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Abstract: The existing Shewhart X-bar control charts using the exponentially weighted moving
average statistic are designed under the assumption that all observations are precise, determined,
and known. In practice, it may be possible that the sample or the population observations are
imprecise or fuzzy. In this paper, we present the designing of the X-bar control chart under the
symmetry property of normal distribution using the neutrosophic exponentially weighted moving
average statistics. We will first introduce the neutrosophic exponentially weighted moving average
statistic, and then use it to design the X-bar control chart for monitoring the data under an uncertainty
environment. We will determine the neutrosophic average run length using the neutrosophic Monte
Carlo simulation. The efficiency of the proposed plan will be compared with existing control charts.
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1. Introduction

The production process may shift from the target due to a number of reasons. Therefore, to produce
the product according to given specifications, it is watched to indicate any shift in the process. The control
charts are popularly used in the industry to watch the production process. In the industries, usually,
the Shewhart control charts are used for the monitoring of the process. Although these control
charts have a simple operational procedure, they are unable to detect a small shift in the process.
Therefore, the Shewhart control charts do not detect a very small shift, and cause a high non-conforming
product. The applications of such charts can be seen in [1–6].

The control charts using the exponentially weighted moving average (EWMA) used the current
subgroup and previous subgroup information, and were said to be more efficient in detecting a very
small shift in the process. The control chart based on this statistic is more efficient than the traditional
Shewhart control charts. Roberts [7] designed a control chart using this statistic first time. Haq [8] and
Haq et al. [9,10] used the EWMA statistic to propose a variety of control charts. Abbasi et al. [11] and
Abbasi [12] introduced its setting in normal and non-normal situations and for measurement errors,
respectively. Sanusi et al. [13] presented an alternative for the EWMA-based chart when additional
information about the main variable is available. References [14–17] presented such control charts.
More basic information about the control charts can be seen in [18,19].

The traditional Shewhart control charts cannot be applied when uncertainty or randomness is
expected in the data. The fuzzy-based control charts are the best alternative to monitor the process when
observations or the parameters under study are fuzzy. As mentioned by Khademi and Amirzadeh [20],
“Fuzzy data exist ubiquitously in the modern manufacturing process”; therefore, serval authors paid
attention to work on such control charts, such as for example [21–26].

Mathematics 2019, 7, 957; doi:10.3390/math7100957 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0003-0644-1950
https://orcid.org/0000-0003-0232-3260
http://www.mdpi.com/2227-7390/7/10/957?type=check_update&version=1
http://dx.doi.org/10.3390/math7100957
http://www.mdpi.com/journal/mathematics


Mathematics 2019, 7, 957 2 of 13

The traditional fuzzy logic is a special case of neutrosophic logic. The latter one has the ability
to deal with the measure of indeterminacy; see Smarandache [27]. The classic statistics (CS) method
is applied under the assumption that all observations in data are determined, precise, and certain.
However, in the modern manufacturing process, it may not be possible to record all determined
observations in the data. In this situation, the neutrosophic statistics (NS) can be applied for the
analysis of the data. The NS was introduced by Smarandache [28] using neutrosophic logic, which is
the generation of CS. The NS is more effective to be applied for the analysis of imprecise data than CS.
Chen et al. [29,30] proved the effectiveness of the NS-based analysis. Aslam [31] introduced a new
area of neutrosophic quality control (NQC). Aslam et al. [32,33] introduced NS-based attributes and
variable charts. Aslam and Khan [34] proposed the X-bar chart under NS. Aslam et al. [35] designed a
chart to monitor reliability under uncertainty. Aslam [36,37] proposed the attribute and variable charts
using resampling under NS.

Şentürk et al. [38] proposed the EWMA control chart using the fuzzy approach, which is the
special case of the control chart using the neutrosophic logic, as mentioned by Smarandache [27].
By looking into the literature of the control chart under the uncertainty environment, we did not
find any work on the X-bar control chart based on the neutrosophic exponentially weighted moving
average (NEWMA). In this paper, we will first introduce NEWMA. We will introduce the new Monto
Carlo simulation under the neutrosophic statistical interval method (NSIM). We will determine the
neutrosophic average run length (NARL) of the proposed chart to compare its performance. We hope
that the proposed chart will be more sensitive in detecting a small shift in the process as compared to
the traditional Shewhart X-bar chart, EWMA X-bar chart under CS [19] and X-bar chart under NS [34].

