
   

 

 

1. Introduction  

Neutrosophy has been proposed by Smarandache [1] as a new branch of philosophy, with ancient roots, 

dealing with “the origin, nature, and scope of neutralities, as well as their interactions with different 

ideational spectra”. The fundamental thesis of neutrosophy is that every idea has not only a certain 

degree of truth, as is generally assumed in many-valued logic contexts but also a falsity degree and an 

indeterminacy degree that have to be considered independently from each other. Smarandache seems 

to understand such “indeterminacy” both in a subjective and in an objective sense, i.e. as uncertainty as 

well as imprecision, vagueness, error, doubtfulness, etc. 

Neutrosophic Set (NS) is a generalization of the fuzzy set [2] and intuitionistic fuzzy set [3] and can 

deal with uncertain, indeterminate, and incongruous information where the indeterminacy is quantified 

explicitly and truth membership, indeterminacy membership and falsity membership are completely 

independent. Moreover, some extensions of NSs, including interval neutrosophic set [4], bipolar 

neutrosophic set [5], single-valued neutrosophic set [6], multi-valued neutrosophic set [7], and 

neutrosophic linguistic set [8] have been proposed and applied to solve various problems [9-12]. 
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The main purpose of this paper is to propose a new model for linear programming, including 

neutrosophic variables and right-hand side and to present a solution method for this neutrosophic LP 

problem.  

2. Preliminaries  

In this section, we present some basic definitions and arithmetic operations single valued trapezoidal 

neutrosophic fuzzy numbers.  

Definition 1. [4].  Let X be a space of points (objects), with a generic element in X denoted by x. A 

neutrosophic set A in X is characterized by a truth-membership function TA(x), an indeterminacy 

membership function IA(x), and a falsity-membership function FA(x). If the functions TA(x), IA(x) and 

FA(x) are singleton subintervals/subsets in the real standard [0, 1], that is TA(x): X [0,1],→  IA(x): 

X [0,1],→ and FA(x): X [0,1].→ Then, a Single valued neutrosophic set A is denoted by

A A A{( ( ) (A x, T x , I x , ) ( ))F x X| x }=  which is called a SVNS. Also, SVNS satisfies the condition 

A A A0 T x I x( ) ( ) ( ) 3.F x + +   

Definition 2. [4]. For SVNSs A and B, A ⊆B if and only if BAT x T ,( ) (x) BAI x I( ) ( ,x)  and 

A B( )x ) F F (x for every x in X. 

Definition 3. (Single valued trapezoidal neutrosophic number (SVTNN)) let 
p p pT ,I ,F [0,1]  then a 

Single valued trapezoidal neutrosophic number   ( )1 2 3 4 p p pp p ,p ,p ,p , T ,I ,F=  is a special NS on the 

real number set R, whose truth membership function 
p (x),  indeterminacy-membership function 

p (x),  and falsity-membership function 
p (x)  are given as follows: 
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Additionally, when 
1p 0,    ( )1 2 3 4 p p pp p ,p ,p ,p , T ,I ,F=  is called a nonnegative SVTNN. Similarly, 

when 
4p 0,   ( )1 2 3 4 p p pp p ,p ,p ,p , T ,I ,F=  becomes a negative SVTNN.  

Definition 4. (Arithmetic operation on SVTNNs). Let   ( )1 2 3 4 r r rr r , r , r , r , T , I ,F=  and 

  ( )1 2 3 4 s s ss s ,s ,s ,s , T , I ,F= be two arbitrary SVTNNs, and 0;   then operations are defined as 

follows: 

−   ( )1 1 2 2 3 3 4 4 r s r s s rr s r s , r s , r s , r s , T T , I I ,F F = + + + +      

−   ( )1 4 2 3 3 2 4 1 r s r s s rr s r s , r s , r s , r s , T T , I I ,F F− = − − − −     

− 
 
 

1 2 3 4 r r r

4 3 2 1 r r r

r , r , r , r ,T , I ,F , if 0,
r

r , r , r , r ,T , I ,F , if 0.

