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Neutrosophic set (NS) theory is a formal framework to study the origin, nature, and scope
of the neutral state. In this paper, neutrosophic set is applied in image domain and a new
directional a-mean operation is defined. Based on this operation, neutrosophic set is
applied into image edge detection procedure. First, the image is transformed into NS
domain, which is described by three membership sets: T, I and F. Then, a directional
a-mean operation is employed to reduce the indeterminacy of the image. Finally, a neutro-
sophic edge detection algorithm (NSED) is proposed based on the neutrosophic set and its
operation to detect edge. Experiments have been conducted using numerous artificial and
real images. The results demonstrate the NSED can detect the edges effectively and
accurately. Particularly, it can remove the noise effect and detect the edges on both the
noise-free images and the images with different levels of noises.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Image edge is the foundation of image texture and shape, which contains a great deal of important information and plays
a critical role in images. Edge is extensively used to separate the object from the background in image processing.

Edge detection is one of the important techniques in image processing and analysis, and it is also the foundation to object
recognition, computer vision, motion analysis, scene analysis, etc. [1]. Edge detection influences all results of the image anal-
ysis directly, and its accuracy is a crucial factor in determining the overall performance. The detection results benefit many
applications such as image enhancement, recognition, morphing, compression, retrieval, watermarking, hiding, restoration
and registration [1]. High-level processing tasks such as image segmentation and object recognition directly depend on the
quality of the edge detection procedure. Therefore, how to find a better algorithm to detect image edge is one of the key
techniques in image processing and analysis, and it has received much attention during the past two decades because of
its significant importance in many research areas.

Image edge detection technique is also one of the most difficult tasks in image processing, and numerous publications
have been proposed to study image edge detection. So far, numerous edge detection methods have been developed, and
these techniques can be categorized into four different groups: gradient-based, multi-scale, neural network, and fuzzy theory
methods.
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mailto:yanhui.guo@aggiemail.usu.edu
http://dx.doi.org/10.1016/j.compeleceng.2014.04.020
http://www.sciencedirect.com/science/journal/00457906
http://www.elsevier.com/locate/compeleceng


4 Y. Guo, A. S�engür / Computers and Electrical Engineering 40 (2014) 3–25
1.1. Gradient based approaches

Edges can be defined as a discontinuity or change in intensity of an image [2]. For pixels, edges can be viewed as the
region in which the image intensities take a sharp variation. The common approach is to compute the gradient of the image
and then find the local maximum (or zero-crossings) to detect edges [3]. The gradient-based edge detection methods, like
those of Canny, Sobel, Robert, Prewitt, etc., obtain the gradient to find edges [1]. Since gradient-based methods are very sen-
sitive to noise, their performance is limited. Especially when the images are highly corrupted, the errors in the edge results
may be very large. In addition, most of these methods require a predetermined threshold for determining whether or not a
zero-crossing point is an edge point. The threshold value is usually obtained through trial and error that results in poor
efficiency [2].

1.2. Multi-scale methods

The edges are also interpreted as one class of singularities in images. The multi-scale theory is proved to be a powerful
tool to detect signal singularities and has been applied into image edge detection. Bao et al. [4] combined the Canny edge
detection with a multiplication technique. A scale multiplication function was defined as the product of the responses of
the detection filter at two scales. The edge map was obtained as the local maxima by thresholding the scale multiplication
results. Tang et al. [5] presented an edge detection algorithm on X-ray image based on the multi-scale and multi-resolution
of wavelet transform. The local maxima in vertical, horizontal and diagonal directions were detected by quadratic B-spline.
Mallat algorithm was used in wavelet decomposition to determine defect edges. Shih and Tseng [6] combined a gradient-
based edge detection and a wavelet-based multiscale edge tracking scheme to extract edges. The wavelet transformation
decomposed an image into different scale and different frequency subbands, and multiscale shift-invariant gradient images
were made from the high-frequency subbands. A contextual-filter edge detector detected edges from the finest-scale gradi-
ent images, and the edge tracker refined the detected edges on the multiscale gradient images.

