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ABSTRACT

Generalized neutrosophic set is introduced, and applied it to BCK/BCI-algebras. The notions of

generalized neutrosophic subalgebras and generalized neutrosophic ideals in BCK/BCI-algebras

are introduced, and related properties are investigated. Characterizations of generalized neu-

trosophic subalgebra/ideal are considered. Relation between generalized neutrosophic subalgebra

and generalized neutrosophic ideal is discussed. In a BCK-algebra, conditions for a generalized

neutrosophic subalgebra to be a generalized neutrosophic ideal are provided. Conditions for a gen-

eralized neutrosophic set to be a generalized neutrosophic ideal are also provided. Homomorphic

image and preimage of generalized neutrosophic ideal are considered.

KEYWORDS: Generalized neutrosophic set, generalized neutrosophic subalgebra, generalized

neutrosophic ideal.

1 Introduction

Zadeh (1965) introduced the degree of membership/truth (t) in 1965 and defined the fuzzy

set. As a generalization of fuzzy sets, Atanassov (1986) introduced the degree of nonmember-

ship/falsehood (f) in 1986 and defined the intuitionistic fuzzy set. Smarandache introduced the

degree of indeterminacy/neutrality (i) as independent component in 1995 (published in 1998)

and defined the neutrosophic set on three components

(t, i, f) = (truth, indeterminacy, falsehood).

For more detail, refer to the site

http://fs.gallup.unm.edu/FlorentinSmarandache.htm.
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The concept of neutrosophic set (NS) developed by Smarandache (1999) and Smarandache

(2005) is a more general platform which extends the concepts of the classic set and fuzzy set,

intuitionistic fuzzy set and interval valued intuitionistic fuzzy set. Neutrosophic set theory is

applied to various part (refer to the site http://fs.gallup.unm.edu/neutrosophy.htm). Agboola

and Davvaz (2015) introduced the concept of neutrosophic BCI/BCK-algebras, and presented

elementary properties of neutrosophic BCI/BCK-algebras. Saeid and Jun (2017) gave relations

between an (∈, ∈ ∨ q)-neutrosophic subalgebra and a (q, ∈ ∨ q)-neutrosophic subalgebra, and

discussed characterization of an (∈, ∈ ∨ q)-neutrosophic subalgebra by using neutrosophic ∈-

subsets. They provided conditions for an (∈, ∈∨ q)-neutrosophic subalgebra to be a (q, ∈∨ q)-
neutrosophic subalgebra, and investigated properties on neutrosophic q-subsets and neutrosophic

∈∨ q-subsets. Jun (2017) considered neutrosophic subalgebras of several types in BCK/BCI-

algebras.

In this paper, we consider a generalization of Smarandache’s neutrosophic sets. We in-

troduce the notion of generalized neutrosophic sets and apply it to BCK/BCI-algebras. We

introduce the notions of generalized neutrosophic subalgebras and generalized neutrosophic ide-

als in BCK/BCI-algebras, and investigate related properties. We consider characterizations of

generalized neutrosophic subalgebra/ideal, and discussed relation between generalized neutro-

sophic subalgebra and generalized neutrosophic ideal. We provide conditions for a generalized

neutrosophic subalgebra to be a generalized neutrosophic ideal in a BCK-algebra. We also

provide conditions for a generalized neutrosophic set to be a generalized neutrosophic ideal, and

consider homomorphic image and preimage of generalized neutrosophic ideal.

2 PRELIMINARIES

By a BCI-algebra we mean an algebra (X, ∗, 0) of type (2, 0) satisfying the conditions:

(a1) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,

(a2) (x ∗ (x ∗ y)) ∗ y = 0,

(a3) x ∗ x = 0,

(a4) x ∗ y = y ∗ x = 0 ⇒ x = y,

for all x, y, z ∈ X. If a BCI-algebra X satisfies the condition

(a5) 0 ∗ x = 0 for all x ∈ X,

then we say that X is a BCK-algebra. A partial ordering “≤” on X is defined by

(∀x, y ∈ X) (x ≤ y ⇐⇒ x ∗ y = 0) .

In a BCK/BCI-algebra X, the following properties are satisfied:

(∀x ∈ X) (x ∗ 0 = x) , (2.1)

(∀x, y, z ∈ X) ((x ∗ y) ∗ z = (x ∗ z) ∗ y) . (2.2)
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A nonempty subset S of a BCK/BCI-algebra X is called a subalgebra of X if x ∗ y ∈ S for

all x, y ∈ S. A nonempty subset I of a BCK/BCI-algebra X is called an ideal of X if

0 ∈ I, (2.3)

(∀x, y ∈ X) (x ∗ y ∈ I, y ∈ I ⇒ x ∈ I) . (2.4)

We refer the reader to the books (Meng & Jun, 1994) and(Huang, 2006) for further infor-

mation regarding BCK/BCI-algebras.

For any family {ai | i ∈ Λ} of real numbers, we define

∨
{ai | i ∈ Λ} :=

{
max{ai | i ∈ Λ} if Λ is finite,

sup{ai | i ∈ Λ} otherwise.

∧
{ai | i ∈ Λ} :=

{
min{ai | i ∈ Λ} if Λ is finite,

inf{ai | i ∈ Λ} otherwise.

If Λ = {1, 2}, we will also use a1 ∨ a2 and a1 ∧ a2 instead of
∨
{ai | i ∈ Λ} and

∧
{ai | i ∈ Λ},

respectively.

