉. Then

G(Ñβ2

xk ) = ∩2{G(Ci) : w(TCi , xk) ≥ a, w(ICi , xk) ≥ b, w(FCi , xk) ≤ c}.

Proof. By Definitions 6 and 11, and Lemma 1, it is immediate.

Example 6. Let (U, Ĉ) be a SVN β2-covering approximation space in Example 1 and β = 〈0.5, 0.1, 0.8〉.
By Proposition 8, we have

G(Ñβ2

x1 ) = G(C1) ∩2 G(C2), G(Ñβ2

x2 ) = G(C1) ∩2 G(C2) ∩2 G(C4), G(Ñβ2

x3 ) = G(C3) ∩2 G(C4),

G(Ñβ2

x4 ) = G(C1) ∩2 G(C4), G(Ñβ2

x5 ) = G(C2) ∩2 G(C3) ∩2 G(C4).

Then all G(Ñβ2

xk ) are shown in Figures 3, 4, and 5a.

(a) G(Ñβ2

x1 ) (b) G(Ñβ2

x2 )

Figure 3. G(Ñβ2

x1 ) and G(Ñβ2

x2 ).

(a) G(Ñβ2

x3 ) (b) G(Ñβ2

x4 )

Figure 4. G(Ñβ2

x3 ) and G(Ñβ2

x4 ).

Finally, the type-2 SVN covering upper approximation C̃2(A) and lower approximation C
∼

2(A) of

A are represented by graphs.
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(a) G(Ñβ2

x5 ) (b) G(A)

Figure 5. G(Ñβ2

x5 ) and G(A).

Theorem 1. Let Ĉ be a SVN β2-covering of U with U = {x1, x2, · · · , xn}. For each A ∈
SVN(U), G(C̃2(A)) and G(C

∼
2(A)) are completely weighted bipartite graphs, where G(C̃2(A)) = (U ∪

{TC̃2(A), IC̃2(A), FC̃2(A)}, E1), G(C
∼

2(A)) = (U ∪ {TC
∼

2(A), IC
∼

2(A), FC
∼

2(A)}, E2) and the weight of any edge is

listed as follows.

w(TC̃2(A), xk) =
n∨

j=1
[w(T

Ñβ2
xk

, xj) ∧ w(TA, xj)] (1 ≤ k ≤ n),

w(IC̃2(A), xk) =
n∨

j=1
[w(I

Ñβ2
xk

, xj) ∧ w(IA, xj)] (1 ≤ k ≤ n),

w(FC̃2(A), xk) =
n∧

j=1
[w(F

Ñβ2
xk

, xj) ∨ w(FA, xj)] (1 ≤ k ≤ n),

w(TC
∼

2(A), xk) =
n∧

j=1
[w(F

Ñβ2
xk

, xj) ∨ w(TA, xj)] (1 ≤ k ≤ n),

w(IC
∼

2(A), xk) =
n∧

j=1
[(1− w(I

Ñβ2
xk

, xj)) ∨ w(IA, xj)] (1 ≤ k ≤ n),

w(FC
∼

2(A), xk) =
n∨

j=1
[w(T

Ñβ2
xk

, xj) ∧ w(FA, xj)] (1 ≤ k ≤ n).

(6)

Proof. According to Definition 7, we know C̃2(A) ∈ SVN(U) and C
∼

2(A) ∈ SVN(U) for any A ∈

SVN(U). Hence, G(C̃2(A)) and G(C
∼

2(A)) are completely weighted bipartite graphs by Definition 10.

According to Definitions 7 and 10, G(C̃2(A)) = (U ∪ {TC̃2(A), IC̃2(A), FC̃2(A)}, E1), G(C
∼

2(A)) = (U ∪
{TC

∼
2(A), IC

∼
2(A), FC

∼
2(A)}, E2) and the weight of any edge is shown as follows.

w(TC̃2(A)
, xk) = TC̃2(A)

(xk) =
n∨

j=1
[T

Ñβ2
xk

(xj) ∧ TA(xj)] =
n∨

j=1
[w(T

Ñβ2
xk

, xj) ∧ w(TA, xj)] (1 ≤ k ≤ n),

w(IC̃2(A)
, xk) = IC̃2(A)

(xk) =
n∨

j=1
[I
Ñβ2

xk

(xj) ∧ IA(xj)] =
n∨

j=1
[w(I

Ñβ2
xk

, xj) ∧ w(IA, xj)] (1 ≤ k ≤ n),

w(FC̃2(A)
, xk) = FC̃2(A)

