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Abstract

In this paper, we introduce the concepts of Pythagorean fuzzy valued neutrosophic set (PFVNS) and Pythagorean
fuzzy valued neutrosophic (PFVNV) constructed by considering Pythagorean fuzzy values (PFVs) instead of
numbers for the degrees of the truth, the indeterminacy and the falsity, which is a new extension of intuitionis-
tic fuzzy valued neutrosophic set (IFVNS). By means of PFVNSs, the degrees of the truth, the indeterminacy
and the falsity can be given in Pythagorean fuzzy environment and more sensitive evaluations are made by a
decision maker in decision making problems compared to IFVNSs. In other words, such sets enable a decision
maker to evaluate the degrees of the truth, the indeterminacy and the falsity as PFVs to model the uncertainty
in the evaluations. First of all, we propose the concepts of Pythagorean fuzzy t-norm and t-conorm and show
that some Pythagorean fuzzy t-norms and t-conorms are expressed via ordinary continuous Archimedean t-
norms and t-conorms. Then we define the concepts of PFVNS and PFVNV and provide a tool to construct
a PFVNV from an ordinary neutrosophic fuzzy value. We also define some set theoretic operations between
PFVNSs and some algebraic operations between PFVNVs via t-norms and t-conorms. With the help of these
algebraic operations we propose some weighted aggregation operators. To measure discrimination informa-
tion of PFVNVs, we define a simplified neutrosophic valued modified fuzzy cross-entropy measure. Moreover,
we introduce a multi-criteria decision making method in Pythagorean fuzzy valued neutrosophic environment
and practice the proposed theory to a real life multi-criteria decision making problem. Finally, we study the
comparison analysis and the time complexity of the proposed method.

Keywords: Pythagorean fuzzy valued neutrosophic set; aggregation operators; multi-criteria decision making

1 Introduction

Zadeh42 introduced the concept of fuzzy set (FS) defined by a membership function µA from a universal
set X to closed unit interval [0, 1] in order to handle the uncertainty in various real-world problems. Then
using a membership function µA : X → [0, 1] and a non-membership function νA : X → [0, 1] under
the condition µA(x) + νA(x) ≤ 1 for x ∈ X , Atanassov2 proposed the concept of intuitionistic fuzzy set
(IFS) which is an extension of the concept of FS. The pair ⟨µA(x), νA(x)⟩ is called an intuitionistic fuzzy
value (IFV) for a fixed x ∈ X . The theory of IFS has been used to solve problems in many applications
as multi-criteria decision making (MCDM), classification, pattern recognition and clustering and it has been
studied in many areas by researchers. The concepts of entropy and cross-entropy are important measurement
methods used in the information theory and these concepts were proposed by Shannon.23, 24 Then the concept
of cross-entropy was improved by Kullback and Leibler13, 14 and it was modified by Lin.15 In order to measure
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Figure 1: The development of theory of neutrosophic set

discrimination information between IFSs, Wei and Ye31 introduced an improved intuitionistic fuzzy cross-
entropy to overcome the drawback of intuitionistic fuzzy cross-entropy given by Vlachos and Sergiadis.30 The
concept of aggregation operator that transforms several input values into a single output value is an important
tool in the decision making theory. A series of aggregation operators have been proposed by many researchers.
Particularly, various generalizations of aggregation operators for IFSs (see e.g.3, 7) were defined via several
types of t-norms and t-conorms on [0, 1]. Further studies on MCDM with FSs and aggregation operators can
be found in.1, 9, 17, 27, 29, 39–41

As a generalization of IFS, the concept of Pythagorean fuzzy set (PFS) was developed by Yager,33, 34 which is
defined by a membership function µA : X → [0, 1] and a non-membership function νA : X → [0, 1] under the
condition µ2

A(x) + ν2A(x) ≤ 1 for x ∈ X . A PFS is more capable than an IFS to express uncertainty. In other
words, PFSs enhance flexibility and practicability of IFSs and have wider area than IFSs while describing
the uncertainty. Therefore theory of PFS has been studied by many researchers to model the uncertainty.
Later Yager34, 35 proposed a range of aggregation operators for PFSs. After that, Peng et. al.20 presented the
axiomatic definitions of distance measure, similarity measure, entropy and inclusion measure for PFSs.

Smarandache26 introduced the concept of neutrosophic set (NS) where each element has the degrees of truth,
indeterminacy and falsify in the non-standard unit interval. There is no restriction on the membership functions
for NSs. Due to the difficulty of applying neutrosophic sets to practical problems, the concept of simplified
neutrosophic sets (SNSs) was proposed by Ye.37 A SNS is constructed by a truth, an indeterminacy and a
falsify membership function defined from X to [0, 1]. It has been used in various numerical applications.
Moreover, the concept of single valued neutrosophic multi-set (SVNMS) that is characterized by sequences of
truth, indeterminacy and falsify membership functions has been proposed by Ye and Ye.36

Schweizer and Sklar21 introduced the concept of triangular norm (t-norm) and triangular conorm (t-conorm),
following the concept of probabilistic metric spaces proposed by Menger,16 which is a generalization of met-
ric spaces. These notions are useful tools to define algebraic operations and aggregation operators for FSs.
Deschrijver et. al.6 proposed the concepts of intuitionistic fuzzy t-norm and intuitionistic fuzzy t-conorm,
which are extensions of the concepts of t-norm and t-conorm, respectively, by turning into interval [0, 1] to
{(x1, x2) : x1, x2 ∈ [0, 1] and x1 + x2 ≤ 1}. In this paper, we introduce the concepts of Pythagorean fuzzy
t-norm and Pythagorean fuzzy t-conorm which are extensions of notions of both ordinary and intuitionistic
fuzzy t-norm and t-conorm, respectively. Ünver et. al.28 proposed the concept of intuitionistic fuzzy val-
ued neutrosophic multi-set (IFVNMS) by combining NS theory and IFS theory with the help of intuitionistic
fuzzy values instead of numbers in membership sequences. Motivating from this idea, we propose the con-
cepts of Pythagorean fuzzy valued neutrosophic set (PFVNS) and Pythagorean fuzzy valued neutrosophic
value (PFVNV) by combining NS theory and PFS theory. A PFVNV consists of a triple of Pythagorean fuzzy
values (PFVs) and a PFVNS consists of PFVNVs. Then we develop a method to transform fuzzy values and
give some set theoretic and algebraic operations with the help of Pythagorean fuzzy t-norms and t-conorms.
By using these algebraic operations we define some weighted arithmetic and geometric aggregation operators.

Entropy is a useful tool for measuring uncertain information. The concept of fuzzy entropy was introduced by
Zadeh.43 Later, a fuzzy cross-entropy measure and a symmetric discrimination information measure between
FSs were proposed by Shang and Jiang.22 Wei and Ye31 defined a modified intuitionistic fuzzy cross-entropy
measure between IFSs. With similar motivation, we introduce a simplified neutrosophic valued modified fuzzy
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cross-entropy for PFVNVs. Finally, using these concepts we provide a MCDM method in the Pythagorean
fuzzy valued neutrosophic environment.

Some main contributions of the present study can be listed as follows:

• With the help of Pythagorean fuzzy t-norms and t-conorms we study in the fuzzy environment while
conducting the aggregation process in decision making problems rather than defuzzified environment
that provides us with more sensitive solutions.

• By means of PFVNSs, the degrees of the truth, the indeterminacy and the falsity can be given in the
Pythagorean fuzzy environment and more sensitive evaluations are made by decision makers in real
life problems. In other words, such sets enable a decision maker evaluate the degrees of the truth, the
indeterminacy and the falsity as PFVs in decision making process. Thus, the uncertainty in the decision
maker’s evaluations is represented with the help of more capable FS notion.

• The proposed cross-entropy measure measures the discrimination of the information between PFVNVs
in a fuzzy environment. Thus more sensitive evaluations can be made in decision making problems
before defuzzifying the environment.

The rest of the paper is organized as follows. In Section 2, we introduce the concepts of Pythagorean fuzzy t-
norm and t-conorm and show that some Pythagorean fuzzy t-norms and t-conorms are expressed via ordinary
continuous Archimedean t-norms and t-conorms. In Section 3, we introduce the concept of PFVNS, which
is an extension of the notion of intuitionistic fuzzy valued neutrosophic set (IFVNS) where an IFVNS is
an IFVNMS with sequence length 1. Then we develop a method to transform simplified neutrosophic values
(SNVs) to PFVNVs. We also give some set theoretical and algebraic operations via Pythagorean fuzzy t-norms
and t-conorms for PFVNVs. In Section 4 we define some weighted aggregation operators using these algebraic
operations. In Section 5, motivating by the modified intuitionistic fuzzy cross-entropy measure defined by Wei
and Ye,31 we give a simplified neutrosophic valued modified fuzzy cross-entropy. In Section 6, we propose
a MCDM method and apply the proposed theory to a MCDM problem from the literature. We also compare
the results of the proposed method with the existing results. Finally, we calculate the time complexity of the
MCDM method. In Section 7, we conclude the paper.

2 Pythagorean Fuzzy t-norms and t-conorms

In this section, we recall some fundamental definitions about t-norms and t-conorms and define the concepts
of Pythagorean fuzzy t-norm and t-conorm.

Definition 2.1. 10, 21 A t-norm is a function T : [0, 1]× [0, 1] → [0, 1] that satisfies the following conditions:

(T1) T (x, 1) = x for all x ∈ [0, 1],

(T2) T (x, y) = T (y, x) for all x, y ∈ [0, 1],

(T3) T (x, T (y, z)) = T (T (x, y), z) for all x, y, z ∈ [0, 1],

(T4) T (x, y) ≤ T (x′, y′) whenever x ≤ x′ and y ≤ y′.

Definition 2.2. 10, 21 A t-conorm is a function S : [0, 1]× [0, 1] → [0, 1] that satisfies the following conditions:

(S1) S(x, 0) = x for all x ∈ [0, 1],

(S2) S(x, y) = S(y, x) for all x, y ∈ [0, 1],

(S3) S(x, S(y, z)) = S(S(x, y), z) for all x, y, z ∈ [0, 1],

(S4) S(x, y) ≤ S(x′, y′) whenever x ≤ x′ and y ≤ y′.
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Definition 2.3. 33, 34 A fuzzy complement is a function N : [0, 1] → [0, 1] satisfying the following conditions:

(N1) N(0) = 1 and N(1) = 0,

(N2) N(a) ≥ N(b) whenever a ≤ b for all a, b ∈ [0, 1],

(N3) Continuity,

(N4) N(N(a)) = a for all a ∈ [0, 1].