By a fuzzy set in a nonempty set X we mean a function µ : X → [0, 1], and the complement

of µ, denoted by µc, is the fuzzy set in X given by µc(x) = 1− µ(x) for all x ∈ X. A fuzzy set

µ in a BCK/BCI-algebra X is called a fuzzy subalgebra of X if µ(x ∗ y) ≥ µ(x) ∧ µ(y) for all

x, y ∈ X. A fuzzy set µ in a BCK/BCI-algebra X is called a fuzzy ideal of X if

(∀x ∈ X)(µ(0) ≥ µ(x)), (2.5)

(∀x, y ∈ X)(µ(x) ≥ µ(x ∗ y) ∧ µ(y)). (2.6)

Let X be a non-empty set. A neutrosophic set (NS) in X (Smarandache, 1999) is a structure

of the form:

A := {〈x;AT (x), AI(x), AF (x)〉 | x ∈ X}

where AT : X → [0, 1] is a truth membership function, AI : X → [0, 1] is an indeterminate

membership function, and AF : X → [0, 1] is a false membership function. For the sake of

simplicity, we shall use the symbol A = (AT , AI , AF ) for the neutrosophic set

A := {〈x;AT (x), AI(x), AF (x)〉 | x ∈ X}.

3 GENERALIZED NEUTROSOPHIC SETS

Definition 3.1. A generalized neutrosophic set (GNS) in a non-empty set X is a structure of

the form:

A := {〈x;AT (x), AIT (x), AIF (x), AF (x)〉 | x ∈ X,AIT (x) +AIF (x) ≤ 1}
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where AT : X → [0, 1] is a truth membership function, AF : X → [0, 1] is a false membership

function, AIT : X → [0, 1] is an indeterminate membership function which is familiar with truth

membership function, and AIF : X → [0, 1] is an indeterminate membership function which is

familiar with false membership function.

Example 3.2. Let X = {a, b, c} be a set. Then

A = {〈a; 0.4, 0.6, 0.3, 0.7〉, 〈b; 0.6, 0.2, 0.5, 0.7〉, 〈c; 0.1, 0.3, 0.5, 0.6〉〉}

is a GNS in X. But

B = {〈a; 0.4, 0.6, 0.3, 0.7〉, 〈b; 0.6, 0.3, 0.9, 0.7〉, 〈c; 0.1, 0.3, 0.5, 0.6〉〉}

is not a GNS in X since BIT (b) +BIF (b) = 0.3 + 0.9 = 1.2 > 1.

For the sake of simplicity, we shall use the symbol A = (AT , AIT , AIF , AF ) for the generalized

neutrosophic set

A := {〈x;AT (x), AIT (x), AIF (x), AF (x)〉 | x ∈ X,AIT (x) +AIF (x) ≤ 1}.

Note that every GNS A = (AT , AIT , AIF , AF ) in X satisfies the condition:

(∀x ∈ X) (0 ≤ AT (x) +AIT (x) +AIF (x) +AF (x) ≤ 3) .

If A = (AT , AIT , AIF , AF ) is a GNS in X, then �A = (AT , AIT , A
c
IT , A

c
T ) and ♦A = (AcF ,

AcIF , AIF , AF ) are also GNSs in X.

Example 3.3. Given a set X = {0, 1, 2, 3, 4}, we know that

A = {〈0; 0.4, 0.6, 0.3, 0.7〉, 〈1; 0.6, 0.2, 0.5, 0.7〉, 〈2; 0.1, 0.3, 0.5, 0.6〉,
〈3; 0.9, 0.1, 0.8, 0.6〉, 〈4; 0.3, 0.6, 0.2, 0.9〉}

is a GNS in X. Then

�A = {〈0; 0.4, 0.6, 0.4, 0.6〉, 〈1; 0.6, 0.2, 0.8, 0.4〉, 〈2; 0.1, 0.3, 0.7, 0.9〉,
〈3; 0.9, 0.1, 0.9, 0.1〉, 〈4; 0.3, 0.6, 0.4, 0.7〉}

and

♦A = {〈0; 0.3, 0.7, 0.3, 0.7〉, 〈1; 0.3, 0.5, 0.5, 0.7〉, 〈2; 0.4, 0.5, 0.5, 0.6〉,
〈3; 0.4, 0.2, 0.8, 0.6〉, 〈4; 0.1, 0.8, 0.2, 0.9〉}

are GNSs in X.
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4 APPLICATIONS IN BCK/BCI-ALGEBRAS

In what follows, let X denote a BCK/BCI-algebra unless otherwise specified.

Definition 4.1. A GNS A = (AT , AIT , AIF , AF ) in X is called a generalized neutrosophic

subalgebra of X if the following conditions are valid.

(∀x, y ∈ X)


AT (x ∗ y) ≥ AT (x) ∧AT (y)

AIT (x ∗ y) ≥ AIT (x) ∧AIT (y)

AIF (x ∗ y) ≤ AIF (x) ∨AIF (y)

AF (x ∗ y) ≤ AF (x) ∨AF (y)

 . (4.1)

Example 4.2. Consider a BCK-algebra X = {0, 1, 2, 3} with the Cayley table which is given

in Table 1.

Table 1: Cayley table for the binary operation “∗”

∗ 0 1 2 3

0 0 0 0 0

1 1 0 0 1

2 2 1 0 2

3 3 3 3 0

Then the GNS

A = {〈0; 0.6, 0.7, 0.2, 0.3〉, 〈1; 0.6, 0.6, 0.3, 0.3〉,
〈2; 0.4, 0.5, 0.4, 0.7〉, 〈3; 0.6, 0.3, 0.6, 0.5〉}

in X is a generalized neutrosophic subalgebra of X.

Given a GNS A = (AT , AIT , AIF , AF ) in X and αT , αIT , βF , βIF ∈ [0, 1], consider the

following sets.

U(T, αT ) := {x ∈ X | AT (x) ≥ αT },
U(IT, αIT ) := {x ∈ X | AIT (x) ≥ αIT },
L(F, βF ) := {x ∈ X | AF (x) ≤ βF },
L(IF, βIF ) := {x ∈ X | AIF (x) ≤ βIF }.