(xk) =
n∧

j=1
[F
Ñβ2

xk

(xj) ∨ FA(xj)] =
n∧

j=1
[w(F

Ñβ2
xk

, xj) ∨ w(FA, xj)] (1 ≤ k ≤ n),

w(TC
∼

2(A), xk) = TC
∼

2(A)(xk) =
n∧

j=1
[F
Ñβ2

xk

(xj) ∨ TA(xj)] =
n∧

j=1
[w(F

Ñβ2
xk

, xj) ∨ w(TA, xj)] (1 ≤ k ≤ n),

w(IC
∼

2(A), xk) = IC
∼

2(A)(xk) =
n∧

j=1
[(1− I

Ñβ2
xk

(xj)) ∨ IA(xj)] =
n∧

j=1
[(1− w(I

Ñβ2
xk

, xj)) ∨ w(IA, xj)] (1 ≤ k ≤ n),

w(FC
∼

2(A), xk) = FC
∼

2(A)(xk) =
n∨

j=1
[T

Ñβ2
xk

(xj) ∧ FA(xj)] =
n∨

j=1
[w(T

Ñβ2
xk

, xj) ∧ w(FA, xj)] (1 ≤ k ≤ n).

Example 7. Let (U, Ĉ) be a SVN β2-covering approximation space in Example 1 and β = 〈0.5, 0.1, 0.8〉,
A = (0.6,0.3,0.5)

x1
+ (0.4,0.5,0.1)

x2
+ (0.3,0.2,0.6)

x3
+ (0.5,0.3,0.4)

x4
+ (0.7,0.2,0.3)

x5
. G(A) is shown in Figure 5b. Based on
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Theorem 1 and all G(Ñβ2

xk ) (k = 1, 2, · · · , 5) in Example 6 and G(C̃2(A)) and G(C
∼

2(A)) are obtained in

Figure 6.

(a) G(C̃2(A)) (b) G(C
∼

2(A))

Figure 6. G(C̃2(A)) and G(C
∼

2(A)).

6. Matrix Representation of the Type-2 SVN Covering Rough Set Model

In this section, the matrix representation of the type-2 SVN covering rough set model is
investigated. Firstly, some new matrices and matrix operations are presented. Then, we show the
matrix representation of the type-2 SVN approximation operators defined in Definition 7. The order of
elements in U is given.

Two new matrices about a SVN β2-covering are presented in the following definition.

Definition 12. Let Ĉ be a SVN β2-covering of U with U = {x1, x2, · · · , xn} and Ĉ = {C1, C2, · · · , Cm}.
Then MĈ = (Cj(xi))n×m is named a matrix representation of Ĉ, and Mβ2

Ĉ
= (sij)n×m is called a β2-matrix

representation of Ĉ, where

sij =

{
1, Cj(xi) ≥2 β;
0, otherwise.

Example 8. Let (U, Ĉ) be a SVN β2-covering approximation space in Example 1 and β = 〈0.5, 0.1, 0.8〉. Then

MĈ =


〈0.7, 0.2, 0.5〉 〈0.6, 0.2, 0.4〉 〈0.4, 0.1, 0.5〉 〈0.1, 0.5, 0.6〉
〈0.5, 0.3, 0.2〉 〈0.5, 0.2, 0.8〉 〈0.4, 0.5, 0.4〉 〈0.6, 0.1, 0.7〉
〈0.4, 0.5, 0.2〉 〈0.2, 0.3, 0.6〉 〈0.5, 0.2, 0.4〉 〈0.6, 0.3, 0.4〉
〈0.6, 0.1, 0.7〉 〈0.4, 0.5, 0.7〉 〈0.3, 0.6, 0.5〉 〈0.5, 0.3, 0.2〉
〈0.3, 0.2, 0.6〉 〈0.7, 0.3, 0.5〉 〈0.6, 0.3, 0.5〉 〈0.8, 0.1, 0.2〉

, Mβ2

Ĉ
=


1 1 0 0
1 1 0 1
0 0 1 1
1 0 0 1
0 1 1 1

.

In order to calculate all Ñβ2

x (for any x ∈ U) by matrices, the following operation is presented.