The function N : [0, 1] → [0, 1] defined by N(a) = (1 − ap)1/p where p ∈ (0,∞) is a fuzzy complement
introduced by Yager.33, 34 When p = 2, N(a) =

√
1− a2 is called the Pythagorean fuzzy complement.

Definition 2.4. 12 Let T be a t-norm and let S be a t-conorm on [0, 1]. If T (x, y) = N(S(N(x), N(y))) and
S(x, y) = N(T (N(x), N(y))) for a fuzzy negator N , then T and S are said to be dual with respect to N .

Remark 2.5. Let T be a t-norm on [0, 1] and let N(a) =
√
1− a2. Then the dual t-conorm S with respect to

N is
S(x, y) =

√
1− T 2

(√
1− x2,

√
1− y2

)
.

A strictly decreasing function g : [0, 1] → [0,∞] with g(1) = 0 is called the additive generator of a t-norm T
if we have T (x, y) = g−1(g(x) + g(y)) for all (x, y) ∈ [0, 1]× [0, 1].

Proposition 2.6. 12 Let g : [0, 1] → [0,∞] be the additive generator of a t-norm T , let S be the dual t-
conorm of T and let N be a fuzzy complement. The strictly increasing function h : [0, 1] → [0,∞] defined by
h(t) = g(N(t)) is the additive generator of S and so S (x, y) = h−1 (h (x) + h (y)).

Note that T is an Archimedean t-norm if and only if T (x, x) < x for all x ∈ (0, 1) and S is an Archimedean
t-conorm if and only if S(x, x) > x for all x ∈ (0, 1).10 Klement and Mesiar11 proved that continuous
Archimedean t-norms have useful representations via their additive generators as follows.

Theorem 2.7. 11 Let T be a t-norm on [0, 1]. The following are equivalent:
(i) T is a continuous Archimedean t-norm.
(ii) T has a continuous additive generator.

Before introducing the concepts of Pythagorean fuzzy t-norm and t-conorm we recall the concept of PFS.
Throughout this paper we assume X = {x1, ..., xn} is a finite set.

Definition 2.8. 33, 34 A PFS A on X is defined by

A = {⟨xj , µA(xj), νA(xj)⟩ : j = 1, ..., n}

where µA, νA : X → [0, 1] are the membership and non-membership functions respectively with condition
that µ2

A(xj) + ν2A(xj) ≤ 1 for any j = 1, ..., n. For a fixed j = 1, ..., n a PFV is denoted by

α = ⟨µα, να⟩ = ⟨µA(xj), νA(xj)⟩.

Motivating by6 we now introduce the notions of Pythagorean fuzzy t-norm and Pythagorean fuzzy t-conorm.
Consider the set P ∗ defined by

P ∗ = {x = (x1, x2) : x1, x2 ∈ [0, 1] and x2
1 + x2

2 ≤ 1}.

We use the partial order ⪯ on P ∗ that is defined by

x ⪯ y ⇔ x1 ≤ y1 and x2 ≥ y2

for x = (x1, x2), y = (y1, y2) ∈ P ∗.
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Definition 2.9. A Pythagorean fuzzy t-norm is a function T : P ∗ × P ∗ → P ∗ that satisfies the following
conditions for any x = (x1, x2), y = (y1, y2), z = (z1, z2) ∈ P ∗.

(PT1) T (x, (1, 0)) = x for all x ∈ P ∗,

(PT2) T (x, y) = T (y, x) for all x, y ∈ P ∗,

(PT3) T (x, T (y, z)) = T (y, T (x, z)) for all x, y, z ∈ P ∗,

(PT4) T (x, y) ⪯ T (x′, y′) whenever x ⪯ x′ and y ⪯ y′.

Definition 2.10. A Pythagorean fuzzy t-conorm is a function S : P ∗ × P ∗ → P ∗ that satisfies the following
conditions for any x = (x1, x2), y = (y1, y2), z = (z1, z2) ∈ P ∗.

(PS1) S(x, (0, 1)) = x for all x ∈ P ∗,

(PS2) S(x, y) = S(y, x) for all x, y ∈ P ∗,

(PS3) S(x,S(y, z)) = S(y,S(x, z)) for all x, y, z ∈ P ∗,

(PS4) S(x, y) ⪯ S(x′, y′) whenever x ⪯ x′ and y ⪯ y′.

We define the concept of Pythagorean fuzzy negator as an extension of the notion of fuzzy negator.

Definition 2.11. A Pythagorean fuzzy negator is a function N : P ∗ → P ∗ satisfying the following conditions:

(PN1) N ((1, 0)) = (0, 1) and N ((0, 1)) = (1, 0),

(PN2) N (x) ⪰ N (y) whenever x ⪯ y.

If N (N (x)) = x for all x ∈ P ∗, then we call N involutive. The mapping Ns : P ∗ → P ∗ given by
Ns((x1, x2)) = (x2, x1) is an involutive Pythagorean fuzzy negator which is called the standard negator.

Following theorem shows that a Pythagorean fuzzy t-conorm can be obtained from a Pythagorean fuzzy t-norm
via Pythagorean fuzzy negators.

Theorem 2.12. Let T be a Pythagorean fuzzy t-norm and let N be an involutive Pythagorean fuzzy negator.
The function S defined by S(x, y) = N (T (N (x),N (y))) for any x, y ∈ P ∗ is a t-conorm.

Proof. (PS1) For all x = (x1, x2) ∈ P ∗ we get

S
(
x, (0, 1)

)
= N (T (N (x1, x2),N (0, 1)))

= N (T (N (x1, x2), (1, 0)))

= N (N (x1, x2))

= x.

(PS2) For all x, y ∈ P ∗ we obtain

S(x, y) = N
(
T (N (x),N (y))

)
= N

(
T (N (y),N (x))

)
= S(y, x).
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(PS3) For all x, y, z ∈ P ∗ we have

S(x,S(y, z)) = S
(
x,N (T (N (y),N (z))

)
= N

(
T (N (x),N

(
N (T (N (y),N (z)

))
= N

(
T (N (x), (T (N (y),N (z))

)
= N

(
T (N (y), (T (N (x),N (z))

)
= N

(
T (N (y),N

(
N (T (N (x),N (z)

))
= S

(
y,N (T (N (x),N (z))

)
= S(y,S(x, z)).

(PS4) For all x, x′, y, y′ ∈ P ∗ we have

x ⪯ x′ and y ⪯ y′ ⇒ N (x) ⪰ N (x′) and N (y) ⪰ N (y′)

⇒ T
(
N (x),N (y)

)
⪰ T

(
N (x′),N (y′)

)
⇒ N

(
T
(
N (x),N (y)

)
⪯ N

(
T
(
N (x′),N (y′)

))
⇒ S(x, y) ⪯ S(x′, y′).

Therefore, S is a Pythagorean fuzzy t-conorm.

The t-conorm S in Theorem 2.12 is called the dual Pythagorean fuzzy t-conorm of T with respect to negator
N . Following theorem states that Pythagorean fuzzy t-norms and t-conorms can be produced by ordinary
t-norms and t-conorms.

Theorem 2.13. Let T be a t-norm and let S be a t-conorm on [0, 1]. If

T (a, b) ≤
√

1− S2
(√

1− a2,
√
1− b2

)
for all a, b ∈ [0, 1], (1)

then the function T : P ∗ × P ∗ → P ∗ defined by

T (x, y) =
(
T (x1, y1), S(x2, y2)

)
is a Pythagorean fuzzy t-norm and the function S : P ∗ × P ∗ → P ∗ defined by

S(x, y) =
(
S(x1, y1), T (x2, y2)

)
is the dual Pythagorean fuzzy t-conorm of T with respect to Ns.

Proof. As S is increasing, from (1) we have for any x, y ∈ P ∗ that

T 2(x1, x2) + S2(x2, y2) ≤ 1− S2
(√

1− x2
1,
√
1− x2

2

)
+ S2(x2, y2)

≤ 1− S2
(√

1− x2
1,
√
1− x2

2

)
+ S2

(√
1− x2

1,
√
1− x2

2

)
= 1

which yields that T (x, y) is in P ∗.
(PT1) For any x = (x1, x2) ∈ P ∗ we have

T (x, (1, 0)) = (T (x1, 1) , S (x2, 0))

= (x1, x2)

= x.

(PT2) For any x, y ∈ P ∗ we get

T (x, y) = (T (x1, y1) , S (x2, y2))

= (T (y1, x1) , S (y2, x2))

= T (y, x).
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(PT3) For all x, y, z ∈ P ∗ we obtain

T (x, T (y, z)) = T
(
(x1, x2),

(
T
(
y1, z1), S(y2, z2)

))
=
(
T
(
x1, T (y1, z1)

)
, S
(
x2, S(y2, z2)

))
=
(
T
(
y1, T (x1, z1)

)
, S
(
y2, S(x2, z2)

))
= T

(
(y1, y2),

(
T
(
x1, z1), S(x2, z2)

))
= T (y, T (x, z)).

(PT4) For all x, x′, y, y′ ∈ P ∗ we have

x ⪯ x′ and y ⪯ y′ ⇒ x1 ≤ x′
1 , x2 ≥ x′

2 and y1 ≤ y′1 , y2 ≥ y′2

⇒ T (x1, y1) ≤ T (x′
1, y

′
1) and S(x2, y2) ≥ S(x′

2, y
′
2)

⇒ T (x, y) ⪯ T (x′, y′).

Therefore T is a Pythagorean fuzzy t-norm. Similarly, it can be shown that S is a Pythagorean fuzzy t-
conorm.

Continuous Archimedean t-norms and t-conorms on [0, 1] can be generated by their additive generators. So we
can construct a Pythagorean fuzzy t-norm and a Pythagorean fuzzy t-conorm using these additive generators.
Note that if a t-norm T and a t-conorm S are dual with respect to the Pythagorean fuzzy complement, then (1)
is satisfied.