Theorem 4.3. If a GNS A = (AT , AIT , AIF , AF ) is a generalized neutrosophic subalgebra of

X, then the set U(T, αT ), U(IT, αIT ), L(F, βF ) and L(IF, βIF ) are subalgebras of X for all αT ,

αIT , βF , βIF ∈ [0, 1] whenever they are non-empty.
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Proof. Assume that U(T, αT ), U(IT, αIT ), L(F, βF ) and L(IF, βIF ) are nonempty for all αT ,

αIT , βF , βIF ∈ [0, 1]. Let x, y ∈ X. If x, y ∈ U(T, αT ), then AT (x) ≥ αT and AT (y) ≥ αT . It

follows that

AT (x ∗ y) ≥ AT (x) ∧AT (y) ≥ αT

and so that x ∗ y ∈ U(T, αT ). Hence U(T, αT ) is a subalgebra of X. Similarly, if x, y ∈
U(IT, αIT ), then x ∗ y ∈ U(IT, αIT ), that is, U(IT, αIT ) is a subalgebra of X. Suppose that

x, y ∈ L(F, βF ). Then AF (x) ≤ βF and AF (y) ≤ βF , which imply that

AF (x ∗ y) ≤ AF (x) ∨AF (y) ≤ βF ,

that is, x ∗ y ∈ L(F, βF ). Hence L(F, βF ) is a subalgebra of X. Similarly we can verify that

L(IF, βIF ) is a subalgebra of X.

Corollary 4.4. If a GNS A = (AT , AIT , AIF , AF ) is a generalized neutrosophic subalgebra of

X, then the set

A(αT , αIT , βF , βIF ) := {x ∈ X | AT (x) ≥ αT , AIT (x) ≥ αIT , AF (x) ≤ βF , AIF (x) ≤ βIF }

is a subalgebra of X for all αT , αIT , βF , βIF ∈ [0, 1].

Proof. Straightforward.

Theorem 4.5. Let A = (AT , AIT , AIF , AF ) be a GNS in X such that U(T, αT ), U(IT, αIT ),

L(F, βF ) and L(IF, βIF ) are subalgebras of X for all αT , αIT , βF , βIF ∈ [0, 1] whenever they

are non-empty. Then A = (AT , AIT , AIF , AF ) is a generalized neutrosophic subalgebra of X.

Proof. Assume that U(T, αT ), U(IT, αIT ), L(F, βF ) and L(IF, βIF ) are subalgebras for all αT ,

αIT , βF , βIF ∈ [0, 1]. If there exist x, y ∈ X such that

AT (x ∗ y) < AT (x) ∧AT (y),

then x, y ∈ U(T, tα) and x ∗ y /∈ U(T, tα) for tα = AT (x) ∧ AT (y). This is a contradiction, and

so

AT (x ∗ y) ≥ AT (x) ∧AT (y)

for all x, y ∈ X. Similarly, we can prove

AIT (x ∗ y) ≥ AIT (x) ∧AIT (y)

for all x, y ∈ X. Suppose that

AIF (x ∗ y) > AIF (x) ∨AIF (y)
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for some x, y ∈ X. Then there exists fβ ∈ [0, 1) such that

AIF (x ∗ y) > fβ ≥ AIF (x) ∨AIF (y),

which induces a contradiction since x, y ∈ L(IF, fβ) and x ∗ y /∈ L(IF, fβ). Thus

AIF (x ∗ y) ≤ AIF (x) ∨AIF (y)

for all x, y ∈ X. Similar way shows that

AF (x ∗ y) ≤ AF (x) ∨AF (y)

for all x, y ∈ X. Therefore A = (AT , AIT , AIF , AF ) is a generalized neutrosophic subalgebra of

X.

Since [0, 1] is a completely distributive lattice under the usual ordering, we have the following

theorem.

Theorem 4.6. The family of generalized neutrosophic subalgebras of X forms a complete dis-

tributive lattice under the inclusion.

Proposition 4.7. Every generalized neutrosophic subalgebra A = (AT , AIT , AIF , AF ) of X

satisfies the following assertions:

(1) (∀x ∈ X) (AT (0) ≥ AT (x), AIT (0) ≥ AIT (x)),

(2) (∀x ∈ X) (AIF (0) ≤ AIF (x), AF (0) ≤ AF (x)).

Proof. Since x ∗ x = 0 for all x ∈ X, it is straightforward.

Theorem 4.8. Let A = (AT , AIT , AIF , AF ) be a GNS in X. If there exists a sequence {an}
in X such that lim

n→∞
AT (an) = 1 = lim

n→∞
AIT (an) and lim

n→∞
AF (an) = 0 = lim

n→∞
AIF (an), then

AT (0) = 1 = AIT (0) and AF (0) = 0 = AIF (0).

Proof. Using Proposition 4.7, we know that AT (0) ≥ AT (an), AIT (0) ≥ AIT (an), AIF (0) ≤
AIF (an) and AF (0) ≤ AF (an) for every positive integer n. It follows that

1 ≥ AT (0) ≥ lim
n→∞

AT (an) = 1,

1 ≥ AIT (0) ≥ lim
n→∞

AIT (an) = 1,

0 ≤ AIF (0) ≤ lim
n→∞

AIF (an) = 0,

0 ≤ AF (0) ≤ lim
n→∞

AF (an) = 0.

Thus AT (0) = 1 = AIT (0) and AF (0) = 0 = AIF (0).

Florentin Smarandache, Surapati Pramanik (Editors)

314



Proposition 4.9. If every GNS A = (AT , AIT , AIF , AF ) in X satisfies:

(∀x, y ∈ X)

(
AT (x ∗ y) ≥ AT (y), AIT (x ∗ y) ≥ AIT (y)

AIF (x ∗ y) ≤ AIF (y), AF (x ∗ y) ≤ AF (y)

)
, (4.2)

then A = (AT , AIT , AIF , AF ) is constant on X.