2. The Proposed NEWMA Statistics

In this section, we will introduce NEWMA statistics. Let XNε

[∑nL
i=1 Xi
nL

,
∑nU

i=1 Xi
nU

]
; XNε

{
XL, XU

}
be the neutrosophic sample average of a neutrosophic random variable (nrv) XiNε{XL, XU} = i =

1,2,3, . . . , nN, where nN is the neutrosophic sample size. Suppose that S2
N =

∑nN
i=1

(
XN −XN

)2
/nN −

1; S2
Nε

{
S2

L, S2
L

}
represents the neutrosophic sample variance. By following Smarandache [28] and

Aslam [31], the neutrosophic sample average follows the neutrosophic normal distribution (NND)
with a neutrosophic population mean µN =

∑NN
i=1 XN/NN; µNε

{
µL,µU

}
and neutrosophic population

variance σ2
N =

[{∑nN
i=1(XN − µN)

2/NN − 1
}
/nN

]
; σ2

Nε
{
σ2

L/nN, σ2
L/nN

}
. Based on the given information,

we define NEWMA statistics as follows:

EWMAN,i = λNXN + (1− λN)EWMAN,i−1; EWMAN,iε
{
EWMAL,i, EWMAU,i

}
(1)

where λNε{λL,λU}; [0, 0] ≤ λN ≤ [1, 1] denotes the neutrosophic smoothing constant. Note here that
XNε

{
XL, XU

}
are assumed to be independent random variables with neutrosophic variance σ2

N/nN

(σ2
Nε

{
σ2

L/nN, σ2
L/nN

}
and known neutrosophic population variance, as shown in [38]. The setting

of λNε{λL,λU} is matter of personal experience. Montgomery [14] recommended that it should be
selected from 0.05 to 0.25. The EWMAN,i follows the NND with neutrosophic mean µNε

{
µL,µU

}
and

neutrosophic standard deviation σN√
nN

√
λN

2−λN
.

3. The Proposed NEWMA X-Bar Control Chart

The proposed X-bar control chart using the NS is described as follows:

1. Choose a random sample of size nNε{nL, nU} and compute EWMAN,i statistics.

EWMAN,i = λNXN + (1− λN)EWMAN,i−1; EWMAN,iε
{
EWMAL,i, EWMAU,i

}
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2. Declare the process is an in-control state if LCLN < EWMAN,i < UCLN; otherwise, it is in
an out-of-control state. Note here that LCLNε[LCLL, LCLU] and LCUNε[LCUL, LCUU] are the
neutrosophic lower and upper control limits.

The proposed chart becomes a chart based on NS proposed by Aslam and Khan [34] when
λNε{1, 1}. When all the observations are precise, the proposed chart becomes the traditional Shewhart
chart under CS. The neutrosophic control limits are given by:

LCLN = µN − kN
σN
√

nN

√
λN

2− λN
; LCLNε[LCLL, LCLU], kN ∈

{
kL,, kU

}
, µN ∈

{
µL,,µU,

}
(2)

UCLN = µN + kN
σN
√

nN

√
λN

2− λN
; LCUNε[LCUL, LCUU], kN ∈

{
kL,, kU

}
, µN ∈

{
µL,,µU,

}
(3)

where kN ∈
{
kL,, kU

}
is the neutrosophic control limits coefficient, and will be determined later.

Let µ0Nε
{
µ0L,µ0U

}
be the target value for the process. According to the operational process of the

proposed control, the probability that the process under the NS is an in-control state is given by:

P0
inN = P

(
LCLN ≤ X ≤ UCLN/µ0N

)
; µ0Nε

{
µ0L,µ0U

}
(4)

The neutrosophic average run length (NARL) of the proposed chart is given by:

ARL0N =
1

1− P0
inN

; ARL0Nε{ARL0L, ARL0U} (5)

Suppose now that the process has shifted to a new target at µ1N = µ0N + dσN; µ1Nε
{
µ1L,µ1U

}
,

where d is the shift constant. The neutrosophic probability of an in-control state at µ1Nε
{
µ1L,µ1U

}
is

given by:
P1

in = P
(
LCLN ≤ XN ≤ UCLN/µN1 = µN + dσN

)
; µ1Nε

{
µ1L,µ1U

}
.

The NARL at µ1Nε
{
µ1L,µ1U

}
is defined by:

ARL1N =
1

1− P1
in

; ARL1Nε{ARL1L, ARL1U} (6)

4. The Proposed Neutrosophic Monte Carlo Simulation (NMCS)

As we mentioned earlier, the neutrosophic control limits coefficient kNε
{
kL,, kU

}
will be determined

through the neutrosophic Monte Carlo Simulation (NMCS) under the given constraints. The proposed
NMCS is stated as follows.