Corollary 2.14. Let g : [0, 1] → [0,∞] be the additive generator of a continuous Archimedean t-norm T
and let h : [0, 1] → [0,∞] be the additive generator of the dual continuous Archimedean t-conorm S where
h(t) = g(

√
1− t2). Then the function T : P ∗ × P ∗ → P ∗ defined by

T (x, y) =
(
g−1(g(x1) + g(y1)), h

−1(h(x2) + h(y2))
)

is a Pythagorean fuzzy t-norm and the function S : P ∗ × P ∗ → P ∗ defined by

S(x, y) =
(
h−1(h(x1) + h(y1)), g

−1(g(x2) + g(y2))
)

is the dual Pythagorean fuzzy t-conorm of S with respect to NS . In this case T and S are called Pythagorean
fuzzy t-norm and Pythagorean fuzzy t-conorm generated by g and h, respectively.

Proof. It is trivial from Theorem 2.13 and Remark 2.5.

Example 2.15. Consider the functions g : [0, 1] → [0,∞] defined by g(t) = − log t2 and h : [0, 1] → [0,∞]
defined by h(t) = − log(1− t2). Then the Algebraic Pythagorean fuzzy t-norm is

T (x, y) =
(
x1y1,

√
x2
2 + y22 − x2

2y
2
2

)
and the Algebraic dual Pythagorean fuzzy t-conorm with respect to Ns is

S(x, y) =
(√

x2
1 + y21 − x2

1y
2
1 , x2y2

)
.

3 Pythagorean Fuzzy Valued Neutrosophic Sets

We start this section recalling the concept of IFVNS obtained by taking the sequence length equal to 1 in
IFVNMSs. Then we define the concepts of PFVNS and PFVNV.
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Definition 3.1. 28 An IFVNS A on X is defined by

A =
{
⟨xj ,Tj

A, I
j
A,F

j
A⟩ : j = 1, . . . , n

}
where Tj

A, IjA and Fj
A are the truth, the indeterminacy and the falsity membership pairs of IFVs, respectively,

i.e., for j = 1, . . . , n

Tj
A =

(
µA,t(xj), νA,t(xj)

)
with µA,t(xj), νA,t(xj) ∈ [0, 1] such that µA,t(xj) + νA,t(xj) ≤ 1

IjA =
(
µA,i(xi), νA,i(xj)

)
with µA,i(xj), νA,i(xj) ∈ [0, 1] such that µA,i(xj) + νA,i(xj) ≤ 1

Fj
A =

(
µA,f (xj), νA,f (xj)

)
with µA,f (xj), νA,f (xj) ∈ [0, 1] such that µA,f (xj) + νA,f (xj) ≤ 1.

An IFVNV is denoted by
α = ⟨Tα, Iα,Fα⟩ := ⟨Tj

A, I
j
A,F

j
A⟩

for a fixed j = 1, ..., n.

Example 3.2. Let X = {x1, x2}.

A = {⟨x1, (0.7, 0.3), (0.3, 0.5), (0.1, 0.8)⟩, ⟨x2, (0.4, 0.3), (0.1, 0.6), (0.2, 0.75)⟩}

is an IFVNS.

Remark 3.3. The notion of IFVNS is a new extension of the notion of SNS, since each SNS has the form

A =
{〈

xj , TA(xj), IA(xj), FA(xj)
〉
: j = 1, . . . , n

}
=

{〈
xj ,
(
µA,t(xj), 0

)
,
(
µA,i(xj), 0

)
,
(
µA,f (xj), 0

)〉
: j = 1, . . . , n

}
.

However, an IFVNS cannot be represented as a standard SNS (see, e.g., Example 3.2).

In some decision making problems, the sum of the membership and non-membership degrees that are deter-
mined by the decision makers can be larger than 1. Therefore, PFVs are more capable than IFVs for modelling
vagueness in the degrees of the truth, the indeterminacy and the falsity in the practical problems as shown in
Figure 2. Using PFVs for the degree of the truth, the indeterminacy and the falsity, we define the concept of
PFVNS and propose some set theoretical and algebraic operations between PFVNSs. By utilizing PFVNSs,
the uncertainty in the decision maker’s evaluations can be modeled in a more capable environment.

Definition 3.4. A PFVNS A on X is defined by

A =
{
⟨xj ,Tj

A, I
j
A,F

j
A⟩ : j = 1, . . . , n

}
where Tj

A, IjA and Fj
A are the truth, the indeterminacy and the falsity membership pairs of PFVs, respectively,

i.e., for j = 1, . . . , n

Tj
A =

(
µA,t(xj), νA,t(xj)

)
with µA,t(xj), νA,t(xj) ∈ [0, 1] such that µ2

A,t(xj) + ν2A,t(xj) ≤ 1

IjA =
(
µA,i(xi), νA,i(xj)

)
with µA,i(xj), νA,i(xj) ∈ [0, 1] such that µ2

A,i(xj) + ν2A,i(xj) ≤ 1

Fj
A =

(
µA,f (xj), νA,f (xj)

)
with µA,f (xj), νA,f (xj) ∈ [0, 1] such that µ2

A,f (xj) + ν2A,f (xj) ≤ 1.

A PFVNV is denoted by
α = ⟨Tα, Iα,Fα⟩ := ⟨Tj

A, I
j
A,F

j
A⟩

for a fixed j = 1, ..., n.

Example 3.5. Let X = {x1, x2}.

A = {⟨x1, (0.4, 0.3), (0.5, 0.5), (0.1, 0.9)⟩, ⟨x2, (0.3, 0.7), (0.7, 0.6), (0.2, 0.2)⟩}

is a PFVNS.
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Figure 2: Comparison of concepts of PFV and IFV for the truth, the indeterminacy and the falsity membership
degrees

Figure 3: The SNV and PFVNV in Example 3.8

Remark 3.6. Each IFVNS is a PFVNS but the converse of this statement is not true in general. For example,
A is a PFVNS, but A is not a IFV NS in Example 3.5 since 0.7 + 0.6 = 1.3 > 1 for I2A = (0.7, 0.6).

SNVs can be converted to PFVNVs with the following method. A similar method was proposed for IFSs in.25

Proposition 3.7. Let ρ : [0, 1] → [0, 1] be a function such that ρ(t) ≤
√
t for any t ∈ [0, 1]. Consider a

number µα ∈ [0, 1]. Then
α = ⟨√µα, ρ(1− µα)⟩

is a PFV.

Proof. Let µα ∈ [0, 1]

√
µα + ρ2(1− µα) ≤ µα +

(√
1− µα

)2
= µα + 1− µα

= 1.

So α is a PFV .

We can transform a SNV into a PFV NV by using Proposition 3.7 as in the following example.

Example 3.8. Consider the SNV A = ⟨0.5, 0.3, 0.6⟩ and the function ρ : [0, 1] → [0, 1] defined by ρ(t) =
sint. From Proposition 3.7, we obtain a PFVNV from A as follows:

A = ⟨(0.71, 0.48), (0.55, 0.64), (0.77, 0.39)⟩.

We visualize this transformation in Figure 3.

Now we define the set operations between PFVNSs. Throughout this paper the set operations for PFSs are
denoted by ⊂(pyt),∪(pyt),∩(pyt), (.)

c(pyt)” (see,34).
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Definition 3.9. Let
A =

{
⟨xj ,Tj

A, I
j
A,F

j
A⟩ : j = 1, . . . , n

}
and

B =
{
⟨xj ,Tj

B , I
j
B ,F

j
B⟩ : j = 1, . . . , n

}
be two PFVNSs. Set operations among A and B are defined as follows.
a) A ⊂ B if and only if for all j=1,. . . ,n

Tj
A ⊂(pyt) Tj

B i.e. µA,t(xj) ≤ µB,t(xj) and νA,t(xj) ≥ νB,t(xj)

IjA ⊃(pyt) IjB i.e. µA,i(xj) ≥ µB,i(xj) and νA,i(xj) ≤ νB,i(xj)

Fj
A ⊃(pyt) Fj

B i.e. µA,f (xj) ≥ µB,f (xj) and νA,f (xj) ≤ νB,f (xj).

b) A = B if and only if A ⊂ B and B ⊂ A.
c) Ac =

{〈
xj ,Fj

A,
(
IjA
)c(pyt) ,Tj

A

〉
: j = 1, . . . , n

}
where for all j = 1, . . . , n(

IjA
)c(pyt) =

(
νA,i(xj), µA,i(xj)

)
.

d) A ∪B =
{〈

xj ,Tj
A ∪(pyt) Tj

B , I
j
A ∩(pyt) IjB ,F

j
A ∩(pyt) Fj

B

〉
: j = 1, . . . , n

}
where

Tj
A ∪(pyt) Tj

B =
(
max

(
µA,t(xj), µB,t(xj)

)
,min

(
νA,t(xj), νB,t(xj)

))
IjA ∩(pyt) IjB =

(
min

(
µA,i(xj), µB,i(xj)

)
,max

(
νA,i(xj), νB,i(xj)

))
Fj
A ∩(pyt) Fj

B =
(
min

(
µA,f (xj), µB,f (xj)

)
,max

(
νA,f (xj), νB,f (xj)

))
.

e) A ∩B =
{〈

xj ,Tj
A ∩(pyt) Tj

B , I
j
A ∪(pyt) IjB ,F

j
A ∪(pyt) Fj

B

〉
: j = 1, . . . , n

}
where

Tj
A ∩(pyt) Tj

B =
(
min

(
µA,t(xj), µB,t(xj)

)
,max

(
νA,t(xj), νB,t(xj)

))
IjA ∪(pyt) IjB =

(
max

(
µA,i(xj), µB,i(xj)

)
,min

(
νA,i(xj), νB,i(xj)

))
Fj
A ∪(pyt) Fj

B =
(
max

(
µA,f (xj), µB,f (xj)

)
,min

(
νA,f (xj), νB,f (xj)

))
.

Example 3.10. Let X = {x1, x2} and consider the PFVNSs

A =
{〈

x1, (0.2, 0.3), (0.7, 0.4), (0.4, 0.7)
〉
,
〈
x2, (0.4, 0.8), (0.7, 0.3), (0.7, 0.1)

〉}
and

B =
{〈

x1, (0.4, 0.3), (0.4, 0.5), (0.1, 0.9)
〉
,
〈
x2, (0.6, 0.5), (0.2, 0.6), (0.2, 0.2)

〉}
.