Proof. Using (2.1) and (4.2), we have AT (x) = AT (x∗0) ≥ AT (0), AIT (x) = AIT (x∗0) ≥ AIT (0),

AIF (x) = AIF (x ∗ 0) ≤ AIF (0), and AF (x) = AF (x ∗ 0) ≤ AF (0). It follows from Proposition

4.7 that AT (x) = AT (0), AIT (x) = AIT (0), AIF (x) = AIF (0) and AF (x) = AF (0) for all x ∈ X.

Hence A = (AT , AIT , AIF , AF ) is constant on X.

A mapping f : X → Y of BCK/BCI-algebras is called a homomorphism (?) if f(x ∗ y) =

f(x) ∗ f(y) for all x, y ∈ X. Note that if f : X → Y is a homomorphism, then f(0) = 0. Let

f : X → Y be a homomorphism of BCK/BCI-algebras. For any GNS A = (AT , AIT , AIF ,

AF ) in Y , we define a new GNS Af = (AfT , A
f
IT , A

f
IF , A

f
F ) in X, which is called the induced

GNS, by

(∀x ∈ X)

(
AfT (x) = AT (f(x)), AfIT (x) = AIT (f(x))

AfIF (x) = AIF (f(x)), AfF (x) = AF (f(x))

)
. (4.3)

Theorem 4.10. Let f : X → Y be a homomorphism of BCK/BCI-algebras. If a GNS A =

(AT , AIT , AIF , AF ) in Y is a generalized neutrosophic subalgebra of Y , then the induced GNS

Af = (AfT , A
f
IT , A

f
IF , A

f
F ) in X is a generalized neutrosophic subalgebra of X.

Proof. For any x, y ∈ X, we have

AfT (x ∗ y) = AT (f(x ∗ y)) = AT (f(x) ∗ f(y))

≥ AT (f(x)) ∧AT (f(y)) = AfT (x) ∧AfT (y),

AfIT (x ∗ y) = AIT (f(x ∗ y)) = AIT (f(x) ∗ f(y))

≥ AIT (f(x)) ∧AIT (f(y)) = AfIT (x) ∧AfIT (y),

AfIF (x ∗ y) = AIF (f(x ∗ y)) = AIF (f(x) ∗ f(y))

≤ AIF (f(x)) ∨AIF (f(y)) = AfIF (x) ∨AfIF (y),

and

AfF (x ∗ y) = AF (f(x ∗ y)) = AF (f(x) ∗ f(y))

≤ AF (f(x)) ∨AF (f(y)) = AfF (x) ∨AfF (y).

Therefore Af = (AfT , A
f
IT , A

f
IF , A

f
F ) is a generalized neutrosophic subalgebra of X.
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Theorem 4.11. Let f : X → Y be an onto homomorphism of BCK/BCI-algebras and let

A = (AT , AIT , AIF , AF ) be a GNS in Y . If the induced GNS Af = (AfT , A
f
IT , A

f
IF , A

f
F ) in

X is a generalized neutrosophic subalgebra of X, then A = (AT , AIT , AIF , AF ) is a generalized

neutrosophic subalgebra of Y .

Proof. Let x, y ∈ Y . Then f(a) = x and f(b) = y for some a, b ∈ X. Then

AT (x ∗ y) = AT (f(a) ∗ f(b)) = AT (f(a ∗ b)) = AfT (a ∗ b)

≥ AfT (a) ∧AfT (b) = AT (f(a)) ∧AT (f(b))

= AT (x) ∧AT (y),

AIT (x ∗ y) = AIT (f(a) ∗ f(b)) = AIT (f(a ∗ b)) = AfIT (a ∗ b)

≥ AfIT (a) ∧AfIT (b) = AIT (f(a)) ∧AIT (f(b))

= AIT (x) ∧AIT (y),

AIF (x ∗ y) = AIF (f(a) ∗ f(b)) = AIF (f(a ∗ b)) = AfIF (a ∗ b)

≤ AfIF (a) ∨AfIF (b) = AIF (f(a)) ∨AIF (f(b))

= AIF (x) ∨AIF (y),

and

AF (x ∗ y) = AF (f(a) ∗ f(b)) = AF (f(a ∗ b)) = AfF (a ∗ b)

≤ AfF (a) ∨AfF (b) = AF (f(a)) ∨AF (f(b))

= AF (x) ∨AF (y).

Hence A = (AT , AIT , AIF , AF ) is a generalized neutrosophic subalgebra of Y .

Definition 4.12. A GNS A = (AT , AIT , AIF , AF ) in X is called a generalized neutrosophic

ideal of X if the following conditions are valid.

(∀x ∈ X)

(
AT (0) ≥ AT (x), AIT (0) ≥ AIT (x)

AIF (0) ≤ AIF (x), AF (0) ≤ AF (x)

)
, (4.4)

(∀x, y ∈ X)


AT (x) ≥ AT (x ∗ y) ∧AT (y)

AIT (x) ≥ AIT (x ∗ y) ∧AIT (y)

AIF (x) ≤ AIF (x ∗ y) ∨AIF (y)

AF (x) ≤ AF (x ∗ y) ∨AF (y)

 . (4.5)

Example 4.13. Consider a BCK-algebra X = {0, 1, 2, 3} with the Cayley table which is given

in Table 2.
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Table 2: Cayley table for the binary operation “∗”

∗ 0 1 2 3 4

0 0 0 0 0 0

1 1 0 1 0 0

2 2 2 0 0 0

3 3 3 3 0 0

4 4 3 4 1 0

Let

A = {〈0; 0.8, 0.7, 0.2, 0.1〉, 〈1; 0.3, 0.6, 0.2, 0.6〉, 〈2; 0.8, 0.4, 0.5, 0.3〉,
〈3; 0.3, 0.2, 0.7, 0.8〉, 〈4; 0.3, 0.2, 0.7, 0.8〉}.

be a GNS in X. By routine calculations, we know that A is a generalized neutrosophic ideal of

X.