Definition 13. Let A = (aik)n×m and B = (〈b+kj , bkj, b−kj〉)1≤k≤m,1≤j≤l be two matrices. We define D =

A ? B = (〈d+ij , dij, d−ij 〉)1≤i≤n,1≤j≤l , where

〈d+ij , dij, d−ij 〉 = 〈∧
m
k=1[(1− aik) ∨ b+kj ],∧

m
k=1[(1− aik) ∨ bkj], 1−∧m

k=1[(1− aik) ∨ (1− b−kj)]〉. (7)

Based on Definitions 12 and 13, all Ñβ2

x (for any x ∈ U) can be obtained by matrix operations.

Proposition 9. Let Ĉ be a SVN β2-covering of U with U = {x1, x2, · · · , xn} and Ĉ = {C1, C2, · · · , Cm}.
Then

Mβ2

Ĉ
? MT

Ĉ
= (Ñβ2

xi (xj))1≤i≤n,1≤j≤n, (8)

where MT
Ĉ

is the transpose of MĈ
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Proof. Suppose MT
Ĉ

= (Ck(xj))m×n, Mβ2

Ĉ
= (sik)n×m and Mβ2

Ĉ
? MT

Ĉ
= (〈d+ij , dij, d−ij 〉)1≤i≤n,1≤j≤n.

Since Ĉ is a SVN β2-covering of U, for each i (1 ≤ i ≤ n), there exists k (1 ≤ k ≤ m) such that sik = 1.
Then

〈d+ij , dij, d−ij 〉

= 〈∧m
k=1[(1− sik) ∨ TCk (xj)],∧m

k=1[(1− sik) ∨ ICk (xj)], 1−∧m
k=1[(1− sik) ∨ (1− FCk (xj))]〉

= 〈∧sik=1[(1− sik) ∨ TCk (xj)],∧sik=1[(1− sik) ∨ ICk (xj)], 1−∧sik=1[(1− sik) ∨ (1− FCk (xj))]〉

= 〈∧sik=1TCk (xj),∧sik=1 ICk (xj), 1−∧sik=1(1− FCk (xj))〉

= 〈∧Ck(xi)≥2βTCk (xj),∧Ck(xi)≥2β ICk (xj), 1−∧Ck(xi)≥2β(1− FCk (xj))〉

= 〈∧Ck(xi)≥2βTCk (xj),∧Ck(xi)≥2β ICk (xj),∨Ck(xi)≥2β(FCk (xj))〉

= (∩2Ck(xi)≥2β Ck)(xj)

= Ñβ2

xi (xj), 1 ≤ i, j ≤ n.

Hence, Mβ2

Ĉ
? MT

Ĉ
= (Ñβ2

xi (xj))1≤i≤n,1≤j≤n.

Example 9. Let (U, Ĉ) be a SVN β2-covering approximation space in Example 1 and β = 〈0.5, 0.1, 0.8〉.
According to Mβ2

Ĉ
and MT

Ĉ
in Example 8, we have

Mβ2

Ĉ
? MT

Ĉ

=


1 1 0 0
1 1 0 1
0 0 1 1
1 0 0 1
0 1 1 1

 ?


〈0.7, 0.2, 0.5〉 〈0.6, 0.2, 0.4〉 〈0.4, 0.1, 0.5〉 〈0.1, 0.5, 0.6〉
〈0.5, 0.3, 0.2〉 〈0.5, 0.2, 0.8〉 〈0.4, 0.5, 0.4〉 〈0.6, 0.1, 0.7〉
〈0.4, 0.5, 0.2〉 〈0.2, 0.3, 0.6〉 〈0.5, 0.2, 0.4〉 〈0.6, 0.3, 0.4〉
〈0.6, 0.1, 0.7〉 〈0.4, 0.5, 0.7〉 〈0.3, 0.6, 0.5〉 〈0.5, 0.3, 0.2〉
〈0.3, 0.2, 0.6〉 〈0.7, 0.3, 0.5〉 〈0.6, 0.3, 0.5〉 〈0.8, 0.1, 0.2〉