Then A ⊂ B. On the other hand, it is easy to obtain that

Ac =
{〈

x1, (0.4, 0.7), (0.4, 0.7), (0.2, 0.3)
〉
,
〈
x2, (0.7, 0.1), (0.3, 0.7), (0.4, 0.8)

〉}
A ∪B =

{〈
x1, (0.4, 0.3), (0.4, 0.5), (0.1, 0.9)

〉
,
〈
x2, (0.6, 0.5), (0.2, 0.6), (0.2, 0.2)

〉}
and

A ∩B =
{〈

x1, (0.2, 0.3), (0.7, 0.4), (0.4, 0.7)
〉
,
〈
x2, (0.4, 0.8), (0.7, 0.3), (0.7, 0.1)

〉}
.

Next we show that set operations defined in Definition 3.9 satisy De Morgan’s rules.

Theorem 3.11. Let
A =

{
⟨xj ,Tj

A, I
j
A,F

j
A⟩ : j = 1, . . . , n

}
and

B =
{
⟨xj ,Tj

B , I
j
B ,F

j
B⟩ : j = 1, . . . , n

}
be two PFVNSs. The following are valid.
a) (A ∪B)c = Ac ∩Bc

b) (A ∩B)c = Ac ∪Bc.
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Proof. a) We get

(A ∪B)c =
({〈

xj ,Tj
A ∪(pyt) Tj

B , I
j
A ∩(pyt) IjB ,F

j
A ∩(pyt) Fj

B

〉
: j = 1, . . . , n

})c
=

{〈
xj ,Fj

A ∩(pyt) Fj
B ,
(
IjA ∩(pyt) IjB

)c(pyt)

,Tj
A ∪(pyt) Tj

B

〉
: j = 1, . . . , n

}
=

{〈
xj ,Fj

A ∩(pyt) Fj
B ,
(
IjA
)c(pyt) ∪(pyt)

(
IjB
)c(pyt) ,Tj

A ∪(pyt) Tj
B

〉
: j = 1, . . . , n

}
= Ac ∩Bc.

b) We get

(A ∩B)c =
({〈

xj ,Tj
A ∩(pyt) Tj

B , I
j
A ∪(pyt) IjB ,F

j
A ∪(pyt) Fj

B

〉
: j = 1, . . . , n

})c
=

{〈
xj ,Fj

A ∪(pyt) Fj
B ,
(
IjA ∪(pyt) IjB

)c(pyt)

,Tj
A ∩(pyt) Tj

B

〉
: j = 1, . . . , n

}
=

{〈
xj ,Fj

A ∪(pyt) Fj
B ,
(
IjA
)c(pyt) ∩(pyt)

(
IjB
)c(pyt) ,Tj

A ∩(pyt) Tj
B

〉
: j = 1, . . . , n

}
= Ac ∪Bc.

Now we introduce some algebraic operations for PFVNVs via Pythagorean fuzzy t-norms and t-conorms.

Definition 3.12. Let α = ⟨Tα, Iα,Fα⟩ and β = ⟨Tβ , Iβ ,Fβ⟩ be two PFVNVs, let T be a Pythagorean fuzzy
t-norm and let S be the dual Pythagorean fuzzy t-conorm of T with respect to a Pythagorean fuzzy negator
N . Then

α⊕ β :=
〈(

S
(
Tα,Tβ

)
, T
(
Iα, Iβ

)
, T
(
Fα,Fβ

))〉
and

α⊗ β :=
〈(

T
(
Tα,Tβ

)
,S
(
Iα, Iβ

)
,S
(
Fα,Fβ

))〉
Remark 3.13. If g is the additive generator of a continuous Archimedean t-norm and h(t) = g(

√
1− t2),

then from Corollary 2.14 we get

α⊕ β =
〈(

h−1
(
h(µα,t) + h(µβ,t)

)
, g−1

(
g(να,t) + g(νβ,t)

)
,(

g−1
(
g(µα,i) + g(µβ,i)

)
, h−1

(
h(να,i) + h(νβ,i)

)
,(

g−1
(
g(µα,f ) + g(µβ,f )

)
, h−1

(
h(να,f ) + h(νβ,f )

)〉
and

α⊗ β =
〈(

g−1
(
g(µα,t) + g(µβ,t)

)
, h−1

(
h(να,t) + h(νβ,t)

)
,(

h−1
(
h(µα,i) + h(µβ,i)

)
, g−1

(
g(να,i) + g(νβ,i)

)
,(

h−1
(
h(µα,f ) + h(µβ,f )

)
, g−1

(
g(να,f ) + g(νβ,f )

)〉
.

Following proposition is the validation of that the sum and the product of two PFVNVs are also PFVNVs.

Proposition 3.14. Let α and β be two PFVNVs, let T be A Pythagorean fuzzy t-norm and let S be the dual
Pythagorean fuzzy t-conorm with respect to a Pythagorean fuzzy negator N . Then, α⊕ β and α⊗ β are also
PFVNVs.

Proof. Since T and S have range P ∗, α⊕ β and α⊗ β are PFVNVs.

Next we define multiplication by non-negative constant and non-negative power of PFVNVs using additive
generators of continuous Archimedean t-norm and t-conorm on [0, 1].

https://doi.org/10.54216/IJNS.200208
Received: July 08, 2022 Accepted: January 11, 2023

117



International Journal of Neutrosophic Science (IJNS) Vol. 20, No. 02, PP. 107-134, 2023

Definition 3.15. Let α = ⟨Tα, Iα,Fα⟩ be a PFVNV, let λ ≥ 0, let g : [0, 1] → [0,∞] be the additive generator
of a continuous Archimedean t-norm and let h(t) = g(

√
1− t2). Then

λα =
〈(

h−1
(
λh
(
µα,t

))
, g−1

(
λg
(
να,t

)))
,(

g−1
(
λg
(
µα,i

))
, h−1

(
λh
(
να,i

)))
,(

g−1
(
λg
(
µα,f

))
, h−1

(
λh
(
να,f

)))〉
and

αλ =
〈(

g−1
(
λg
(
µα,t

))
, h−1

(
λh
(
να,t

)))
,(

h−1
(
λh
(
µα,i

))
, g−1

(
λg
(
να,i

)))
,(

h−1
(
λh
(
µα,f

))
, g−1

(
λg
(
να,f

)))〉
.

The following proposition verifies that multiplication by constant and power of PFVNVs are also PFVNVs.

Proposition 3.16. Let α be a PFVNV, let λ ≥ 0, let g : [0, 1] → [0,∞] be the additive generator of a
continuous Archimedean t-norm and let h(t) = g(

√
1− t2). Then λα and αλ are PFVNVs.

Proof. We know that h−1(t) =
√
1− [g−1(t)]2 and g(t) = h(

√
1− t2). Since µα,t ≤

√
1− ν2α,t and h, h−1

are increasing, we obtain

0 ≤
[
h−1(λh(µα,t))

]2
+
[
g−1(λg(να,t))

]2
≤

[
h−1

(
λh
(√

1− ν2α,t

))]2
+
[
g−1(λg(να,t))

]2
= 1−

[
g−1

(
λh
(√

1− ν2α,t

)]2
+
[
g−1(λg(να,t))

]2
= 1−

[
g−1(λg(να,t))

]2
+
[
g−1(λg(να,t))

]2
= 1

which yields that Tλα is a PFV. Similarly, it can be easily shown that Iλα,Fλα.Tαλ , Iαλ and Fαλ are PFVs.
Therefore λα is a PFVNV.

Following theorem gives some basic properties of algebraic operations.

Theorem 3.17. Let α = ⟨Tα, Iα,Fα⟩, β = ⟨Tβ , Iβ ,Fβ⟩ and θ = ⟨Tθ, Iθ,Fθ⟩ be PFVNVs, let λ, γ ≥ 0, let g
be the additive generator of a continuous Archimedean t-norm and let h(t) = g(

√
1− t2). Then,

i) α⊕ β = β ⊕ α
ii) α⊗ β = β ⊗ α
iii) (α⊕ β)⊕ θ = α⊕ (β ⊕ θ)
iv) (α⊗ β)⊗ θ = α⊗ (β ⊗ θ)
v) λ(α⊕ β) = λα⊕ λβ
vi) (λ+ γ)α = αλ⊕ γα
vii) (α⊗ β)λ = αλ ⊗ βλ

viii) αλ ⊗ αγ = αλ+γ .

Proof. (i) and (ii) are trivial.
iii) It is clear from Definition 3.12 that

Tα⊕β =
(
h−1

(
h(µα,t) + h(µβ,t)

)
, g−1

(
g(να,t) + g(νβ,t)

))
.

https://doi.org/10.54216/IJNS.200208
Received: July 08, 2022 Accepted: January 11, 2023

118



International Journal of Neutrosophic Science (IJNS) Vol. 20, No. 02, PP. 107-134, 2023

Therefore, we obtain

T(α⊕β)⊕θ = S(Tα⊕β ,Tθ)

=
(
h−1

(
h
(
h−1

(
h(µα,t) + h(µβ,t)

)
+ h
(
µθ,t

)))
,

g−1
(
g
(
g−1

(
g(να,t) + g(νβ,t)

)
+ g
(
νθ,t
))))

=
(
h−1

(
h(µα,t) + h(µβ,t) + h(µθ,t)

)
,

g−1
(
g(να,t) + g(νβ,t) + g

(
νθ,t
)))

=
(
h−1

(
h(µα,t) + h

(
h−1

(
h(µβ,t) + h(µθ,t)

)))
,

g−1
(
g(να,t) + g

(
g−1

(
g(νβ,t) + g

(
νθ,t
))))

= S(Tα,Tβ⊕θ)

= Tα⊕(β⊕θ).

Similarly it can be easily obtained that I(α⊕β)⊕θ = Iα⊕(β⊕θ) and F(α⊕β)⊕θ = Fα⊕(β⊕θ).
iv) It is clear from Definition 3.12 that

Tα⊗β =
(
g−1

(
g(µα,t) + g(µβ,t)

)
, h−1

(
h(να,t) + h(νβ,t)

))
.