Lemma 4.14. Every generalized neutrosophic ideal A = (AT , AIT , AIF , AF ) of X satisfies:

(∀x, y ∈ X)

(
x ≤ y ⇒

{
AT (x) ≥ AT (y), AIT (x) ≥ AIT (y)

AIF (x) ≤ AIF (y), AF (x) ≤ AF (y)

)
. (4.6)

Proof. Let x, y ∈ X be such that x ≤ y. Then x ∗ y = 0, and so

AT (x) ≥ AT (x ∗ y) ∧AT (y) = AT (0) ∧AT (y) = AT (y),

AIT (x) ≥ AIT (x ∗ y) ∧AIT (y)AIT (0) ∧AIT (y) = AIT (y),

AIF (x) ≤ AIF (x ∗ y) ∨AIF (y)AIF (0) ∨AIF (y) = AIF (y),

AF (x) ≤ AF (x ∗ y) ∨AF (y)AF (0) ∨AF (y) = AF (y).

This completes the proof.

Lemma 4.15. Let A = (AT , AIT , AIF , AF ) be a generalized neutrosophic ideal of X. If the

inequality x ∗ y ≤ z holds in X, then AT (x) ≥ AT (y) ∧ AT (z), AIT (x) ≥ AIT (y) ∧ AIT (z),

AIF (x) ≤ AIF (y) ∨AIF (z) and AF (x) ≤ AF (y) ∨AF (z).

Proof. Let x, y, z ∈ X be such that x ∗ y ≤ z, Then (x ∗ y) ∗ z = 0, and so

AT (x) ≥
∧
{AT (x ∗ y), AT (y)}

≥
∧{∧

{AT ((x ∗ y) ∗ z), AT (z)}, AT (y)
}

=
∧{∧

{AT (0), AT (z)}, AT (y)
}

=
∧
{AT (y), AT (z)} ,

New Trends in Neutrosophic Theory and Applications. Volume II

317



AIT (x) ≥
∧
{AIT (x ∗ y), AIT (y)}

≥
∧{∧

{AIT ((x ∗ y) ∗ z), AIT (z)}, AIT (y)
}

=
∧{∧

{AIT (0), AIT (z)}, AIT (y)
}

=
∧
{AIT (y), AIT (z)} ,

AIF (x) ≤
∨
{AIF (x ∗ y), AIF (y)}

≤
∨{∨

{AIF ((x ∗ y) ∗ z), AIF (z)}, AIF (y)
}

=
∨{∨

{AIF (0), AIF (z)}, AIF (y)
}

=
∨
{AIF (y), AIF (z)} ,

and

AF (x) ≤
∨
{AF (x ∗ y), AF (y)}

≤
∨{∨

{AF ((x ∗ y) ∗ z), AF (z)}, AF (y)
}

=
∨{∨

{AF (0), AF (z)}, AF (y)
}

=
∨
{AF (y), AF (z)} .

This completes the proof.

Proposition 4.16. Let A = (AT , AIT , AIF , AF ) be a generalized neutrosophic ideal of X. If

the inequality

(· · · ((x ∗ a1) ∗ a2) ∗ · · · ) ∗ an = 0

holds in X, then

AT (x) ≥
∧
{AT (ai) | i = 1, 2, · · · , n} ,

AIT (x) ≥
∧
{AIT (ai) | i = 1, 2, · · · , n} ,

AIF (x) ≤
∨
{AIF (ai) | i = 1, 2, · · · , n} ,

AF (x) ≤
∨
{AF (ai) | i = 1, 2, · · · , n} .

Proof. It is straightforward by using induction on n and Lemmas 4.14 and 4.15.

Theorem 4.17. In a BCK-algebra X, every generalized neutrosophic ideal is a generalized

neutrosophic subalgebra.
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Proof. Let A = (AT , AIT , AIF , AF ) be a generalized neutrosophic ideal of a BCK-algebra

X. Since x ∗ y ≤ x for all x, y ∈ X, we have AT (x ∗ y) ≥ AT (x), AIT (x ∗ y) ≥ AIT (x),

AIF (x ∗ y) ≤ AIF (x) and AF (x ∗ y) ≤ AF (x) by Lemma 4.14. It follows from (4.5) that

AT (x ∗ y) ≥ AT (x) ≥ AT (x ∗ y) ∧AT (y) ≥ AT (x) ∧AT (y),

AIT (x ∗ y) ≥ AIT (x) ≥ AIT (x ∗ y) ∧AIT (y) ≥ AIT (x) ∧AIT (y),

AIF (x ∗ y) ≤ AIF (x) ≤ AIF (x ∗ y) ∨AIF (y) ≤ AIF (x) ∨AIF (y),

and

AF (x ∗ y) ≤ AF (x) ≤ AF (x ∗ y) ∨AF (y) ≤ AF (x) ∨AF (y).

Therefore A = (AT , AIT , AIF , AF ) is a generalized neutrosophic subalgebra of X.

The converse of Theorem 4.17 is not true. For example, the generalized neutrosophic subal-

gebra A in Example 4.2 is not a generalized neutrosophic ideal of X since

AT (2) = 0.4 � 0.6 = AT (2 ∗ 1) ∧AT (1)

and/or

AF (2) = 0.7 � 0.3 = AF (2 ∗ 1) ∨AF (1).

We give a condition for a generalized neutrosophic subalgebra to be a generalized neutro-

sophic ideal.

Theorem 4.18. Let A = (AT , AIT , AIF , AF ) be a generalized neutrosophic subalgebra of X

such that

AT (x) ≥ AT (y) ∧AT (z),

AIT (x) ≥ AIT (y) ∧AIT (z),

AIF (x) ≤ AIF (y) ∨AIF (z),

AF (x) ≤ AF (y) ∨AF (z)

for all x, y, z ∈ X satisfying the inequality x ∗ y ≤ z. Then A = (AT , AIT , AIF , AF ) is a

generalized neutrosophic ideal of X.