4.1. For In-Control State

Step 1: A random sample of size nNε{nL, nU} is generated from a standard normal distribution.
The mean of the random sample interval of size nNε{nL, nU} is computed as XNε

{
XL, XU

}
is computed.

The plotting EWMAN,i statistic is computed as:

EWMAN,i = λNxN + (1− λN)EWMAN,i−1

Step 2: The proposed statistic EWMAN,i is plotted over the LCLNε[LCLL, LCLU] and
LCUNε[LCUL, LCUU] by selecting a suitable value of kNε

{
kL,, kU

}
, and ARL0Nε{ARL0L, ARL0U}

is computed.
Step 3: The ARL0Nε{ARL0L, ARL0U} and neutrosophic standard deviation (NSD) are computed

by iterating process 10,000; only those kNε
{
kL,, kU

}
values along with their respective parameters
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are selected for which ARL0N = r0N; ARL0Nε{ARL0L, ARL0U}, where r0N is the specified value of
ARL0Nε{ARL0L, ARL0U}.

4.2. For Shifted Process

Step 1: For selected values of kNε
{
kL,, kU

}
and their corresponding parameters, LCLNε[LCLL, LCLU]

and LCUNε[LCUL, LCUU] constructed.
Step 2: As per explained for the in control process in step 1, now data is generated atµ1Nε

{
µ1L,µ1U

}
and plotted on LCLNε[LCLL, LCLU] and LCUNε[LCUL, LCUU], and ARL1Nε{ARL1L, ARL1U}

is computed.
Step 3: The ARL1Nε{ARL1L, ARL1U} is computed for a specified shift level by 10,000 iterations of

the process.
Step 4: For various shifts, levels step 2 and 3 are repeated, the values ARL1Nε{ARL1L, ARL1U} and

NSD are computed at various values of d.
Note here that the proposed NMCS is the generalization of Monte Carlo simulation under CS.

The values of ARL1Nε{ARL1L, ARL1U} and NSD are determined for various values of d, nNε{nL, nU}

and λNε{λL,λU} ARL0Nε{ARL0L, ARL0U}, and are shown in Tables 1–4 for ARL0Nε{300, 300} rather
than ARL0Nε{370, 370}. The values of NARL when nNε[3, 5] and λNε[0.08, 0.12] are shown in Table 1.
The values of NARL when nNε[3, 5] and λNε[0.18, 0.22] are shown in Table 2. The values of NARL
when nNε[3, 5] and λNε[0.28, 0.32] are shown in Table 3. The values of NARL when nNε[5, 10], nNε[5, 8],
and λNε[0.08, 0.12] are given in Table 4. From Tables 1–4, it is worth to note that when all other
parameters are constant, the values of NSD are smaller for ARL0Nε{300, 300} than for ARL0Nε{370, 370}.
With the increase inλNε{λL,λU}, we note the decreasing trend in ARL1Nε{ARL1L, ARL1U} and increasing
trend in NSD. From Table 4, we observe that the indeterminacy interval in ARL1Nε{ARL1L, ARL1U}

increases as nNε{nL, nU} increases from nNε [5,8] to nNε [5,10]. On the other hand, the indeterminacy
interval in NSD deceases as nNε{nL, nU} increases.

Table 1. The values neutrosophic average run length (NARL) and neutrosophic standard deviation
(NSD) when nNε[3, 5] and λNε[0.08, 0.12].

kN [2.565,2.675] [2.655,2.765]

d NARL NSD NARL NSD

0 [306.19,301.49] [288.72,289.56] [368.28,376.77] [345.26,354.91]
0.05 [220.34,202.5] [206.84,195.15] [270.32,248.92] [257.15,238.27]
0.1 [121.84,99.72] [109.75,93.06] [141.33,117.16] [130.78,106.3]

0.15 [71.34,53.39] [61.32,45.2] [80.28,61.22] [68.96,53.3]
0.2 [45.6,33.38] [36.07,25.93] [50.59,36.58] [39.41,28.44]