Therefore, we have

T(α⊗β)⊗θ = T (Tα⊗β ,Tθ)

=
(
g−1

(
g
(
g−1

(
g(µα,t) + g(µβ,t)

)
+ g
(
µθ,t

)))
,

h−1
(
h
(
h−1

(
h(να,t) + h(νβ,t)

)
+ h
(
νθ,t
))))

=
(
g−1

(
g(µα,t) + g(µβ,t) + g(µθ,t)

)
,

h−1
(
h(να,t) + h(νβ,t) + h

(
νθ,t
)))

=
(
g−1

(
g(µα,t) + g

(
g−1

(
g(µβ,t) + g(µθ,t)

)))
,

h−1
(
h(να,t) + h

(
h−1

(
h(νβ,t) + h

(
νθ,t
))))

= T (Tα,Tβ⊗θ)

= Tα⊗(β⊗θ).

Similarly it can be seen that I(α⊗β)⊗θ = Iα⊗(β⊗θ) and F(α⊗β)⊗θ = Fα⊗(β⊗θ).
v) It is clear from Definition 3.12 and Definition 3.15 that

Tα⊕β = (µα⊕β,t, να⊕β,t) =
(
h−1

(
h(µα,t) + h(µβ,t)

)
, g−1

(
g(να,t) + g(νβ,t)

))
and

Tλα = (µλα,t, νλα,t) =
(
h−1

(
λh
(
µα,t

))
, g−1

(
λg
(
να,t

)))
.

Therefore, we get

Tλ(α⊕β) =
(
h−1

(
λh(µα⊕β,t)

)
, g−1

(
λg(να⊕β,t)

))
=

(
h−1

(
λh(h−1

(
h(µα,t) + h(µβ,t))

)
, g−1

(
λg(g−1

(
g(να,t) + g(νβ,t)

)))
=

(
h−1

(
λh(µα,t) + λh(µβ,t))

)
, g−1

(
λg(να,t) + λg(νβ,t)

)))
=

(
h−1

(
h
(
h−1

(
λh(µα,t)

)
+ h
(
h−1

(
λh(µβ,t)

))
,

g−1
(
g
(
g−1

(
λg(να,t)

)
+ g
(
g−1

(
λg(νβ,t)

)))
=

(
h−1

(
h
(
µλα,t

)
+ h
(
µλβ,t

))
, g−1

(
g
(
νλα,t

)
+ g
(
νλβ,t

)))
= Tλα⊕λβ .
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Similarly it can be shown that Iλ(α⊕β) = Iλα⊕λβ and Fλ(α⊕β) = Fλα⊕λβ .
vi) It is clear that

T(λ+γ)α =
(
h−1

(
(λ+ γ)h

(
µα,t

))
, g−1

(
(λ+ γ)g

(
να,t

)))
=

(
h−1

(
λh
(
µα,t

)
+ γh

(
µα,t

))
, g−1

(
λg
(
να,t

)
+ γg

(
να,t

)))
=

(
h−1

(
h
(
h−1

(
λh
(
µα,t

)))
+ h
(
h−1

(
γh
(
µα,t

))))
,

g−1
(
g(g−1

(
λg
(
να,t

)))
+ g(g−1

(
γg
(
να,t

))))
=

(
h−1

(
h
(
µλα,t

)
+ h(µγα,t

))
, g−1

(
g
(
νλα,t

)
+ g
(
νγα,t

)))
= Tλα⊕γα.

Similarly it can be obtained that I(λ+γ)α = Iλα⊕γα and F(λ+γ)α = Fλα⊕γα.
vii) We know that

Tα⊗β = (µα⊗β,t, να⊗β,t) =
(
g−1

(
g(µα,t) + g(µβ,t)

)
, h−1

(
h(να,t) + h(νβ,t)

))
and

Tαλ = (µαλ,t, ναλ,t) =
(
g−1

(
λg
(
µα,t

))
, h−1

(
λh
(
να,t

)))
.

Therefore, we obtain

T(α⊗β)λ =
(
g−1

(
λg(µα⊗β,t)

)
, h−1

(
λh(να⊗β,t)

))
=

(
g−1

(
λg(g−1

(
g(µα,t) + g(µβ,t))

)
, h−1

(
λh(h−1

(
h(να,t) + h(νβ,t)

)))
=

(
g−1

(
λg(µα,t) + λg(µβ,t))

)
, h−1

(
λh(να,t) + λh(νβ,t)

)))
=

(
g−1

(
g
(
g−1

(
λg(µα,t)

)
+ g
(
g−1

(
λg(µβ,t)

))
,

h−1
(
h
(
h−1

(
λh(να,t)

)
+ h
(
h−1

(
λh(νβ,t)

)))
=

(
g−1

(
g
(
µαλ,t

)
+ g
(
µβλ,t

))
, h−1

(
h
(
ναλ,t

)
+ h
(
νβλ,t

)))
= Tαλ⊕βλ .

Similarly it can be seen that I(α⊗β)λ = Iαλ⊕βλ and F(α⊗β)λ = Fαλ⊕βλ .
viii) We have

Tαλ+γ =
(
g−1

(
(λ+ γ)g

(
µα,t

))
, h−1

(
(λ+ γ)h

(
να,t

)))
=

(
g−1

(
λg
(
µα,t

)
+ γg

(
µα,t

))
, h−1

(
λh
(
να,t

)
+ γh

(
να,t

)))
=

(
g−1

(
g
(
g−1

(
λg
(
µα,t

)))
+ g
(
h−1

(
γg
(
µα,t

))))
,

h−1
(
h(h−1

(
λh
(
να,t

)))
+ h(h−1

(
γh
(
να,t

))))
=

(
g−1

(
g
(
µαλ,t

)
+ g(µαγ ,t

))
, h−1

(
h
(
ναλ,t

)
+ h
(
ναγ ,t

)))
= Tαλ⊗αγ .

Similarly it can be obtained that Iαλ+γ = Iαλ⊗αγ and Fαλ+γ = Fαλ⊗αγ .

4 Weighted Aggregation Operators for PFVNVs

Aggregation operators have a vital role while transforming input values represented by fuzzy values to a
single output value. In this section, we introduce a weighted arithmetic aggregation operator and a weighted
geometric aggregation operator for collections of PFVNVs by using algebraic operations given in Section 3.
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4.1 A Weighted Arithmetic Aggregation Operator

Definition 4.1. Let {αj = ⟨Tαj
, Iαj

,Fαj
⟩ : j = 1, . . . , n} be a collection of PFVNVs. A weighted arithmetic

aggregation operator WA− PFV NV is defined by

WA− PFV NV (α1, . . . , αn) :=

n⊕
j=1

wjαj

where w = (w1, . . . , wn)
T is a weight vector such that 0 ≤ wj ≤ 1 for any j = 1, . . . , n and

∑n
j=1 wj = 1.

As seen in the next theorem, weighted arithmetic aggregation operators can be expressed via additive genera-
tors whenever t-norm and t-conorm are continuous Archimedean.

Theorem 4.2. Let {αj = ⟨Tαj , Iαj ,Fαj ⟩ : j = 1, . . . , n} be a collection of PFVNVs, let w = (w1, . . . , wn)
T

be a weight vector such that 0 ≤ wj ≤ 1 for any j = 1, . . . , n and
∑n

j=1 wj = 1 and let g be the additive gen-
erator of a continuous Archimedean t-norm and let h(t) = g(

√
1− t2). Then WA−PFV V NV (α1, . . . , αn)

is a PFV NV and we have

WA− PFV NV (α1, . . . , αn) =
〈(

h−1
( n∑

j=1

wjh(µαj ,t)
)
, g−1

( n∑
j=1

wjg(ναj ,t)
))

,

(
g−1

( n∑
j=1

wjg(µαj ,i)
)
, h−1

( n∑
j=1

wjh(ναj ,i)
))

,

(
g−1

( n∑
j=1

wjg(µαj ,f )
)
, h−1

( n∑
j=1

wjh(ναj ,f )
))〉

.

Proof. It is clear from Propositions 3.14 and 3.16 that WA − PFV V NV (α1, . . . , αn) is a PFVNV. Using
mathematical induction we show that the second part is valid. If n = 2, we obtain

Tw1α1⊕w2α2
= S(Tw1α1

,Tw2α2
)

=
(
h−1

(
h(µw1α1

) + h(µw2α2
)
)
, g−1

(
g(νw1α1

) + g(νw2α2
)
)

=
(
h−1

(
h(h−1(w1h(µα1

))) + h(h−1(w2h(µα2
)))
)
,

g−1
(
g(g−1(w1g(να1)) + g(g−1(w2g(να2)))

)
=

(
h−1

(
w1h(µα1) + w2h(µα2)

)
, g−1

(
w1g(να1) + w2g(να2)

))
=

(
h−1

( 2∑
j=1

wjh(µαj )
)
, g−1

( 2∑
j=1

wjg(ναj )
))

.

Now assume that

TAn−1
=

h−1

n−1∑
j=1

wjh(µαj
)

 , g−1

n−1∑
j=1

wjg(ναj
)

 ,
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where An :=
⊕n

j=1 wjαj . Then we obtain

TAn
= TAn−1

⊕ wnαn

= S
(
TAn−1

,Twnαn

)
= S

((
h−1

( n−1∑
j=1

wjh(µαj )
)
, g−1

( n−1∑
j=1

wjg(ναj )
))

,

(
h−1(wnh(µαn,t)), g

−1(wng(µαn,t))
))

=

(
h−1

(
h
(
h−1

( n−1∑
j=1

wjh(µαj
)
))

+ h
(
h−1(wnh(µαn,t))

))
,

g−1
(
g
(
g−1

( n−1∑
j=1

wjg(ναj
)
))

+ g
(
g−1(wng(µαn,t))

))

=

(
h−1

( n−1∑
j=1

wjh(µαj ) + wnh(µαn,t)
)
, g−1

( n−1∑
j=1

wjg(ναj ) + wng(µαn,t)
))

=

(
h−1

( n∑
j=1

wjh(µαj )
)
, g−1

( n∑
j=1

wjg(ναj )
))

.

Similar proof is also valid for indeterminacy and falsity.