T

=


〈0.6, 0.2, 0.5〉 〈0.5, 0.2, 0.8〉 〈0.2, 0.3, 0.6〉 〈0.4, 0.1, 0.7〉 〈0.3, 0.2, 0.6〉
〈0.1, 0.2, 0.6〉 〈0.5, 0.1, 0.8〉 〈0.2, 0.3, 0.6〉 〈0.4, 0.1, 0.7〉 〈0.3, 0.1, 0.6〉
〈0.1, 0.1, 0.6〉 〈0.4, 0.1, 0.7〉 〈0.5, 0.2, 0.4〉 〈0.3, 0.3, 0.5〉 〈0.6, 0.1, 0.5〉
〈0.1, 0.2, 0.6〉 〈0.5, 0.1, 0.7〉 〈0.4, 0.3, 0.4〉 〈0.5, 0.1, 0.7〉 〈0.3, 0.1, 0.6〉
〈0.1, 0.1, 0.6〉 〈0.4, 0.1, 0.8〉 〈0.2, 0.2, 0.6〉 〈0.3, 0.3, 0.7〉 〈0.6, 0.1, 0.5〉


= (Nβ2

xi (xj))1≤i≤5,1≤j≤5.

There are two operations in the work by the authors of [37], which can be used to calculate C̃2(A)

and C
∼

2(A) (for any A ∈ SVN(U)) by matrices.

Definition 14. [37] Let A = (〈c+ij , cij, c−ij 〉)m×n and B = (〈d+j , dj, d−j 〉)n×1 be two matrices. We define
C = A ◦ B = (〈e+i , ei, e−i 〉)m×1 and D = A � B = (〈 f+i , fi, f−i 〉)m×1, where

〈e+i , ei, e−i 〉 = 〈∨
n
j=1(c

+
ij ∧ d+j ),∨

n
j=1(cij ∧ dj),∧n

j=1(c
−
ij ∨ d−j )〉,

〈 f+i , fi, f−i 〉 = 〈∧
n
j=1(c

−
ij ∨ d+j ),∧

n
j=1[(1− cij) ∨ dj],∨n

j=1(c
+
ij ∧ d−j )〉.

(9)

According to Proposition 9 and Definition 14, the set representations of C̃2(A) and C
∼

2(A)

(for any A ∈ SVN(U)) can be converted to matrix representations. A = (ai)n×1 with
ai = 〈TA(xi), IA(xi), FA(xi)〉 is the vector representation of A. C̃2(A) and C

∼
2(A) are also

vector representations.
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Theorem 2. Let Ĉ be a SVN β2-covering of U with U = {x1, x2, · · · , xn} and Ĉ = {C1, C2, · · · , Cm}.
Then for any A ∈ SVN(U),

C̃2(A) = (Mβ2

Ĉ
? MT

Ĉ
) ◦ A,

C
∼

2(A) = (Mβ2

Ĉ
? MT

Ĉ
) � A.

(10)

Proof. According to Proposition 9, Definitions 7 and 14, for any xi (i = 1, 2, · · · , n),

((Mβ2

Ĉ
? MT

Ĉ
) ◦ A)(xi) = 〈∨n

j=1(TÑβ2
xi

(xj) ∧ TA(xj)),∨n
j=1(I

Ñβ2
xi

(xj) ∧ IA(xj)),∧n
j=1(F

Ñβ2
xi

(xj) ∨ FA(xj))〉

= (C̃2(A))(xi),

and

((Mβ2

Ĉ
? MT

Ĉ
) � A)(xi) = 〈∧n

j=1(F
Ñβ2

xi

(xj) ∨ TA(xj)),∧n
j=1[(1− I

Ñβ2
xi

(xj)) ∨ IA(xj)],∨n
j=1(TÑβ2

xi

(xj) ∧ FA(xj))〉

= (C
∼

2(A))(xi).

Hence, C̃2(A) = (Mβ2

Ĉ
? MT

Ĉ
) ◦ A,C

∼
2(A) = (Mβ2

Ĉ
? MT

Ĉ
) � A.

Example 10. Let (U, Ĉ) be a SVN β2-covering approximation space in Example 1, β = 〈0.5, 0.1, 0.8〉 and
A = (0.6,0.3,0.5)

x1
+ (0.4,0.5,0.1)

x2
+ (0.3,0.2,0.6)

x3
+ (0.5,0.3,0.4)

x4
+ (0.7,0.2,0.3)

x5
. Then

C̃2(A)