       
 =        

  

Definition 5. (Comparison of any two random SVTNNs). Let   ( )1 2 3 4 r r rr r , r , r , r , T , I ,F=  be a SVTNN 

and then the score function, accuracy function, and certainty function of SVTNN r  is defined, as 

follows:  

 

 

 

Let   ( )1 2 3 4 r r rr r , r , r , r , T , I ,F=  and   ( )1 2 3 4 s s ss s ,s ,s ,s , T , I ,F= be two arbitrary SVTNNs, the ranking 

of r  and s by score function is defined as follows: 

− ( ) ( )score scorif  r s  then r se     

− ( ) ( )score scoreif  r s  and if=  

− accuracy accura(r) (s) then scy r    

− accuracy accura(r) (s) then scy r    

− accuracy accura(r) (s) then scy r= =   

Definition 6.  A ranking function of neutrosophic numbers is a function R : N(R) R,→  where N(R) is 

a set of neutrosophic numbers defined on set of real numbers, which maps each neutrosophic number 

into the real line, where a natural order exists. Let   ( )1 2 3 4 r r rr r , r , r , r , T , I ,F=  be a SVTNN, then we 

define: scoreR(r) (r).=      

Definition 7.  Let  A,B  be two SVTN numbers, then 

− A B  iff R(A) R(B) , 

− A B iff R(A) R(B) . 

   1 2 3 4 r r r

1
score(r) r r r r 2 T I F

16
= + + +  + − −  
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3. Proposed Method 

Consider the following Trapezoidal Neutrosophic Linear Programming (TNLP) with m constraints and 

n variables; 

 

 

                                     

x is a non-negative trapezoidal neutrosophic number. 

where, 
ij

m n
A a


 =   is the coefficient matrix, 

t

1 2 3 mb b ,b ,b , ,b =
 

is the trapezoidal neutrosophic 

available resource vector,  
t

1 2 3 nc c ,c ,c , ,c= is the objective coefficient vector and 

 
t

1 2 3 nx x , x , x , , x= is the trapezoidal neutrosophic decision variable vector. 

The steps of the proposed method are as follows: 

Step 1. Assuming l m n r

b b b
b b ,b ,b ,b ;T , I ,F ,= 

l m n r

x x xx x ,x ,x ,x ;T , I ,F ,=   and using Definition 4, the 

LP problem (1) can be transformed into problem (2). 

 

  

 

 

Step 2. Using definition 2 -4, the LP problem (2) can be transformed into problem (3). 

 

 

 

 

Step 3. Using Definition 6, the neutrosophic objective function and also the mentioned constraints of 

the Model (3), obtained in Step 2, can be converted into the crisp nonlinear programming problem as 

follows: 
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Step 4. Find the optimal solution x  by solving the crisp nonlinear programming problems obtained in 

problem (3) and find the neutrosophic optimal value by putting in the objective function. 

4. Numerical Example  

In this section, a numerical example problem has been solved using the proposed method to illustrate 

the applicability and efficiency of it.   

Example 1. 

  

 

                         

                                                                                 

Now. To solve the problem with the proposed method we have the following steps: 

Step 1. Assuming l m n r

x x xx x ,x ,x ,x ;T , I ,F ,=   and using Definition 4, the LP problem (4) can be 

transformed into problem (5). 

 

         

 

 

 

Step 2. Using definition 2 -4, the LP problem (5) can be transformed into the problem (6). 
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Step 3. Using Definition 6, the neutrosophic objective function, and the mentioned constraints of the 

Model (6), obtained in Step 2, can be converted into the crisp nonlinear programming problem as 

follows: 

 

 

                    

 

 

 

 

 

 

 

 

 

 

Step 4. Using Matlab or any software, we can solve the optimal solution. 
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