0.25 [32.02,22.68] [22.98,15.89] [34.7,24.71] [24.42,17.5]
0.3 [24.18,16.77] [15.29,10.67] [25.78,18.28] [16.59,11.86]
0.4 [15.69,10.75] [8.58,5.6] [16.62,11.53] [9.06,6.2]
0.5 [11.67,8] [5.47,3.69] [12.24,8.19] [5.83,3.66]
0.6 [9.16,6.21] [3.86,2.47] [9.57,6.52] [4,2.59]
0.7 [7.56,5.17] [2.9,1.89] [7.91,5.35] [3.01,1.91]
0.8 [6.42,4.39] [2.27,1.44] [6.74,4.59] [2.34,1.51]
0.9 [5.67,3.85] [1.84,1.17] [5.87,4] [1.88,1.21]
1 [5.03,3.43] [1.53,0.98] [5.17,3.58] [1.55,1.02]

1.25 [3.96,2.75] [1.07,0.71] [4.08,2.85] [1.09,0.72]
1.5 [3.29,2.31] [0.79,0.52] [3.4,2.37] [0.8,0.55]

1.75 [2.83,2.05] [0.65,0.38] [2.93,2.1] [0.65,0.39]
2 [2.5,1.89] [0.56,0.37] [2.58,1.94] [0.57,0.32]

2.5 [2.09,1.52] [0.33,0.5] [2.12,1.59] [0.34,0.49]
3 [1.92,1.14] [0.3,0.35] [1.96,1.19] [0.25,0.39]
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Table 2. The values NARL and NSD when nNε[3, 5] and λNε[0.18, 0.22].

kN [2.77,2.815] [2.85,2.888]

d NARL NSD NARL NSD

0 [306.29,304.18] [295.94,294.05] [368.53,367.73] [347.63,347.95]
0.05 [248.13,232.68] [238.69,228.36] [303.11,279.09] [289.54,265.81]
0.1 [155.07,128.27] [149.33,122.61] [187.46,150.35] [180.34,144.18]

0.15 [93.67,71.64] [87.13,66.2] [110.77,82.51] [105.67,77.1]
0.2 [60.15,42.93] [53.64,38.28] [69.85,47.94] [62.94,42.65]

0.25 [40.47,27.91] [34.74,23.37] [45.33,31.22] [39.11,27.02]
0.3 [29.38,19.78] [23.75,15.61] [32.21,21.34] [27.03,16.82]
0.4 [17.27,11.6] [12.42,7.85] [18.72,12.15] [13.34,8.17]
0.5 [11.66,7.91] [7.53,4.58] [12.46,8.32] [7.82,4.77]
0.6 [8.69,5.89] [4.75,2.88] [9.15,6.18] [5.16,3.08]
0.7 [6.85,4.75] [3.42,2.09] [7.25,4.91] [3.63,2.17]
0.8 [5.68,3.98] [2.55,1.6] [5.9,4.1] [2.66,1.64]
0.9 [4.85,3.41] [1.99,1.26] [5.04,3.51] [2.04,1.28]
1 [4.24,3.01] [1.61,1.02] [4.38,3.11] [1.68,1.05]

1.25 [3.25,2.38] [1.06,0.69] [3.36,2.43] [1.1,0.69]
1.5 [2.67,2] [0.77,0.52] [2.76,2.04] [0.79,0.52]

1.75 [2.3,1.74] [0.59,0.49] [2.36,1.78] [0.6,0.49]
2 [2.04,1.51] [0.47,0.51] [2.08,1.56] [0.48,0.5]

2.5 [1.7,1.13] [0.48,0.34] [1.76,1.17] [0.46,0.37]
3 [1.35,1.01] [0.48,0.12] [1.41,1.02] [0.49,0.14]

Table 3. The values NARL and NSD when nNε[3, 5] and λNε[0.28, 0.32].

kN [2.85,2.865] [2.93,2.945]

d NARL NSD NARL NSD

0 [304.15,300.13] [293.48,289.27] [376.11,372.72] [357.13,349.32]
0.05 [262.23,240.42] [255.83,239.44] [324.21,297.07] [310.4,288.11]
0.1 [181.48,148.62] [182.19,145.09] [219.18,184.26] [216.15,178.17]

0.15 [118.58,88.25] [116.39,85.83] [143.28,103.88] [141.14,100.56]
0.2 [77.25,52.48] [72.69,49.36] [90.85,61.51] [86.42,56.98]