= (Mβ2

Ĉ
? MT

Ĉ
) ◦ A

=


〈0.6, 0.2, 0.5〉 〈0.5, 0.2, 0.8〉 〈0.2, 0.3, 0.6〉 〈0.4, 0.1, 0.7〉 〈0.3, 0.2, 0.6〉
〈0.1, 0.2, 0.6〉 〈0.5, 0.1, 0.8〉 〈0.2, 0.3, 0.6〉 〈0.4, 0.1, 0.7〉 〈0.3, 0.1, 0.6〉
〈0.1, 0.1, 0.6〉 〈0.4, 0.1, 0.7〉 〈0.5, 0.2, 0.4〉 〈0.3, 0.3, 0.5〉 〈0.6, 0.1, 0.5〉
〈0.1, 0.2, 0.6〉 〈0.5, 0.1, 0.7〉 〈0.4, 0.3, 0.4〉 〈0.5, 0.1, 0.7〉 〈0.3, 0.1, 0.6〉
〈0.1, 0.1, 0.6〉 〈0.4, 0.1, 0.8〉 〈0.2, 0.2, 0.6〉 〈0.3, 0.3, 0.7〉 〈0.6, 0.1, 0.5〉

 ◦

〈0.6, 0.3, 0.5〉
〈0.4, 0.5, 0.1〉
〈0.3, 0.2, 0.6〉
〈0.5, 0.3, 0.4〉
〈0.7, 0.2, 0.3〉



=


〈0.6, 0.2, 0.5〉
〈0.4, 0.2, 0.6〉
〈0.6, 0.3, 0.5〉
〈0.5, 0.2, 0.6〉
〈0.6, 0.3, 0.5〉

 ,

C
∼

2(A)

= (Mβ2

Ĉ
? MT

Ĉ
) � A

=


〈0.6, 0.2, 0.5〉 〈0.5, 0.2, 0.8〉 〈0.2, 0.3, 0.6〉 〈0.4, 0.1, 0.7〉 〈0.3, 0.2, 0.6〉
〈0.1, 0.2, 0.6〉 〈0.5, 0.1, 0.8〉 〈0.2, 0.3, 0.6〉 〈0.4, 0.1, 0.7〉 〈0.3, 0.1, 0.6〉
〈0.1, 0.1, 0.6〉 〈0.4, 0.1, 0.7〉 〈0.5, 0.2, 0.4〉 〈0.3, 0.3, 0.5〉 〈0.6, 0.1, 0.5〉
〈0.1, 0.2, 0.6〉 〈0.5, 0.1, 0.7〉 〈0.4, 0.3, 0.4〉 〈0.5, 0.1, 0.7〉 〈0.3, 0.1, 0.6〉
〈0.1, 0.1, 0.6〉 〈0.4, 0.1, 0.8〉 〈0.2, 0.2, 0.6〉 〈0.3, 0.3, 0.7〉 〈0.6, 0.1, 0.5〉

 �

〈0.6, 0.3, 0.5〉
〈0.4, 0.5, 0.1〉
〈0.3, 0.2, 0.6〉
〈0.5, 0.3, 0.4〉
〈0.7, 0.2, 0.3〉



=


〈0.6, 0.8, 0.5〉
〈0.6, 0.8, 0.4〉
〈0.4, 0.7, 0.5〉
〈0.4, 0.7, 0.6〉
〈0.6, 0.8, 0.3〉

 .
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7. An Application to DM Problems in Paper Defect Diagnosis

Under the type-2 SVN covering rough set model, we present a novel approach to DM problems
in paper defect diagnosis in this section.

7.1. The Problem of DM in Paper Defect Diagnosis

Let U = {xk : k = 1, 2, · · · , n} be the set of papers and V = {yi|i = 1, 2, · · · , m} be the m main
symptoms (for example, spot, steak, and so on) for a paper defect B. Assume that an inspector R
evaluate every paper xk (k = 1, 2, · · · , n).

Assume that the inspector R believes each paper xk ∈ U (k = 1, 2, · · · , n) has a symptom value
Ci (i = 1, 2, · · · , m) denoted by Ci(xk) = 〈TCi (xk), ICi (xk, FCi (xk)〉, where TCi (xk) ∈ [0, 1] is the degree
that inspector R confirms paper xk has symptom yi, ICi (xk) ∈ [0, 1] is the degree that inspector R is not
sure paper xk has symptom yi, FCi (xk) ∈ [0, 1] is the degree that inspector R confirms paper xk does
not have symptom yi, and TCi (xk) + ICi (xk) + FCi (xk) ≤ 3.

Let β = 〈a, b, c〉 be the critical value. If any paper xk ∈ U, there is at least one symptom yi ∈ V
such that the symptom value Ci for the paper xk is not less than β (i.e., Ci(xk) ≥2 β), respectively,
then Ĉ = {C1, C2, · · · , Cm} is a SVN β2-covering of U for some SVN number β.