For multiscale methods, a large number of edge details and high accuracy edge orientation are obtained in small scales;
however they are often interfered with by noise. With large scale, it can get stable edges and better noiseproof feature while
the lower edge orientation. Hence, the multi-resolution edge detection method has a trade-off between localization and edge
details. A fine resolution gives too much redundant detail, whereas a coarse resolution lacks accuracy of edge detection.

1.3. Neural network techniques

In neural network methods, edge detection is treated as a classification process. Chang [2] presented a contextual Hop-
field neural network (CHNN) to detect the edges of CT and MRI images. The CHNN maps the two-dimensional Hopfield net-
work at the original image plane. Using the mapping results, the network incorporates pixels’ contextual information into
edge detection procedure. Chacon-M et al. [7] proposed an edge detection approach based on analysis of the information
provided by the time matrix generated from a pulse coupled neural network (PCNN). Two different schemes are employed
for edge detection. The first scheme was developed to generate edges from coarse images and the second one to deal with
more detailed edges. Emin Yüksel [8] presented a neuro-fuzzy (NF) operator for edge detection in images by combining a
desired number of neuro-fuzzy (NF) subdetectors with a postprocessor. In the proposed method, the edges were directly
determined by a NF network.

1.4. Fuzzy theory based approaches

The common premise conditions of some edge detection methods are that the edges of an image must be clear. However,
the image in reality is fuzzy and the edges are not clear. Fuzzy theory gives a mechanism to represent ambiguity within an
image. Each pixel of an image has a degree of belonging to a region or a boundary. For its powerful ability to deal with the
fuzziness of edges, fuzzy theory has been applied into edge detection. Verma et al. [9] proposed an edge detection technique
for the noisy image using fuzzy derivative and bacterial foraging algorithm. The bacteria detect edge pixels and noisy pixels
in its foraging paths. The direction of movement of each bacterium was found using the fuzzy inference rules.

There are some other methods to detect image edges, such as entropy-based and fractal-based methods. Entropy is
employed to describe the characteristic of a pixel and its neighbor, and it has been employed to detect image edges. Singh
and Singh [10] utilized Shannon entropy to detect edges in gray level images. A suitable threshold value was employed to
segment the image and achieve the binary image. The edge detector was to detect and locate the edges in the binary image.

Bhardwaj and Mann [11] proposed an edge detection method based on Adaptive Neuro-Fuzzy Inference System (ANFIS).
A first order Sugeno-type fuzzy inference system was built with 4-inputs and 1 output. The ANFIS was then trained with the
edge patterns. The obtained results were better than the Sobel and Roberts edge detectors. Zhang et al. introduced the con-
tourlet transform into the gradient vector flow (GVF) snake model to solve the initial active contour problem of the snake
algorithm [12]. The improved scheme improved the edge detection results of the GVF snake model. Zhou et al. presented
a multiscale gradient multiplication-based thresholding method for edge detection [13]. The bilevel thresholding with dif-
ferent histogram patterns was employed to find edges on the images.

In summary, the existing edge detection methods have different merits and demerits at the same time. Table 1 is
employed to summarize their advantages and disadvantages.



Table 1
Summary of edge detection methods.

Methods Advantages Disadvantages

Gradient based approaches Simply and fast Sensitive to noise
Multiscale methods Detect edges in different scales with high localization

ability
In dilemma to select scales

Neural network techniques Employ prior knowledge Performance depends on training process which is time
consuming