0.25 [52.6,35.06] [49.24,31.52] [60.08,39.45] [56.86,35.65]
0.3 [36.38,23.97] [32.41,20.83] [41.96,26.95] [37.69,23.26]
0.4 [20.61,12.97] [17.05,10.06] [23.16,14.29] [19.08,11.15]
0.5 [13.37,8.5] [10.02,5.75] [14.41,9.22] [10.91,6.35]
0.6 [9.35,6.11] [6.27,3.65] [10.05,6.31] [6.73,3.73]
0.7 [7.06,4.68] [4.19,2.44] [7.47,4.94] [4.44,2.59]
0.8 [5.63,3.8] [3.02,1.78] [5.98,4] [3.25,1.88]
0.9 [4.73,3.22] [2.32,1.39] [4.92,3.37] [2.44,1.44]
1 [4.05,2.82] [1.81,1.1] [4.17,2.94] [1.91,1.15]

1.25 [3.01,2.18] [1.15,0.72] [3.1,2.23] [1.19,0.73]
1.5 [2.43,1.79] [0.8,0.57] [2.47,1.84] [0.81,0.58]

1.75 [2.06,1.51] [0.62,0.53] [2.11,1.56] [0.61,0.53]
2 [1.8,1.28] [0.54,0.45] [1.85,1.33] [0.54,0.47]

2.5 [1.41,1.05] [0.5,0.21] [1.46,1.05] [0.51,0.22]
3 [1.13,1] [0.34,0.05] [1.17,1] [0.38,0.06]
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Table 4. The values NARL and NSD when nNε[5, 10], nNε[5, 8],and λNε[0.08, 0.12].

kN [5,8] [2.658,2.765] [5,10] [2.66,2.77]

d NARL NSD NARL NSD

0 [377.43,374.68] [353.08,351.51] [378.24,375.35] [351.52,352.17]
0.05 [225.26,200.98] [211.29,190.39] [222.54,184.41] [214.36,176.53]
0.1 [100.64,81.77] [88.74,75.56] [100.83,66.16] [88.44,57.36]

0.15 [52.67,40.17] [42.89,32.77] [53.58,33.15] [42.82,25.6]
0.2 [32.94,24.23] [23.17,17.19] [33.03,19.79] [23.32,12.94]

0.25 [23.34,16.54] [14.33,10.43] [23.03,13.78] [14.25,8.06]
0.3 [17.43,12.48] [9.54,7.04] [17.43,10.48] [9.7,5.39]
0.4 [11.62,8.17] [5.38,3.74] [11.7,7.06] [5.43,2.93]
0.5 [8.69,6.08] [3.43,2.32] [8.75,5.3] [3.49,1.9]
0.6 [6.98,4.86] [2.49,1.64] [6.97,4.25] [2.46,1.33]
0.7 [5.83,4.07] [1.83,1.24] [5.84,3.61] [1.9,1.03]
0.8 [5.05,3.52] [1.49,0.99] [5.03,3.14] [1.47,0.84]
0.9 [4.39,3.11] [1.2,0.83] [4.41,2.79] [1.21,0.71]
1 [3.95,2.79] [1.01,0.7] [3.96,2.51] [1.01,0.6]

1.25 [3.17,2.26] [0.74,0.49] [3.17,2.09] [0.73,0.38]
1.5 [2.67,2] [0.6,0.34] [2.66,1.87] [0.59,0.36]

1.75 [2.3,1.8] [0.48,0.41] [2.3,1.61] [0.48,0.49]
2 [2.08,1.57] [0.31,0.49] [2.08,1.3] [0.31,0.46]

2.5 [1.89,1.1] [0.32,0.3] [1.88,1.02] [0.33,0.13]
3 [1.53,1] [0.5,0.06] [1.54,1] [0.5,0.01]

5. Comparative Studies

In traditional control under CS, it is known that a control chart having the smaller values of
average run length (ARL) and standard deviation of run length (SDRL) is said to be efficient in
detecting the shift in the process. In the neutrosophic theory, according to [29,30], a method is said to
be efficient if it provides the parameter in the indeterminacy interval rather than the determined values
in uncertainty. As mentioned by [32], a chart under the NS is said to be more efficient if it has smaller
values of NARL than the competitor’s charts. We will compare the efficiency of the proposed chart in
NARL with the traditional Shewhart X-bar, EWMA X-bar chart proposed by [19] and chart proposed
by [34] under NS. We will compare the performance of all the charts at the same specified neutrosophic
parameters. Table 5 shows the NARL values of the control charts when nNε[3, 5], ARL0Nε{370, 370},
and λNε[0.08, 0.12]. We note that the proposed chart under the NS has smaller values of NARL as
compared to the traditional Shewhart X-bar, EWMA X-bar chart [19] and charts proposed by [34].
For example, when d = 0.05, the NARL and NSD from the present chart are ARL1Nε{270.32, 248.92}
and NSDε [257.15,238.27]; from [34], it is ARL1Nε[356.86, 348.52], and from [19], they are charts 278 and
261, respectively. From this comparison, it is clear that the proposed chart has smaller values of NARL
and NSD, which has the ability to detect a small shift in the process. The theoretical comparisons in
NARL of the three charts show the superiority of the proposed control chart.
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Table 5. The comparison between three charts.