If d is a possible degree, e is an indeterminacy degree and f is an impossible degree of the paper
defect B of every paper xk ∈ U that is diagnosed by the inspector R, denoted by A(xk) = 〈d, e, f 〉,
then the decision maker (the inspector R) for the DM problem needs to know how to evaluate whether
the papers xk ∈ U have the paper defect B or not.

7.2. The DM Algorithm

In this subsection, we give an approach for the problem of DM with the above characterizations
using the type-2 SVN covering rough set model. According to the characterizations of the DM problem
in Section 7.1, we construct the SVN decision information system and present the Algorithm 1 of DM
under the framework of the type-2 SVN covering rough set model.

Algorithm 1 The DM algorithm under the type-2 SVN covering rough set model

Input: SVN decision information system (U, Ĉ, β, A).
Output: The score ordering for all alternatives.

• Step 1: Compute the SVN β2-neighborhood Ñβ2

x of x induced by Ĉ, for all x ∈ U according to
Definition 6;

• Step 2: Compute the SVN covering upper approximation C̃2(A) and lower approximation C
∼

2(A)

of A, according to Definition 7;
• Step 3: Compute R̃2

A = C̃2(A)⊕C
∼

2(A);

• Step 4: Compute

s(x) =
TR̃2

A
(x)√

(TR̃2
A
(x))2+(IR̃2

A
(x))2+(FR̃2

A
(x))2

;

• Step 5: Rank all the alternatives s(x) by using the principle of numerical size and select the paper
that is more likely to be sick with the paper defect B.

According to the above process, we can get the DM according to the ranking. In Step 4, S(x) is the
cosine similarity measure between R̃A(x) and the ideal solution (1, 0, 0), which is proposed by Ye [44].
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7.3. An Applied Example

Example 11. Assume that U = {x1, x2, x3, x4, x5} is a set of papers. According to the paper defects’ symptoms,
we write V = {y1, y2, y3, y4} to be four main symptoms (spot, steak, crater, and fracture) for a paper defect B.
Assume that the inspector R evaluates every paper xk (k = 1, 2, · · · , 5) as shown in Table 1.

Let β = 〈0.5, 0.1, 0.8〉 be the critical value. Then, Ĉ = {C1, C2, C3, C4} is a SVN β2-coverings of U.
Assume that the inspector R diagnosed the value A = (0.6,0.3,0.5)

x1
+ (0.4,0.5,0.1)

x2
+ (0.3,0.2,0.6)

x3
+ (0.5,0.3,0.4)

x4
+

(0.7,0.2,0.3)
x5

of the paper defect B of every paper.

Step 1: Ñβ2

xk (k = 1, 2, 3, 4, 5) are shown in Table 2.
Step 2:

C̃2(A) = {〈x1, 0.6, 0.2, 0.5〉, 〈x2, 0.4, 0.2, 0.6〉, 〈x3, 0.6, 0.3, 0.5〉, 〈x4, 0.5, 0.2, 0.6〉, 〈x5, 0.6, 0.3, 0.5〉},

C
∼

2(A) = {〈x1, 0.6, 0.8, 0.5〉, 〈x2, 0.6, 0.8, 0.4〉, 〈x3, 0.4, 0.7, 0.5〉, 〈x4, 0.4, 0.7, 0.4〉, 〈x5, 0.6, 0.8, 0.3〉}.

Step 3:

R̃2
A

= C̃2(A)⊕C
∼

2(A)

= {〈x1, 0.84, 0.16, 0.25〉, 〈x2, 0.76, 0.16, 0.24〉, 〈x3, 0.76, 0.21, 0.25〉, 〈x4, 0.70, 0.14, 0.24〉, 〈x5, 0.84, 0.24, 0.15〉}.

Step 4: We can obtain s(xk) (k = 1, 2, · · · , 5) in Table 5.
Step 5: According to the principle of numerical size, we have

x3 < x4 < x2 < x1 < x5.

Therefore, the inspector R diagnoses the paper x5 as more likely to be sick with the paper defect B.

Table 5. s(xk) (k = 1, 2, · · · , 5).

U x1 x2 x3 x4 x5

s(xk ) 0.943 0.935 0.919 0.929 0.948

7.4. A Comparison Analysis

To validate the feasibility of the proposed DM method, a comparative study is conducted with
other methods. These methods which were introduced in Liu [43], Ye [44], Yang et al. [36], and
Wang et al. [37] are compared with the proposed approach using SVN information system.