Proof. Recall that AT (0) ≥ AT (x), AIT (0) ≥ AIT (x), AIF (0) ≤ AIF (x) and AF (0) ≤ AF (x) for

all x ∈ X by Proposition 4.7. Let x, y ∈ X. Since x ∗ (x ∗ y) ≤ y, it follows from the hypothesis

that

AT (x) ≥ AT (x ∗ y) ∧AT (y),

AIT (x) ≥ AIT (x ∗ y) ∧AIT (y),

AIF (x) ≤ AIF (x ∗ y) ∨AIF (y),

AF (x) ≤ AF (x ∗ y) ∨AF (y).

Hence A = (AT , AIT , AIF , AF ) is a generalized neutrosophic ideal of X.
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Theorem 4.19. A GNS A = (AT , AIT , AIF , AF ) in X is a generalized neutrosophic ideal of

X if and only if the fuzzy sets AT , AIT , AcIF and AcF are fuzzy ideals of X.

Proof. Assume that A = (AT , AIT , AIF , AF ) is a generalized neutrosophic ideal of X. Clearly,

AT and AIT are fuzzy ideals of X. For every x, y ∈ X, we have

AcIF (0) = 1−AIF (0) ≥ 1−AIF (x) = AcIF (x),

AcF (0) = 1−AF (0) ≥ 1−AF (x) = AcF (x),

AcIF (x) = 1−AIF (x) ≥ 1−AIF (x ∗ y) ∨AIF (y)

=
∧
{1−AIF (x ∗ y), 1−AIF (y)}

=
∧
{AcIF (x ∗ y), AcIF (y)}

and

AcF (x) = 1−AF (x) ≥ 1−AF (x ∗ y) ∨AF (y)

=
∧
{1−AF (x ∗ y), 1−AF (y)}

=
∧
{AcF (x ∗ y), AcF (y)}.

Therefore AT , AIT , AcIF and AcF are fuzzy ideals of X.

Conversely, let A = (AT , AIT , AIF , AF ) be a GNS in X for which AT , AIT , AcIF and AcF
are fuzzy ideals of X. For every x ∈ X, we have AT (0) ≥ AT (x), AIT (0) ≥ AIT (x),

1−AIF (0) = AcIF (0) ≥ AcIF (x) = 1−AIF (x), that is, AIF (0) ≤ AIF (x)

and

1−AF (0) = AcF (0) ≥ AcF (x) = 1−AF (x), that is, AF (0) ≤ AF (x).

Let x, y ∈ X. Then

AT (x) ≥ AT (x ∗ y) ∧AT (y),

AIT (x) ≥ AIT (x ∗ y) ∧AIT (y),

1−AIF (x) = AcIF (x) ≥ AcIF (x ∗ y) ∧AcIF (y)

=
∧
{1−AIF (x ∗ y), 1−AIF (y)}

= 1−
∨
{AIF (x ∗ y), AIF (y)},
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and

1−AF (x) = AcF (x) ≥ AcF (x ∗ y) ∧AcF (y)

=
∧
{1−AF (x ∗ y), 1−AF (y)}

= 1−
∨
{AF (x ∗ y), AF (y)},

that is, AIF (x) ≤ AIF (x ∗ y) ∨ AIF (y) and AF (x) ≤ AF (x ∗ y) ∨ AF (y). Hence A = (AT , AIT ,

AIF , AF ) is a generalized neutrosophic ideal of X.

Theorem 4.20. If a GNS A = (AT , AIT , AIF , AF ) in X is a generalized neutrosophic ideal of

X, then �A = (AT , AIT , A
c
IT , A

c
T ) and ♦A = (AcIF , A

c
F , AF , AIF ) are generalized neutrosophic

ideals of X.

Proof. Assume that A = (AT , AIT , AIF , AF ) is a generalized neutrosophic ideal of X and let

x, y ∈ X. Note that �A = (AT , AIT , A
c
IT , A

c
T ) and ♦A = (AcIF , A

c
F , AF , AIF ) are GNSs in X.

Let x, y ∈ X. Then

AcIT (x ∗ y) = 1−AIT (x ∗ y) ≤ 1−
∧
{AIT (x), AIT (y)}

=
∨
{1−AIT (x), 1−AIT (y)}

=
∨
{AcIT (x), AcIT (y)},

AcT (x ∗ y) = 1−AT (x ∗ y) ≤ 1−
∧
{AT (x), AT (y)}

=
∨
{1−AT (x), 1−AT (y)}

=
∨
{AcT (x), AcT (y)},

AcIF (x ∗ y) = 1−AIF (x ∗ y) ≥ 1−
∨
{AIF (x), AIF (y)}

=
∧
{1−AIF (x), 1−AIF (y)}

=
∧
{AcIF (x), AcIF (y)}

and

AcF (x ∗ y) = 1−AF (x ∗ y) ≥ 1−
∨
{AF (x), AF (y)}

=
∧
{1−AF (x), 1−AF (y)}

=
∧
{AcF (x), AcF (y)}.

Therefore �A = (AT , AIT , A
c
IT , A

c
T ) and ♦A = (AcIF , A

c
F , AF , AIF ) are generalized neutro-

sophic ideals of X.
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Theorem 4.21. If a GNS A = (AT , AIT , AIF , AF ) is a generalized neutrosophic ideal of X,

then the set U(T, αT ), U(IT, αIT ), L(F, βF ) and L(IF, βIF ) are ideals of X for all αT , αIT ,

βF , βIF ∈ [0, 1] whenever they are non-empty.