[19] Chart Shewhart X-Bar Chart Under CS Proposed Chart [34]

n= 3; λ k = 2.715 n= 3; λ = 1.0 k = 3.01 kNε [2.655,2.765]; n= [3,5]; λNε[0.08,0.12] kNε [3,3.001]; λNε[0.08,0.12].

d ARL SDRL ARL SDRL NARL NSD NARL

0 371.865 348.837136 370.8831 354.4075 [368.28,376.77] [345.26,354.91] [370.08,370.11]
0.05 278.1253 261.774943 358.9364 340.3296 [270.32,248.92] [257.15,238.27] [356.86,348.52]
0.1 150.7524 140.816481 328.7539 317.8932 [141.33,117.16] [130.78,106.3] [321.83,295.53]
0.15 86.3401 77.451166 283.8335 280.105 [80.28,61.22] [68.96,53.3] [275.44,233.48]
0.2 53.6373 44.328357 234.1001 229.8941 [50.59,36.58] [39.41,28.44] [227.54,177.61]
0.25 36.4577 28.061015 194.5368 194.1908 [34.7,24.71] [24.42,17.5] [184.1,133.07]
0.3 26.9744 18.701549 150.8646 152.3704 [25.78,18.28] [16.59,11.86] [147.43,99.48]
0.4 16.8197 9.92102 97.1724 95.70603 [16.62,11.53] [9.06,6.2] [93.98,56.56]
0.5 12.0976 6.090614 62.5904 60.1786 [12.24,8.19] [5.83,3.66] [60.65,33.38]
0.6 9.2986 4.102965 41.1474 40.18904 [9.57,6.52] [4,2.59] [40.01,20.55]
0.7 7.6389 3.122736 27.6095 26.86251 [7.91,5.35] [3.01,1.91] [27.06,13.21]
0.8 6.4074 2.341447 19.2001 18.76261 [6.74,4.59] [2.34,1.51] [18.78,8.85]
0.9 5.5639 1.885225 13.5113 12.74982 [5.87,4] [1.88,1.21] [13.37,6.18]
1 4.9515 1.570858 9.811 9.239676 [5.17,3.58] [1.55,1.02] [9.76,4.49]
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For the summated data, we suppose that nNε[3, 5], ARL0Nε{370, 370}, and λNε[0.08, 0.12].
The 40 observations from NND are generated, having half of the data generated assuming that
the process is in-control state, and next 20 observations are generated assuming that the process has
shifted with d = 0.25. The simulated data along with XNε

{
XL, XU

}
and EWMAN,i are shown in Table 6.

From Table 1, the tabulated NARL is ARL1Nε{24.42, 17.5}, so it is expected that the shift should be
detected between the 17th sample and the 24th sample. We constructed Figure 1 for the proposed
control chart, Figure 2 for the chart proposed by [34], and Figure 3 for the traditional Shewhart X-bar
chart. From Figures 1–3, it is worth noting that the proposed control chart detects the shift in the
process between the 17th sample and the 24th sample. Figure 2 shows that although the process is an
in-control state, some points are in an indeterminacy interval. Figure 3 shows that the process is an
in-control state, and all the parameters are determined. By comparing Figures 1–3, it is concluded
that the proposed control under NS is quite effective, flexible, and efficient in detecting the shift in the
process as compared to the existing control charts.

Table 6. The simulated neutrosophic data.

Sr# ¯
XN EWMAN Sr# ¯

XN EWMAN

1 [73.99838,73.99999] [73.99995,74.00009] 21 [73.99971,74.00165] [73.99984,74.00022]
2 [73.99981,73.9995] [73.99994,74.00002] 22 [73.99993,73.99948] [73.99985,74.00013]
3 [74.00099,74.00014] [74.00003,74.00004] 23 [74.00076,74.00065] [73.99992,74.00019]
4 [74.00015,73.99811] [74.00004,73.99981] 24 [73.9993,73.99972] [73.99987,74.00014]
5 [74.00114,73.99979] [74.00012,73.9998] 25 [73.99958,73.99998] [73.99985,74.00012]
6 [74.00067,73.99963] [74.00017,73.99978] 26 [74.00036,74.00098] [73.99989,74.00022]
7 [74.00055,74.00081] [74.0002,73.99991] 27 [74.0003,73.99988] [73.99992,74.00018]
8 [74.00034,73.99897] [74.00021,73.99979] 28 [74.00039,73.99945] [73.99996,74.00009]
9 [73.99929,73.99955] [74.00014,73.99976] 29 [74.00027,74.00025] [73.99998,74.00011]