Because Table 1 is the same as in the work by the authors of [37] and the counting processes of the
methods presented by Liu [43], Ye [44], Yang et al. [36], and Wang et al. [37], are shown in the work
by the authors of [37], so we do not show these counting processes in this paper. For Example 11,
the results of them are calculated as follows.

• In Liu’s method, we suppose the weight vector of the criteria is w = (0.35, 0.25, 0.3, 0.1) and γ = 1.
Hence, we get

s(n1) = 0.735, s(n2) = 0.706, s(n3) = 0.660, s(n4) = 0.596, s(n5) = 0.734.

According to the cosine similarity degrees s(nk) (k = 1, 2, · · · , 5), we obtain

x4 < x3 < x2 < x5 < x1.

• In Ye’s method, we suppose the weight vector of the criteria is w = (0.35, 0.25, 0.3, 0.1). Then
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W1(x1, A∗) = 0.677, W2(x2, A∗) = 0.608, W3(x3, A∗) = 0.580, W4(x4, A∗) = 0.511,
W5(x5, A∗) = 0.666.

According to all s(nxk , n∗) (k = 1, 2, · · · , 5), we obtain

x4 < x3 < x2 < x5 < x1.

• In Yang’s method, we suppose paper defect B ∈ SVN(V) and B = (0.3,0.6,0.5)
y1

+ (0.7,0.2,0.1)
y2

+
(0.6,0.4,0.3)

y3
+ (0.8,0.4,0.5)

y4
. Let n∗ = 〈1, 0, 0〉. We get

R̃(B) = {〈x1, 0.6, 0.2, 0.4〉, 〈x2, 0.6, 0.2, 0.4〉, 〈x3, 0.6, 0.3, 0.4〉, 〈x4, 0.5, 0.4, 0.5〉, 〈x5, 0.8, 0.3, 0.5〉},

R̃(B) = {〈x1, 0.5, 0.6, 0.5〉, 〈x2, 0.3, 0.6, 0.5〉, 〈x3, 0.3, 0.5, 0.5〉, 〈x4, 0.6, 0.6, 0.5〉, 〈x5, 0.6, 0.6, 0.5〉}.

Then,

s(nx1 , n∗) = 0.960, s(nx2 , n∗) = 0.951, s(nx3 , n∗) = 0.945, s(nx4 , n∗) = 0.918, s(nx5 , n∗) = 0.948.

According to all s(nxk , n∗) (k = 1, 2, · · · , 5), we obtain

x4 < x3 < x5 < x2 < x1.

• In Wang’s method, we do not use β = 〈0.5, 0.1, 0.8〉 in Example 11, and the reason is explained
later. We suppose β′ = 〈0.5, 0.3, 0.8〉 in Wang’s method. Then

C̃(A) = {〈x1, 0.6, 0.3, 0.5〉, 〈x2, 0.4, 0.3, 0.6〉, 〈x3, 0.6, 0.5, 0.5〉, 〈x4, 0.5, 0.3, 0.6〉, 〈x5, 0.6, 0.5, 0.5〉},

C
∼
(A) = {〈x1, 0.6, 0.5, 0.5〉, 〈x2, 0.6, 0.5, 0.4〉, 〈x3, 0.4, 0.4, 0.5〉, 〈x4, 0.4, 0.5, 0.4〉, 〈x5, 0.6, 0.4, 0.3〉}.

Hence,

s(x1) = 0.945, s(x2) = 0.937, s(x3) = 0.922, s(x4) = 0.909, s(x5) = 0.958.

According to all s(xk) (k = 1, 2, · · · , 5), we obtain

x4 < x3 < x2 < x1 < x5.

All results are shown in Table 6 and Figure 7.
Liu [43] and Ye [44] presented the methods by SVN theory. The method developed by Liu [43]

is based on the Hammer SVN number aggregation (HSVNNWA) operator, the ranking order willed
be changed by different w and γ. The parameter γ can be regarded as an attitude of the decision
maker’s preferences. For Example 11, we set the weight vector of the criteria is w = (0.35, 0.25, 0.3, 0.1)
and γ = 1, then we obtain x4 < x3 < x2 < x5 < x1. The method developed by Ye [44] is based on
the weighted correlation coefficient Wk(xk, A∗) or the weighted cosine similarity measure Mk(xk, A∗),
where A∗ is the ideal alternative. We can get two ranking orders of xk (k = 1, 2, 3, 4, 5) by the values
of Wk(xk, A∗) and Mk(xk, A∗), respectively. Then, we find that these two kinds of ranking orders are
the same. Hence, we only show Wk(xk, A∗) in this paper. In Table 6 and Figure 7, there are the same
ranking results of their methods.
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Table 6. The results utilizing the different methods of Example 11.