Proof. Assume that U(T, αT ), U(IT, αIT ), L(F, βF ) and L(IF, βIF ) are nonempty for all αT ,

αIT , βF , βIF ∈ [0, 1]. It is clear that 0 ∈ U(T, αT ), 0 ∈ U(IT, αIT ), 0 ∈ L(F, βF ) and 0 ∈
L(IF, βIF ). Let x, y ∈ X. If x ∗ y ∈ U(T, αT ) and y ∈ U(T, αT ), then AT (x ∗ y) ≥ αT and

AT (y) ≥ αT . Hence

AT (x) ≥ AT (x ∗ y) ∧AT (y) ≥ αT ,

and so x ∈ U(T, αT ). Similarly, if x ∗ y ∈ U(IT, αT ) and y ∈ U(IT, αT ), then x ∈ U(IT, αT ). If

x ∗ y ∈ L(F, βF ) and y ∈ L(F, βF ), then AF (x ∗ y) ≤ βF and AF (y) ≤ βF . Hence

AF (x) ≤ AF (x ∗ y) ∨AF (y) ≤ βF ,

and so x ∈ L(F, βF ). Similarly, if x ∗ y ∈ L(IF, βIF ) and y ∈ L(IF, βIF ), then x ∈ L(IF, βIF ).

This completes the proof.

Theorem 4.22. Let A = (AT , AIT , AIF , AF ) be a GNS in X such that U(T, αT ), U(IT, αIT ),

L(F, βF ) and L(IF, βIF ) are ideals of X for all αT , αIT , βF , βIF ∈ [0, 1]. Then A = (AT , AIT ,

AIF , AF ) is a generalized neutrosophic ideal of X.

Proof. Let αT , αIT , βF , βIF ∈ [0, 1] be such that U(T, αT ), U(IT, αIT ), L(F, βF ) and L(IF, βIF )

are ideals of X. For any x ∈ X, let AT (x) = αT , AIT (x) = αIT , AIF (x) = βIF and AF (x) = βF .

Since 0 ∈ U(T, αT ), 0 ∈ U(IT, αIT ), 0 ∈ L(F, βF ) and 0 ∈ L(IF, βIF ), we have AT (0) ≥ αT =

AT (x), AIT (0) ≥ αIT = AIT (x), AIF (0) ≤ βIF = AIF (x) and AF (0) ≤ βF = AF (x). If there

exist a, b ∈ X such that AT (a ∗ b) < AT (a) ∧ AT (b), then a, b ∈ U(T, α0) and a ∗ b /∈ U(T, α0)

where α0 := AT (a) ∧ AT (b). This is a contradiction, and hence AT (x ∗ y) ≥ AT (x) ∧ AT (y) for

all x, y ∈ X. Similarly, we can verify AIT (x ∗ y) ≥ AIT (x) ∧ AIT (y) for all x, y ∈ X. Suppose

that AIF (a ∗ b) > AIF (a) ∨ AIF (b) for some a, b ∈ X. Taking β0 := AIF (a) ∨ AIF (b) induces

a, b ∈ L(IF, βIF ) and a ∗ b /∈ L(IF, βIF ), a contradiction. Thus AIF (x ∗ y) ≤ AIF (x) ∨ AIF (y)

for all x, y ∈ X. Similarly we have AF (x ∗ y) ≤ AF (x) ∨ AF (y) for all x, y ∈ X. Consequently,

A = (AT , AIT , AIF , AF ) is a generalized neutrosophic ideal of X.

Let Λ be a nonempty subset of [0, 1].

Theorem 4.23. Let {It | t ∈ Λ} be a collection of ideals of X such that

(1) X =
⋃
t∈Λ

It,

(2) (∀s, t ∈ Λ) (s > t ⇐⇒ Is ⊂ It).

Let A = (AT , AIT , AIF , AF ) be a GNS in X given as follows:

(∀x ∈ X)

(
AT (x) =

∨
{t ∈ Λ | x ∈ It} = AIT (x)

AIF (x) =
∧
{t ∈ Λ | x ∈ It} = AF (x)

)
. (4.7)

Then A = (AT , AIT , AIF , AF ) is a generalized neutrosophic ideal of X.
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Proof. According to Theorem 4.22, it is sufficient to show that U(T, t), U(IT, t), L(F, s) and

L(IF, s) are ideals of X for every t ∈ [0, AT (0) = AIT (0)] and s ∈ [AIF (0) = AF (0), 1]. In order

to prove U(T, t) and U(IT, t) are ideals of X, we consider two cases:

(i) t =
∨
{q ∈ Λ | q < t},

(ii) t 6=
∨
{q ∈ Λ | q < t}.

For the first case, we have

x ∈ U(T, t)⇐⇒ (∀q < t)(x ∈ Iq)⇐⇒ x ∈
⋂
q<t

Iq,

x ∈ U(IT, t)⇐⇒ (∀q < t)(x ∈ Iq)⇐⇒ x ∈
⋂
q<t

Iq.

Hence U(T, t) =
⋂
q<t
Iq = U(IT, t), and so U(T, t) and U(IT, t) are ideals of X. For the second

case, we claim that U(T, t) =
⋃
q≥t
Iq = U(IT, t). If x ∈

⋃
q≥t
Iq, then x ∈ Iq for some q ≥ t. It

follows that AIT (x) = AT (x) ≥ q ≥ t and so that x ∈ U(T, t) and x ∈ U(IT, t). This shows

that
⋃
q≥t
Iq ⊆ U(T, t) = U(IT, t). Now, assume that x /∈

⋃
q≥t
Iq. Then x /∈ Iq for all q ≥ t. Since

t 6=
∨
{q ∈ Λ | q < t}, there exists ε > 0 such that (t − ε, t) ∩ Λ = ∅. Hence x /∈ Iq for all

q > t − ε, which means that if x ∈ Iq, then q ≤ t − ε. Thus AIT (x) = AT (x) ≤ t − ε < t,

and so x /∈ U(T, t) = U(IT, t). Therefore U(T, t) = U(IT, t) ⊆
⋃
q≥t
Iq. Consequently, U(T, t) =

U(IT, t) =
⋃
q≥t
Iq which is an ideal of X. Next we show that L(F, s) and L(IF, s) are ideals of

X. We consider two cases as follows:

(iii) s =
∧
{r ∈ Λ | s < r},

(iv) s 6=
∧
{r ∈ Λ | s < r}.