Fuzzy theory-based
approaches

Ability to handle unclear edge Fuzzy rules are hard to find and describe
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Generally, these classic edge detectors work well with high-quality images, but some of them are not good enough for
noisy images. Edge detection for noisy images is more important because noise is common in images. Most gradient-based
edge detection algorithms are sensitive to image noise, which leads to low effectiveness of edge detection [2]. Our motiva-
tion of this paper is to overcome the existing edge detection methods’ drawbacks on the noisy image. To achieve this goal, an
edge detection method is developed based on neutrosophic set theory that aims at achieving the preservation of image edge
details and reduction of false edges caused by noise. At first, the image is transformed into the neutrosophic set (NS) and a
directional a-mean operation is employed to reduce the indeterminacy degree of the image. In the edge detection process,
the gradient value is computed and updated according to the directional a-mean operation result. The directional a-mean
and edge detection are taken iteratively. Finally, the edges are obtained in NS domain. As a result, the effect of noise will
be effectively removed by the proposed method and the drawback of disconnected regions can be overcome. The proposed
edge detection method will be tested on popular images having different image properties and also compared with popular
edge detectors from the literature. Its advantage is the ability to detect edges efficiently in clean or noisy images. Experimen-
tal results show the proposed edge detector exhibits much better performance than the competing operators and may effi-
ciently be used for the detection of edges in images with or without noise. The proposed method can obtain more
appropriate and continued edges than other current methods in either clean or noisy images.

The paper is organized as follows. In Section 2, the neutrosophic set theory and its operation are described, and the pro-
posed edge detection approach is presented in Section 3. The experiments and comparisons are discussed in Section 4.
Finally, the conclusions are given in Section 5.
2. Neutrosophic set theory

2.1. Neutrosophic set

For the classic set, the indeterminacy of each element in the set could not be evaluated and easily described. The fuzzy set
has been applied to many real applications to handle uncertainty. The traditional fuzzy set uses a real number l(x)
(0 6 l(x) 6 1, x e A) to represent the membership in the set A defined on universe R. Sometimes l(x) itself is uncertain
and is difficult to be defined by a crisp value [14]. Some applications could not only consider the true membership, but also
the false membership and the indeterminacy of the membership. For instance, in the application of image processing, an
image might have a few regions and pixels, such as noise, shadow and boundary, which have high indeterminacy value.
It is difficult to solve these problems using the classic fuzzy set [14].

Neutrosophy is regarded as a generalization of dialectics, and studies the origin, nature, and scope of neutralities. It con-
siders a proposition, theory, event, concept, or entity <A> in relation to its opposite <Anti-A> and the neutrality <Neut-A>,
which is neither <A> nor <Anti-A>. Neutrosophy is the basis of neutrosophic logic, neutrosophic probability, neutrosophic
sets, and neutrosophic statistics.

Neutrosophy set theory provides a powerful tool to deal with the indeterminacy, and the indeterminacy is quantitatively
described using a membership. In neutrosophic set, a set A is described by three subsets: <A>, <Neut-A> and <Anti-A>, which
is interpreted as truth, indeterminacy, and false set. Neutrosophic set provides a new tool to describe the image with uncer-
tain information, which had been applied to image processing techniques, such as image segmentation, thresholding and
denoise. Guo and Cheng [15] combined neutrosophic set with K-mean clustering method for image segmentation. The image
was segmented based on neutrosophic set operations and clustering results. Guo and Cheng [16] applied the neutrosophic
set into image domain and defined concepts and operators for image denoising. It processed not only noisy images with dif-
ferent levels of noise, but also images with different kinds of noise without knowing the type of the noise. Sengur and Guo
[17] employed the wavelet transform in the neutrosophic set for color texture image segmentation.
2.2. Neutrosophic image

An image might have a few indeterminate regions and pixels, such as noise, shadow and boundary. The classic set is hard
to interpret the indeterminate region clearly. In neutrosophic set theory, a new subset, indeterminate set I is proposed to
interpret the indeterminacy in the image. Using the indeterminate set, it can describe the indeterminate regions easily.
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An image is transformed into neutrosophic set and a neutrosophic image was defined in [15–17]. A neutrosophic image
ImNS is described by three membership sets T, I and F. The pixel P(i, j) in the image domain is transformed into the neutro-
sophic set domain, denoted as PNS(i, j) (PNS(i, j) = {T(i, j), I(i, j), F(i, j)}). T(i, j), I(i, j) and F(i, j) are the membership values belonging
to the bright pixel set, indeterminate set and non-bright pixel set, respectively, which are defined as follows [15–17]:
Tði; jÞ ¼
�gði; jÞ � �gmin