Remark 4.3. Using particular additive generators we obtain some particular cases of WA − PFV NV as
follows:

a) Let g be the additive generator defined by g(t) = − log t2. Then we get Algebraic weighted arithmetic
aggregation operator given by

WAA − PFV NV (α1, . . . , αn) =

〈(√√√√1−
n∏

j=1

(1− µ2
αj ,t)

wj ,

n∏
j=1

ν
wj

αj ,t

)
,

(
n∏

j=1

µ
wj

αj ,i
,

√√√√1−
n∏

j=1

(1− ν2αj ,i
)wj

)
,

(
n∏

j=1

µ
wj

αj ,f
,

√√√√1−
n∏

j=1

(1− ν2αj ,f
)wj

)〉
.

b) Let g be the additive generator defined by g(t) = log( 2−t2

t2 ). Then we get Einstein weighted arithmetic
aggregation operator given by

WAE − PFV NV (α1, . . . , αn) =

〈(√√√√√√
∏n

j=1
(1 + µ2

αj,t
)
wj −

∏n
j=1

(1 − µ2
αj,t

)
wj

∏n
j=1

(1 + µ2
αj,t

)
wj +

∏n
j=1

(1 − µ2
αj,t

)
wj

,

√
2
∏n

j=1 ν
wi
αj,t√∏n

j=1
(2 − ν2

αj,t
)
wj +

∏n
j=1

(ν2
αi,t

)
wj

)
,

( √
2
∏n

j=1 µ
wj
αj,i√∏n

j=1
(2 − µ2

αj,i
)
wj +

∏n
j=1

(µ2
αj,i

)
wj

,

√√√√√√
∏n

j=1
(1 + ν2

αj,i
)
wj −

∏n
j=1

(1 − ν2
αj,i

)
wj

∏n
j=1

(1 + ν2
αj,i

)
wj +

∏n
j=1

(1 − ν2
αj,i

)
wj

)
,

( √
2
∏n

j=1 µ
wj
αj,f√∏n

j=1
(2 − µ2

αj,f
)
wj +

∏n
j=1

(µ2
αj,f

)
wj

,

√√√√√√√
∏n

j=1
(1 + ν2

αj,f
)
wj −

∏n
j=1

(1 − ν2
αj,f

)
wj

∏n
j=1

(1 + ν2
αj,f

)
wj +

∏n
j=1

(1 − ν2
αj,f

)
wj

)〉
.

4.2 Weighted Geometric Aggregation Operator

Definition 4.4. Let {αj = ⟨Tαj
, Iαj

,Fαj
⟩ : j = 1, . . . , n} be a collection of PFVNVs. A weighted geometric

aggregation operator WG− PFV V NV is defined by

WG− PFV V NV (α1, . . . , αn) :=

n⊗
j=1

α
wj

j
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where w = (w1, . . . , wn)
T is a weight vector such that 0 ≤ wj ≤ 1 for any j = 1, . . . , n and

∑n
j=1 wj = 1.

As seen in the next theorem, weighted geometric aggregation operators can be expressed via additive genera-
tors whenever t-norm and t-conorm are continuous Archimedean.

Theorem 4.5. Let {αj = ⟨Tαj , Iαj ,Fαj ⟩ : j = 1, . . . , n} be a collection of PFVNVs, let w = (w1, . . . , wn)
T

be a weight vector such that 0 ≤ wj ≤ 1 for any j = 1, . . . , n and
∑n

j=1 wj = 1, let g be the additive gener-
ator of a continuous Archimedean t-norm and let h(t) = g(

√
1− t2). Then WG− PFV V NV (α1, . . . , αn)

is a PFVNV and

WG− PFV V NV (α1, . . . , αn) =
〈(

g−1
( n∑

j=1

wjg(µαj ,t)
)
, h−1

( n∑
j=1

wjh(ναj ,t)
))

,

(
h−1

( n∑
j=1

wjh(µαj ,i)
)
, g−1

( n∑
j=1

wjg(ναj ,i)
))

,

(
h−1

( n∑
j=1

wjh(µαj ,f )
)
, g−1

( n∑
j=1

wjg(ναj ,f )
))〉

.

Proof. It can be proved similar to Theorem 4.2.

Remark 4.6. By using particular additive generators we also obtain some particular cases of WG−PFV NV
as follows.

a) Let g be the additive generator defined by g(t) = − log t2. Then we get Algebraic weighted geometric
aggregation operator given by

WGA − PFV V NV (α1, . . . , αn) =

〈(
n∏

j=1

µ
wj

αj ,t,

√√√√1−
n∏

j=1

(1− ν2αj ,t)
wj

)
,

(√√√√1−
n∏

j=1

(1− µ2
αj ,i

)wj ,

n∏
j=1

ν
wj

αj ,i

)
,

(√√√√1−
n∏

j=1

(1− µ2
αj ,f

)wj ,

n∏
j=1

ν
wj

αj ,f

)〉
.

b) Let g be the additive generator defined by g(t) = log(2−t2

t2 ). Then we get Einstein weighted geometric
aggregation operator given by

WGE − PFV V NV (α1, . . . , αn) =

〈( √
2
∏n

j=1 µ
wj
αj,t√∏n

j=1(2 − µ2
αj,t

)wj +
∏n

j=1(µ
2
αj,t

)wj
,

√√√√∏n
j=1(1 + ν2

αj,t
)wj −

∏n
j=1(1 − ν2

αj,t
)wj∏n

j=1(1 + ν2
αj,t

)wj +
∏n

j=1(1 − ν2
αj,t

)wj

)
,

(√√√√∏n
j=1(1 + µ2

αj,i
)wj −

∏n
j=1(1 − µ2

αj,i
)wj∏n

j=1(1 + µ2
αj,i

)wj +
∏n

j=1(1 − µ2
αj,i

)wj
,

√
2
∏n

j=1 ν
wi
αj,i√∏n

j=1(2 − ν2
αj,i

)wj +
∏n

j=1(ν
2
αi,i

)wj

)
,

(√√√√√∏n
j=1(1 + µ2

αj,f
)wj −

∏n
j=1(1 − µ2

αj,f
)wj∏n

j=1(1 + µ2
αj,f

)wj +
∏n

j=1(1 − µ2
αj,f

)wj
,

√
2
∏n

j=1 ν
wi
αj,f√∏n

j=1(2 − ν2
αj,f

)wj +
∏n

j=1(ν
2
αi,f

)wj

)〉
.

5 A Simplified Neutrosophic Valued Modified Fuzzy Cross-Entropy Measure for PFVNVs

The notion of SNS was proposed by Ye37 to relieve the difficulty of applying NSs to practical problems.
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Definition 5.1. 37 A SNS A on X is given by

A = {⟨xj , TA(xj), IA(xj), FA(xj)⟩ : j = 1, ..., n}

where TA, IA, FA : X → [0, 1] are the truth, indeterminacy and falsify membership functions. For conve-
nience, a SNV is denoted by

α = ⟨Tα, Iα, Fα⟩ = ⟨TA(xj), IA(xj), FA(xj)⟩

for a fixed xj ∈ X .

Some algebraic operations of SNV is recalled in the next definition.

Definition 5.2. 18 Let A = ⟨TA, IA, FA⟩ and B = ⟨TB , IB , FB⟩ be SNVs. Assume that g : [0, 1] → [0,∞]
is the additive generator of a continuous Archimedean t-norm and h : [0, 1] → [0,∞] is the additive generator
of a continuous Archimedean t-conorm. Some algebraic operations between SNVs are defined as follow:
i) A⊕SNV B =

〈
h−1(h(TA) + h(TB)), g

−1(g(IA) + g(IB)), g
−1(g(FA) + g(FB))

〉
ii) λA =

〈
h−1(λh(TA)), g

−1(λg(IA)), g
−1(λg(FA))

〉
.

Definition 5.3. Let α = ⟨Tα, Iα,Fα⟩ and β = ⟨Tβ , Iβ ,Fβ⟩ be two PFVNVs. A simplified neutrosophic
valued modified fuzzy cross-entropy measure between α and β is defined by

E(α, β) :=

〈
1

ln 2

[
µ2
α,t ln

2µ2
α,t

µ2
α,t + µ2

β,t

+ ν2α,t ln
2ν2α,t

ν2α,t + ν2β,t
+ π2

α,t ln
2π2

α,t

π2
α,t + π2

β,t

]
,

1− 1

ln 2

[
µ2
α,i ln

2µ2
α,i

µ2
α,i + µ2

β,i

+ ν2α,i ln
2ν2α,i

ν2α,i + ν2β,i
+ π2

α,i ln
2π2

α,i

π2
α,i + π2

β,i

]
,

1− 1

ln 2

[
µ2
α,f ln

2µ2
α,f

µ2
α,f + µ2

β,f

+ ν2α,f ln
2ν2α,f

ν2α,f + ν2β,f
+ π2

α,f ln
2π2

α,f

π2
α,f + π2

β,f

]〉

where π2
α,. = 1−µ2

α,. − ν2α,. , and π2
β,. = 1− µ2

β,. − ν2β,.. As in,5 we use the convention (based on continuity
arguments) that 0 ln 0

p = 0 for p ≥ 0.

The following proposition verifies that a simplified neutrosophic valued modified fuzzy cross-entropy measure
between α and β is a SNV.

Proposition 5.4. E(α, β) is a SNV.

Proof. According to Shannon’s inequality,15 we know that each component of E(α, β) is equal or greater than
0. On the other hand, since the relation

1

ln 2

[
µ2
α,. ln

2µ2
α,.

µ2
α,. + µ2

β,.

+ ν2α,. ln
2ν2α,.

ν2α,. + ν2β,.
+ π2

α,. ln
2π2

α,.

π2
α,. + π2

β,.

]
≤ 1

ln 2

(
µ2
α,. ln 2 + ν2α,. ln 2 + π2

α,. ln 2
)

= 1

is true, each component of E(α, β) is equal or less than 1. Therefore E(α, β) is a SNV.

It is clear that E(α, β) ̸= E(β, α) in general. To make the concept symmetric we can define the following.

Definition 5.5. Let α and β be two PFVNVs. A simplified neutrosophic valued symmetric discrimination
information measure based on E is given by

E∗(α, β) =
1

2
E(α, β)⊕SNV

1

2
E(β, α)

where multiplication by scalar
1

2
is in the sense of (iii) of Definition 5.2.
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E∗ can be expressed via additive generators of continuous Archimedean t-norms and t-conorms.