10 [73.99944,73.99988] [74.00008,73.99978] 30 [73.99993,74.00118] [73.99998,74.00024]
11 [74.00008,74.00013] [74.00008,73.99982] 31 [74.00062,74.00047] [74.00003,74.00027]
12 [73.99965,74.00038] [74.00005,73.99989] 32 [74.00077,74.00038] [74.00009,74.00028]
13 [74.00073,73.99959] [74.0001,73.99985] 33 [73.99993,74.00014] [74.00008,74.00026]
14 [73.99947,73.99942] [74.00005,73.9998] 34 [74.00065,74.00044] [74.00012,74.00029]
15 [73.99962,73.99951] [74.00002,73.99977] 35 [73.99977,74.00121] [74.00009,74.0004]
16 [73.99927,74.00025] [73.99996,73.99982] 36 [74.00068,74.00122] [74.00014,74.00049]
17 [74.00016,74.00104] [73.99997,73.99997] 37 [74.00078,74.00129] [74.00019,74.00059]
18 [74.00039,74.00034] [74.00001,74.00001] 38 [74.00079,73.99968] [74.00024,74.00048]
19 [73.99919,74.00029] [73.99994,74.00005] 39 [73.99973,73.99953] [74.0002,74.00037]
20 [73.99881,73.99987] [73.99985,74.00003] 40 [74.00126,73.99959] [74.00028,74.00027]
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6. Application

A famous automobile industry situated in Saudi Arabia is interested in applying the proposed
control chart under the NS for monitoring the production of engine piston rings (EPR). The EPR is an
important part of the engine, which improves its efficiency by minimizing the gas or oil leakage and
transforming the heat to the cylinder wall. The EPR is a continuous variable and has the possibility
of imprecise, fuzzy, and in-determined values. In such a case, the use of the proposed control to
monitor the production process of EPR using the proposed control chart under the NS will be more
effective and informative than the use of the existing control chart. The proposed control chart will
enhance the power of the monitoring of the process using the current sample and previous sample
information. Furthermore, the simulation study showed the efficiency of the proposed chart over the
existing chart proposed by Aslam and Khan [34]. Therefore, the use of the proposed control chart
for the monitoring of ERP production in the industry will help in minimizing the non-conforming
ERP product. Suppose that the automobile industry is interested in seeing the efficiency of the
proposed chart when nNε[3, 5], ARL0Nε{370, 370}, and λNε[0.12, 0.12]. The neutrosophic control limit
coefficient is kNε{3.001, 3.002}. The neutrosophic data of ERP is taken from Aslam and Khan [34] and
shown in Table 7 for easy reference. The neutrosophic statistic and neutrosophic control limits for
monitoring the ERP data shown in Table 7 are LCLNε{73.9964, 73.9969}; σNε{0.008896, 0.009399} and
UCLNε{74.0051, 74.0055}; σNε{0.008896, 0.009399}. We constructed Figure 4 for the proposed control
chart, Figure 5 for the chart proposed by Aslam and Khan [34], and Figure 6 for the traditional Shewhart
X-bar chart. From Figures 4–6, it is noted that the proposed control chart shows that the process
is near the neutrosophic target lines. On the other hand, the existing control chart by Aslam and
Khan [34] shows much variation in the process. The traditional Shewhart has the determined values of
parameters, and is not suitable in uncertainty. By comparing the three charts, it is concluded that the
proposed chart has the ability to centralize EPR production process.



Mathematics 2019, 7, 957 10 of 13

Table 7. The neutrosophic EPR data.