Case (iii) implies that

x ∈ L(IF, s)⇐⇒ (∀s < r)(x ∈ Ir)⇐⇒ x ∈
⋂
s<r

Ir,

x ∈ U(F, s)⇐⇒ (∀s < r)(x ∈ Ir)⇐⇒ x ∈
⋂
s<r

Ir.

It follows that L(IF, s) = L(F, s) =
⋂
s<r

Ir, which is an ideal of X. Case (iv) induces (s, s+ε)∩Λ =

∅ for some ε > 0. If x ∈
⋃
s≥r

Ir, then x ∈ Ir for some r ≤ s, and so AIF (x) = AF (x) ≤ r ≤ s,

that is, x ∈ L(IF, s) and x ∈ L(F, s). Hence
⋃
s≥r

Ir ⊆ L(IF, s) = L(F, s). If x /∈
⋃
s≥r

Ir, then

x /∈ Ir for all r ≤ s which implies that x /∈ Ir for all r ≤ s + ε, that is, if x ∈ Ir then

r ≥ s + ε. Hence AIF (x) = AF (x) ≥ s + ε > s, and so x /∈ L(AIF , s) = L(AF , s). Hence

L(AIF , s) = L(AF , s) =
⋃
s≥r

Ir which is an ideal of X. This completes the proof.
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Theorem 4.24. Let f : X → Y be a homomorphism of BCK/BCI-algebras. If a GNS A =

(AT , AIT , AIF , AF ) in Y is a generalized neutrosophic ideal of Y , then the new GNS Af = (AfT ,

AfIT , A
f
IF , A

f
F ) in X is a generalized neutrosophic ideal of X.

Proof. We first have

AfT (0) = AT (f(0)) = AT (0) ≥ AT (f(x)) = AfT (x),

AfIT (0) = AIT (f(0)) = AIT (0) ≥ AIT (f(x)) = AfIT (x),

AfIF (0) = AIF (f(0)) = AIF (0) ≤ AIF (f(x)) = AfIF (x),

AfF (0) = AF (f(0)) = AF (0) ≤ AF (f(x)) = AfF (x)

for all x ∈ X. Let x, y ∈ X. Then

AfT (x) = AT (f(x)) ≥ AT (f(x) ∗ f(y)) ∧AT (f(y))

= AT (f(x ∗ y)) ∧AT (f(y))

= AfT (x ∗ y) ∧AfT (y),

AfIT (x) = AIT (f(x)) ≥ AIT (f(x) ∗ f(y)) ∧AIT (f(y))

= AIT (f(x ∗ y)) ∧AIT (f(y))

= AfIT (x ∗ y) ∧AfIT (y),

AfIF (x) = AIF (f(x)) ≤ AIF (f(x) ∗ f(y)) ∨AIF (f(y))

= AIF (f(x ∗ y)) ∨AIF (f(y))

= AfIF (x ∗ y) ∨AfIF (y)

and

AfF (x) = AF (f(x)) ≤ AF (f(x) ∗ f(y)) ∨AF (f(y))

= AF (f(x ∗ y)) ∨AF (f(y))

= AfF (x ∗ y) ∨AfF (y).

Therefore Af = (AfT , A
f
IT , A

f
IF , A

f
F ) in X is a generalized neutrosophic ideal of X.

Theorem 4.25. Let f : X → Y be an onto homomorphism of BCK/BCI-algebras and let

A = (AT , AIT , AIF , AF ) be a GNS in Y . If the induced GNS Af = (AfT , A
f
IT , A

f
IF , A

f
F )

in X is a generalized neutrosophic ideal of X, then A = (AT , AIT , AIF , AF ) is a generalized

neutrosophic ideal of Y .
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Proof. For any x ∈ Y , there exists a ∈ X such that f(a) = x. Then

AT (0) = AT (f(0)) = AfT (0) ≥ AfT (a) = AT (f(a)) = AT (x),

AIT (0) = AIT (f(0)) = AfIT (0) ≥ AfIT (a) = AIT (f(a)) = AIT (x),

AIF (0) = AIF (f(0)) = AfIF (0) ≤ AfIF (a) = AIF (f(a)) = AIF (x),

AF (0) = AF (f(0)) = AfF (0) ≤ AfF (a) = AF (f(a)) = AF (x).

Let x, y ∈ Y . Then f(a) = x and f(b) = y for some a, b ∈ X. It follows that

AT (x) = AT (f(a)) = AfT (a)

≥ AfT (a ∗ b) ∧AfT (b)

= AT (f(a ∗ b)) ∧AT (f(b))

= AT (f(a) ∗ f(b)) ∧AT (f(b))

= AT (x ∗ y) ∧AT (y),

AIT (x) = AIT (f(a)) = AfIT (a)

≥ AfIT (a ∗ b) ∧AfIT (b)

= AIT (f(a ∗ b)) ∧AIT (f(b))

= AIT (f(a) ∗ f(b)) ∧AIT (f(b))

= AIT (x ∗ y) ∧AIT (y),

AIF (x) = AIF (f(a)) = AfIF (a)

≤ AfIF (a ∗ b) ∨AfIF (b)

= AIF (f(a ∗ b)) ∨AIF (f(b))

= AIF (f(a) ∗ f(b)) ∨AIF (f(b))

= AIF (x ∗ y) ∨AIF (y),

and

AF (x) = AF (f(a)) = AfF (a)

≤ AfF (a ∗ b) ∨AfF (b)

= AF (f(a ∗ b)) ∨AF (f(b))

= AF (f(a) ∗ f(b)) ∨AF (f(b))

= AF (x ∗ y) ∨AF (y).

Therefore A = (AT , AIT , AIF , AF ) is a generalized neutrosophic ideal of Y .
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