Theorem 5.6. Let α and β be two PFVNVs, let g be the additive generator of a continuous Archimedean
t-norm and h(t) = g(1− t). Then

E∗(α, β) =

〈
h−1

(
1

2

[
h
(
TE(α,β)

)
+ h
(
TE(β,α)

)])
, g−1

(
1

2

[
g
(
IE(α,β)

)
+ g
(
IE(β,α)

)])
,

g−1

(
1

2

[
g(FE(α,β)

)
+ g
(
FE(β,α)

)])〉
.

Proof. We have

E∗(α, β) =
1

2
E(α, β)⊕SNV

1

2
E(β, α)

=

〈
h−1

(
h
(
T 1

2E(α,β)

)
+ h
(
T 1

2E(β,α)

))
, g−1

(
g
(
I 1

2E(α,β)

)
+ g
(
I 1

2E(β,α)

))
,

g−1

(
g(F 1

2E(α,β)

)
+ g
(
F 1

2E(β,α)

))〉

=

〈
h−1

(
h
(
h−1

〈1
2
h(TE(α,β))

)
+ h
(
h−1

(1
2
h
(
TE(β,α))

))
,

g−1

(
g
(
g−1

(1
2
g(IE(α,β))

)
+ g
(
g−1

(1
2
g
(
IE(β,α))

))
,

g−1

(
g
(
g−1

(1
2
g(IE(α,β))

)
+ g
(
g−1

(1
2
g
(
IE(β,α))

))〉

which yields that

E∗(α, β) =

〈
h−1

(
1

2

[
h
(
TE(α,β)

)
+ h
(
TE(β,α)

)])
, g−1

(
1

2

[
g
(
IE(α,β)

)
+ g
(
IE(β,α)

)])
,

g−1

(
1

2

[
g(FE(α,β)

)
+ g
(
FE(β,α)

)])〉
.

By using particular additive generators we can obtain some particular cases of E∗.

Remark 5.7. Let g be the additive generator defined by g(t) = − log t. Then we get Algebraic simplified
neutrosophic valued symmetric discrimination information measure based on E given by

E∗
A(α, β) =

〈
1−

√
(1− TE(α,β))(1− TE(β,α)),

√
IE(α,β)IE(β,α),

√
FE(α,β)FE(β,α)

〉
.

Let g be the additive generator defined by g(t) = log( 2−t
t ). Then we get Einstein simplified neutrosophic

valued symmetric discrimination information measure based on E given by

E∗
E(α, β) =

〈√
(1 + TE(α,β))(1 + TE(β,α))−

√
(1− TE(α,β))(1− TE(β,α))√

(1 + TE(α,β))(1 + TE(β,α)) +
√

(1− TE(α,β))(1− TE(β,α))
,

2
√
IE(α,β)IE(β,α)√

IE(α,β)IE(β,α) +
√

(2− IE(α,β))(2− IE(β,α))
,

2
√
FE(α,β)FE(β,α)√

FE(α,β)FE(β,α) +
√
(2− FE(α,β))(2− FE(β,α))

〉
.

https://doi.org/10.54216/IJNS.200208
Received: July 08, 2022 Accepted: January 11, 2023

125



International Journal of Neutrosophic Science (IJNS) Vol. 20, No. 02, PP. 107-134, 2023

Since E∗ is a SNV, a score function is needed to rank the values of E∗. In this paper, we use the following
score function.

Definition 5.8. 32 Let A = (TA, IA, FA) be a SNV. A score function is defined by

N(A) =
TA + 1− IA + 1− FA

3
.

Theorem 5.9. Let α and β be two PFVNVs. The modified cross-entropy measure E∗ satisfies the following
properties.

i) E∗(α, α) = ⟨0, 1, 1⟩,

ii) 0 ≤ N(E∗(α, β)) ≤ 1,

iii) E∗(α, β) = E∗(β, α),

iv) N(E∗(α, α)) = 0.

Proof. i) We know that

E(α, α) =

〈
1

ln 2

[
µ2
α,t ln

2µ2
α,t

µ2
α,t + µ2

α,t

+ ν2α,t ln
2ν2α,t

ν2α,t + ν2α,t
+ π2

α,t ln
2π2

α,t

π2
α,t + π2

α,t

]
,

1− 1

ln 2

[
µ2
α,i ln

2µ2
α,i

µ2
α,i + µ2

α,i

+ ν2α,i ln
2ν2α,i

ν2α,i + ν2α,i
+ π2

α,i ln
2π2

α,i

π2
α,i + π2

α,i

]
,

1− 1

ln 2

[
µ2
α,f ln

2µ2
α,f

µ2
α,f + µ2

α,f

+ ν2α,f ln
2ν2α,f

ν2α,f + ν2α,f
+ π2

α,f ln
2π2

α,f

π2
α,f + π2

α,f

]〉
= ⟨0, 1, 1⟩.

Therefore we obtain

E∗(α, α) =

〈
h−1

(
1

2

[
h
(
TE(α,α)

)
+ h
(
TE(α,α)

)])
, g−1

(
1

2

[
g
(
IE(α,α)

)
+ g
(
IE(α,α)

)])
,

g−1

(
1

2

[
g(FE(α,α)

)
+ g
(
FE(α,α)

)])〉
=

〈
TE(α,α), IE(α,α), FE(α,α)

〉
= ⟨0, 1, 1⟩.

ii) Since E∗(α, β) is a SNV we obtain that 0 ≤ N(E∗(α, β)) ≤ 1.

iii) It is trivial from definition of E∗.

iv) It is trivial from (i) and definition of N .

6 An Application of PFV NV s To A MCDM Problem

In this section, we provide a MCDM method in Pythagorean fuzzy valued neutrosophic environment. Then
we solve a MCDM problem from the literature by using the proposed method.
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C1 C2 C3

A1 ⟨0.4, 0.2, 0.3⟩ ⟨0.4, 0.2, 0.3⟩ ⟨0.2, 0.2, 0.5⟩
A2 ⟨0.6, 0.1, 0.2⟩ ⟨0.6, 0.1, 0.2⟩ ⟨0.5, 0.2, 0.2⟩
A3 ⟨0.3, 0.2, 0.3⟩ ⟨0.5, 0.2, 0.3⟩ ⟨0.5, 0.3, 0.2⟩
A4 ⟨0.7, 0.0, 0.1⟩ ⟨0.6, 0.1, 0.2⟩ ⟨0.4, 0.3, 0.2⟩

Table 1: SNVs of alternatives according to criteria

6.1 A MCDM method

In this sub-section, we give a MCDM method in the Pythagorean fuzzy valued neutrosophic environment. The
proposed method is applied to a MCDM problem adapted from the literature37, 38 to see the effectiveness of
the proposed method. The steps can be summarized as follows.

Step 1: Form a MCDM problem with alternatives A = {A1, . . . , An} and criteria C = {C1, . . . , Ck}.

Step 2: The weights of criteria are determined.

Step 3: The evaluation results of the alternatives are expressed by the expert as SNV s for each criterion.

Step 4: Using Proposition 3.7, evaluation results of alternatives in Step 3 are converted from SNVs to
PFVNVs.

Step 5: Evaluation values expressed as PFVNVs for each alternative according to criteria are transformed to a
value expressed as a PFVNV by utilizing proposed weighted aggregation operators.

Step 6: Positive ideal alternative for each sample is defined by

A+ = ⟨(µ+
t , ν

+
t ), (µ+

i , ν
+
i ), (µ+

f , ν
+
f )⟩

with alternatives A = {A1, . . . , An} = {⟨(µ1
t , ν

1
t ), (µ

1
i , ν

1
i ), (µ

1
f , ν

1
f )⟩, . . . , ⟨(mn

t , ν
n
t ), (µ

n
i , ν

n
i ), (µ

n
f , ν

n
f )⟩}

and

µ+
t = max

j∈{1,...,n}
µj
t , ν+t = min

j∈{1,...,n}
νjt , µ+

i = min
j∈{1,...,n}

µj
i , ν+i = max

j∈{1,...,n}
νji , µ+

f = min
i∈{1,...,n}

µj
f , ν+f = max

i∈{1,...,n}
νjf .

Here, all of the criteria are assumed to be benefit criteria. If there exists a cost criterion, then we can take
compliment.

Step 7: By using E∗ defined in Definition 5.5 the symmetric discrimination information measure between
aggregated value of each alternative and positive ideal alternative are calculated.

Step 8: The scores of these SNV s are obtained by using a score function.

Step 9: Alternatives are ranked so that the minimum score value is the best alternative.

6.2 An application

As an application, we consider an investment company which wants to invest a sum of money in the best
opinion. This problem is adapted from.37, 38 There are four alternatives for investing the money: (1) A1 (a
car company); (2) A2 (a food company); (3) A3 (a computer company); and (4) A4 (an arms company). The
investment company wants to make a decision using the following three criteria: (1) C1 (the risk); (2) C2

(the growth); and (3) C3 (the the environmental impact). The weight vector of the criteria is considered by
w = (0.35, 0.25, 0.4) and the decision matrix given in Table 1 is used as in.37, 38

Let fδ(t) = sinδt with δ ∈ [0, 1]. It is clear that fδ(t) = sinδt ≤
√
t for t ∈ [0, 1] (see also Figure 4).