Methods The Final Ranking The Paper Is Most Sick With the Paper Defect B

Liu [43] x4 < x3 < x2 < x5 < x1 x1
Ye [44] x4 < x3 < x2 < x5 < x1 x1
Yang et al. [36] x4 < x3 < x5 < x2 < x1 x1
Wang et al. [37] x4 < x3 < x2 < x1 < x5 x5
This paper x3 < x4 < x2 < x1 < x5 x5

x1

0.2

0.4

0.6

0.8

1.0

x2 x3 x4 x5 U

y
Liu YangYe This paperWang

Figure 7. The chat of different values of patient in utilizing different methods in Example 11.

Yang et al. [36] and Wang et al. [37] used different SVN rough set models to make a decision.
The method presented by Yang et al. [36] is based on a SVN relation rough set model on two-universes.
That is to say, the DM problems with SVN information can be dealt with by Yang’s method when it
induces a SVN relation on two-universes. In Example 11, we obtain a SVN relation on two universes
from Table 1. The method presented by Wang et al. [37] based on the type-1 SVN covering rough set
model. That is to say, the DM problems with SVN information can be dealt with by Wang’s method
when it can induce a SVN β-covering. In Example 11, we suppose β = 〈0.5, 0.1, 0.8〉. However, Ĉ is
not a SVN β-covering of U when β = 〈0.5, 0.1, 0.8〉. Hence, the method presented by Wang et al. can
not be used in Example 11 when β = 〈0.5, 0.1, 0.8〉. Let’s re-assume β′ = 〈0.5, 0.3, 0.8〉. Then Ĉ is a
SVN β′-covering of U. Hence, the method presented by Wang et al. can be used in Example 11 when
β′ = 〈0.5, 0.3, 0.8〉.

In this paper, we present the type-2 SVN covering rough set model based on SVN β2-coverings.
Under the type-2 SVN covering rough set model, a novel method for DM problems with SVN
information is presented. The contributions of our proposed method are summarized as follows.

(1) The DM problems with SVN information can be dealt with by our proposed method when it
can induce a SVN β2-covering. The method presented by Wang et al. [37] can not be used in
Example 11 when β = 〈0.5, 0.1, 0.8〉. But our proposed method can deal with Example 11 when
β = 〈0.5, 0.1, 0.8〉. Hence, our proposed method complements Wang’s.

(2) It is a new viewpoint to use SVN sets and rough sets in paper defect diagnosis.

Using different methods, the obtained results may be different. To achieve the most accurate
results, further diagnosis is necessary for combination with other hybrid methods.
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8. Conclusions

This paper investigates a new type of SVN covering rough set model, which can be seen as a new
bridge linking SVN sets and covering-based rough sets. Comparing the existing literatures [36,37,48,49],
the main contributions of this paper are concluded as follows.

(1) By introducing some definitions and properties in SVN β2-covering approximation spaces,
we present the type-2 SVN covering rough set model based on the type-2 inclusion relation.
The existing literatures [36,37,48,49] used the type-1 inclusion relation to study the combination
of SVN sets and rough sets. Hence, this paper presents a new and interesting viewpoint to study
the combination of SVN sets and rough sets.

(2) It would be tedious and complicated to use set representation to calculate the new SVN covering
approximation operators. Therefore, the graph and matrix representations of these new SVN
covering approximation operators make it possible to calculate them. We are the first to study
the equivalent representation of the SVN rough set model by graph theory. By these graph and
matrix representations, calculations will become algorithmic and can be easily implemented
by computers.

(3) Paper defect diagnosis is important in paper making industries. We propose a method to paper
defect diagnosis under the type-2 SVN covering rough set model. The proposed DM method
is compared with other methods which are presented by Liu [43], Ye [44], Yang et al. [36], and
Wang et al. [37], respectively.

Further study will be deserved by the following research topics. On the one hand, the type-2
inclusion relation or graph theory can be considered into other SVN rough set models [34,36,48,49] in
future research. On the other hand, neutrosophic sets and related algebraic structures [50–55] will be
connected with the research content of this paper in further research.
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