Sr# Sample ¯
XN EWMAN

1 [74.03,74.03] [74.002,73.991] [74.019,74.019] [73.992,73.992] [74.008,74.001] [74.0102,74.0066] [74.0023,74.0021]
2 [73.995,73.995] [73.992,74.003] [74.001,74.001] [74.011,74.011] [74.004,74.004] [74.0006,74.0028] [74.0021,74.0021]
3 [73.988,74.017] [74.024,74.024] [74.021,74.021] [74.005,74.005] [74.002,73.995] [74.008,74.0124] [74.0028,74.0028]
4 [74.002,74.002] [73.996,73.996] [73.993,73.993] [74.015,74.015] [74.009,74.009] [74.003,74.003] [74.0028,74.0028]
5 [73.992,73.992] [74.007,74.007] [74.015,74.015] [73.989,73.989] [74.014,73.998] [74.0034,74.0002] [74.0029,74.0013]
6 [74.009,74.009] [73.994,74.001] [73.997,73.997] [73.985,73.985] [73.993,73.993] [73.9956,73.997] [74.002,74.0008]
7 [73.995,73.998] [74.006,74.006] [73.994,73.994] [74,74] [74.005,74.005] [74,74.0006] [74.0018,74.0013]
8 [73.985,73.985] [74.003,74.01] [73.993,73.993] [74.015,74.015] [73.988,73.988] [73.9968,73.9982] [74.0012,74.001]
9 [74.008,74.005] [73.995,73.995] [74.009,74.009] [74.005,74.005] [74.004,74.004] [74.0042,74.0036] [74.0015,74.0017]

10 [73.998,73.998] [74,74] [73.99,73.99] [74.007,74.007] [73.995,73.995] [73.998,73.998] [74.0011,74.0013]
11 [73.994,73.998] [73.998,73.998] [73.994,73.994] [73.995,73.995] [73.99,74.001] [73.9942,73.9972] [74.0003,74.0009]
12 [74.004,74.004] [74,74.002] [74.007,74.005] [74,74.001] [73.996,73.996] [74.0014,74.0016] [74.0004,74.001]
13 [73.983,73.993] [74.002,74.002] [73.998,73.998] [73.997,73.997] [74.012,74.005] [73.9984,73.999] [74.0002,74.0011]
14 [74.006,74.006] [73.967,73.985] [73.994,73.994] [74,74] [73.984,73.996] [73.9902,73.9962] [73.999,74.0006]
15 [74.012,74.012] [74.014,74.012] [73.998,73.998] [73.999,73.999] [74.007,74.007] [74.006,74.0056] [73.9998,74.0019]
16 [74,74] [73.984,73.984] [74.005,74.005] [73.998,73.998] [73.996,73.996] [73.9966,73.9966] [73.9994,74.0013]
17 [73.994,73.994] [74.012,74.012] [73.986,73.986] [74.005,74.005] [74.007,74.007] [74.0008,74.0008] [73.9996,74.0014]
18 [74.006,74.006] [74.01,74.011] [74.018,74.018] [74.003,74.003] [74,74.001] [74.0074,74.0078] [74.0005,74.0021]
19 [73.984,73.984] [74.002,74.002] [74.003,74.003] [74.005,74.005] [73.997,73.997] [73.9982,73.9982] [74.0003,74.0011]
20 [74] [74.01,74.01] [74.013,74.009] [74.02,74.015] [74.003,74.003] [74.0092,74.0074] [74.0013,74.0018]
21 [73.982,73.982] [74.001,74.001] [74.015,74.015] [74.005,74.005] [73.996,73.996] [73.9998,73.9998] [74.0011,74.0012]
22 [74.004,74.004] [73.999,73.999] [73.99,73.99] [74.006,74.006] [74.009,74.002] [74.0016,74.0002] [74.0012,74.0011]
23 [74.01,74.01] [73.989,73.989] [73.99,73.99] [74.009,74.005] [74.014,74.011] [74.0024,74.001] [74.0013,74.0014]
24 [74.015,74.011] [74.008,74.008] [73.993,73.993] [74,74] [74.01,74.011] [74.0052,74.0046] [74.0018,74.0018]
25 [73.982,73.982] [73.984,73.989] [73.995,73.995] [74.017,74.012] [74.013,74.01] [73.9982,73.9976] [74.0014,74.001]
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We presented the designing of the X-bar control chart using the neutrosophic EWMA (NEWMA)
statistics. The neutrosophic NEWMA and NMSC are introduced in this paper. Some tables for various
neutrosophics are presented for practical use in the industry. The theoretical comparisons in the NARL
and simulation study showed that the proposed chart performs better than the competitor’s charts.
The real example of ERP data from the automobile industry also showed the efficiency of the proposed
chart. We recommend using the proposed control chart for monitoring the process in the automobile,
aerospace, mobiles, water drinking, and medical instrument industries. The proposed chart can be
only applied when the variable of interest follows the neutrosophic normal distribution. The proposed
chart using some non-normal distributions can be considered as future research. The proposed control
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