Now we convert SNV s of alternatives in Table 1 to PFV NV s by using Proposition 3.7. For δ = 1, we
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Figure 4: The graphs of y =
√
t and fδ with δ ∈ [0, 1]

C1 C2

A1 ⟨(0.63, 0.56), (0.45, 0.72), (0.55, 0.64)⟩ ⟨(0.63, 0.56), (0.45, 0.72), (0.55, 0.64)⟩
A2 ⟨(0.77, 0.39), (0.32, 0.78), (0.45, 0.72)⟩ ⟨(0.77, 0.39), (0.32, 0.78), (0.45, 0.72)⟩
A3 ⟨(0.55, 0.64), (0.45, 0.72), (0.55, 0.64)⟩ ⟨(0.71, 0.48), (0.45, 0.72), (0.55, 0.64)⟩
A4 ⟨(0.84, 0.3), (0.0, 0.84), (0.32, 0.78)⟩ ⟨(0.77, 0.39), (0.32, 0.78), (0.45, 0.72)⟩

C3

A1 ⟨(0.45, 0.72), (0.45, 0.72), (0.71, 0.48)⟩
A2 ⟨(0.71, 0.48), (0.45, 0.72), (0.45, 0.72)⟩
A3 ⟨(0.71, 0.48), (0.55, 0.64), (0.45, 0.72)⟩
A4 ⟨(0.63, 0, 56), (0.55, 0.64), (0.45, 0.72)⟩

Table 2: PFVNVs of alternatives obtained for δ = 1

PFVNV
A1 ⟨(0.57, 0.62), (0.43, 0.76), (0.6, 0.62)⟩
A2 ⟨(0.76, 0.41), (0.37, 0.76), (0.43, 0.74)⟩
A3 ⟨(0.6, 0.59), (0.55, 0.74), (0.45, 0.68)⟩
A4 ⟨(0.74, 0.44), (0.0, 0.68), (0.48, 0.69)⟩
A+ ⟨(0.76, 0.41), (0.0, 0.76), (0.43, 0.74)⟩

Table 3: Aggregated PFVNV according to WAA − PFV NV and positive ideal alternative A+

Algebraic symmetric discrimination information measures SNV
E∗

A(A
+, A1) ⟨0.06, 0.97, 0.97⟩

E∗
A(A

+, A2) ⟨0.0, 0.99, 1⟩
E∗

A(A
+, A3) ⟨0.04, 0.93, 0.99⟩

E∗
A(A

+, A4) ⟨0.003, 0.99, 0.99⟩

Table 4: Algebraic symmetric discrimination information measures between positive ideal alternative and
alternatives
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Score
N(E∗

A(A
+, A1)) 0.039

N(E∗
A(A

+, A2)) 0.0048
N(E∗

A(A
+, A3)) 0.041

N(E∗
A(A

+, A4)) 0.0051

Table 5: Scores of Algebraic symmetric discrimination information measures between A+ and Aj(j =
1, 2, 3, 4)

Method Ranking order Best Alternative
Ye37 A1 ≺ A3 ≺ A2 ≺ A4 A4

Ye38 A1 ≺ A3 ≺ A4 ≺ A2 A2

Peng et al.18 A1 ≺ A3 ≺ A2 ≺ A4 A4

Proposed method A3 ≺ A1 ≺ A4 ≺ A2 A2

Table 6: The comparison of some previous methods with proposed method

obtain Table 2. When PFV NV s of each alternative with respect to criteria are aggregated by utilizing
WAA − PFV NV , Table 3 containing the positive ideal alternative is obtained.

Algebraic symmetric discrimination information measure E∗
A between positive ideal alternative A+ and alter-

natives are calculated. The results are shown in Table 4.

Score function N recalled in Definition 5.8 is used to rank the value of E∗
A. The smaller the value of

N(E∗
A(Aj , A

+)) is, the better the alternative Aj is. In the other words, the alternative Aj is closer to pos-
itive ideal alternative A+ as N(E∗

A(Aj , A
+)) gets smaller. The results of score function are shown in Table 5.

As a result, A2 is the best alternative.

6.3 Comparative analysis

6.3.1 Comparison with the literature

We compare the results of some existing methods with the results of the proposed method in Sub-section 6.1.
So as to solve the MCDM problem given in Sub-section 6.2, some methods were proposed under different
fuzzy environments. Ye38 gave a weighted correlation coefficient for SVNSs, utilized it to solve the same
investment problem and obtained the ranking A1 ≺ A3 ≺ A4 ≺ A2. Using different aggregation operators and
a similarity measure for SNSs, Ye37 solved the same problem and obtained the ranking A1 ≺ A3 ≺ A2 ≺ A4.
Similarly, Peng18 proposed some aggregation operators via t-norms and t-conorms, applied them to investigate
same problem and got the ranking A1 ≺ A3 ≺ A2 ≺ A4. The best alternative obtained with the present
method remains same with the one of37 and38 for some δ. The comparison results of proposed method with
the existing ones are shown in Table 6 and illustrated in Figure 5.

Figure 5: The column chart comparison of the other methods and proposed method
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δ Ranking order Best alternative
δ = 1 A3 ≺ A1 ≺ A4 ≺ A2 A2

δ = 0.9 A1 ≺ A3 ≺ A2 ≺ A4 A4

δ = 0.8 A3 ≺ A1 ≺ A2 ≺ A4 A4

δ = 0.7 A1 ≺ A3 ≺ A4 ≺ A2 A2

δ = 0.6 A1 ≺ A3 ≺ A2 ≺ A4 A4

δ = 0.5 A3 ≺ A1 ≺ A2 ≺ A4 A4

δ = 0.4 A1 ≺ A3 ≺ A2 ≺ A4 A4

δ = 0.3 A1 ≺ A3 ≺ A4 ≺ A2 A2

δ = 0.2 A1 ≺ A3 ≺ A2 ≺ A4 A4

δ = 0.1 A3 ≺ A1 ≺ A4 ≺ A2 A2

Table 7: The results with respect to WAA − PFV NV when the parameter δ varies from 0.1 and 1

δ Ranking order Best alternative
δ = 1 A1 ≺ A3 ≺ A4 ≺ A2 A2

δ = 0.9 A3 ≺ A1 ≺ A4 ≺ A2 A2

δ = 0.8 A1 ≺ A3 ≺ A2 ≺ A4 A4

δ = 0.7 A3 ≺ A1 ≺ A4 ≺ A2 A2

δ = 0.6 A1 ≺ A3 ≺ A2 ≺ A4 A4

δ = 0.5 A1 ≺ A3 ≺ A4 ≺ A2 A2

δ = 0.4 A3 ≺ A1 ≺ A4 ≺ A2 A2

δ = 0.3 A1 ≺ A3 ≺ A4 ≺ A2 A2

δ = 0.2 A1 ≺ A3 ≺ A4 ≺ A2 A2

δ = 0.1 A3 ≺ A1 ≺ A2 ≺ A4 A4

Table 8: The results with respect to WGA − PFV NV when the parameter δ varies from 0.1 and 1

6.3.2 Comparison with respect to parameter δ

We investigate the effect of the parameter δ on the ranking of alternatives with respect to WAA − PFV NV
and WGA−PFV NV . The results are summarized in Table 7 and Table 8. From these results, it is concluded
that the ranking of the alternative is A3 ≺ A1 ≺ A4 ≺ A2 when δ equals to 0.1 and 1 with respect to
WAA − PFV NV while A1 ≺ A3 ≺ A2 ≺ A4 when δ equals to 0.6 and 0.8 for WGA − PFV NV . When
δ equals to 0.1 and 1 with respect to WAA − PFV NV , we conclude that A2 is the best alternative, while by
using WGA−PFV NV , the best alternative is A4 when δ equals to 0.6 and 0.8. The graphical representation
of the behaviour of the alternatives with the δ variation is shown in Figure 6.

6.4 Time complexity of the proposed MCDM method

In this sub-section we analysis the complexity of the MCDM method proposed in Sub-section 6.1. Actually we
evaluate the time complexity that depends on the number of times of multiplication, exponential, summation

Figure 6: Effect of the parameter δ to the solution
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Figure 7: Time complexity of the proposed MCDM method

as in4 and.8 Consider a MCDM problem with n alternatives and k criteria. In Step 2 we need k operations, in
Step 3 we need 3kn operations, in Step 4 we need 6kn operations, in Step 5 we need 3n (6k + 2) operations
if we use the aggregation operator WGA − PFV NV and we need n(75k + 21) operations if we use the
aggregation operator WGE − PFV NV . In Step 6 we need 3n operations, in Step 7 we need 98n operations
and in Step 8 we need 5n operations. So the time complexity Tnk of the MCDM method is

TA
nk = k + 27kn+ 112n

for the aggregation operator WGA − PFV NV and

TE
nk = k + 84kn+ 127n

for the aggregation operator WGE − PFV NV . Clearly the bi-variate functions gA, gE : [2,∞)2 → R
defined by gA(x, y) = x + 27xy + 112y and gE(x, y) = x + 84xy + 127y both take absolute minimum at
point (2, 2). Figure 7 illustrates the change of the time complexity with respect to the change in the numbers
of the alternatives and the criteria for WGA − PFV NV and WGE − PFV NV .

7 Conclusion

The main aim of this study is to introduce the concept of PFVNS constructed by considering PFVs rather
than numbers, inspired by IFVNSs. Thus, a PFVNS is an extension of IFVNSs. PFVNSs are used to express
uncertainty in a more extended fuzzy environment. Therefore, larger information can be kept while the data
is converted to a FS. In this way, information loss is prevented. In this study, some set operations between
PFVNSs are proposed. We also introduce Pythagorean fuzzy t-norms and t-conorms with motivation from
intuitionistic fuzzy t-norms and t-conorms. We show that some Pythagorean fuzzy t-norms and t-conorms
are expressed via continuous Archimedean t-norms and continuous Archimedean t-conorms on [0, 1]. Then
we define some algebraic operations between PFVNVs by utilizing continuous Archimedean t-norm and con-
tinuous Archimedean t-conorms on [0, 1]. By way of these algebraic operations, some weighted aggregation
operators are proposed. Input values represented by PFVNVs are transformed to a single output value by us-
ing weighted aggregation operators. Also, we introduce a method that converts neutrosophic fuzzy values to
PFVNVs. By defining a simplified neutrosophic valued modified fuzzy cross-entropy measure we manage to
rank output values represented by PFVNVs with the help of a score function in simplified neutrosophic envi-
ronment. Next a MCDM method is given to see practicability of the proposed theory. The proposed method is
made use of to solve a MCDM problem adapted from the literature in Pythagorean fuzzy valued neutrosophic
environment. A comparison analysis and a complexity analysis are also provided. In the future, different kind
of aggregation operators and cross-entropy measures can be considered. The applications of the proposed
theory can be extended to some decision making problems such as face recognition systems, classification and
medical diagnosis.

Funding “The research of Mahmut Can Bozyiğit has been supported by Turkish Scientific and Technological
Research Council (TÜBİTAK) Program 2211.”
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