�gmax � �gmin
ð1Þ

�gði; jÞ ¼ 1
w�w

Xiþw=2

m¼i�w=2

Xjþw=2

n¼j�w=2

gðm; nÞ ð2Þ

Iði; jÞ ¼ dði; jÞ � dmin

dmax � dmin
ð3Þ

dði; jÞ ¼ absðgði; jÞ � �gði; jÞÞ ð4Þ

Fði; jÞ ¼ 1� Tði; jÞ ð5Þ
where �gði; jÞ is the local mean value, and d(i, j) is the absolute value of the difference between intensity g(i, j) and its local
mean value at (i, j). The value of I measures the indeterminacy degree of PNS. For T and F are correlated with I, the changes
in T and F influence the distribution of the elements in I.

2.3. Directional a-mean filtering operation

In [18], an a-mean filtering operation was defined on neutrosophic image, and it removed noise efficiently. However, it
made the image blur and reduced the contrast, which could make the detected edges inaccurate. To overcome this drawback,
a directional a-mean operation (denoted as DAM) is newly proposed to remove the noise effect and preserve the edges at the
same time.

The DAM is described as follows: First, the direction of pixels in an image is discussed. In [18], a pixel’s direction was
determined by the neighbors’ information. The idea is adopted to define the pixel’s direction. In Fig. 1, the pixel’s directions
in (a), (b) and (c) are called all-directional, horizontal, and vertical, respectively. The idea to determine the pixel’s direction is
as follows: if the value of the horizontal gradient is higher than the value of the vertical, the pixel’s direction is horizontal; if
the value of the vertical gradient is higher than the value of the horizontal, the pixel’s direction is regarded as vertical; other-
wise, it is all-directional.

Therefore, the directional mean operation has three masks according to the pixel’s directions [18].
M1 ¼
1
9

1 1 1
1 1 1
1 1 1

2
64

3
75 M2 ¼

1
3

0 0 0
1 1 1
0 0 0

2
64

3
75 M3 ¼

1
3

0 1 0
0 1 0
0 1 0

2
64

3
75 ð6Þ

R1 ¼ covðM1; ImÞ R2 ¼ covðM2; ImÞ R3 ¼ covðM3; ImÞ ð7Þ
where M1, M2 and M3 are the masks with size 3 � 3 to process all-directional, horizontal, and vertical pixels, respectively. R1,
R2 and R3 are the filtering results when the image Im is convoluted with M1, M2 and M3, and cov(�) is the convolution function.
Fig. 1. Pixel’s directions.
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The function of the directional mean DMF is defined as:
DMFðImði; jÞÞ ¼
R1 jGhði; jÞ � Gvði; jÞj � n

R2 Ghði; jÞ � Gvði; jÞ > n

R3 Gvði; jÞ � Ghði; jÞ > n

8><
>: ð8Þ
where Gh(i, j) and Gv(i, j) are the norm of the gradient at (i, j) on the image Im. n is a small constant.
Finally, the directional a-mean operation is defined according to the pixel’s direction in the neutrosophic image:
PdðaÞ ¼ fTdðaÞ; IdðaÞ; Fg ð9Þ

TdðaÞ ¼
T I < a
DMFðTÞ I P a

�
ð10Þ

IdðaÞ ¼
�dT � �dTmin

�dTmax � �dTmin
ð11Þ

�dTði; jÞ ¼ absðTdði; jÞ � Tdði; jÞÞ ð12Þ

Tdði; jÞ ¼
1

w�w

Xiþw=2

m¼i�w=2

Xjþw=2

n¼j�w=2

Tdðm;nÞ ð13Þ
where PdðaÞ is the value after the directional a-mean operation, and �dTði; jÞ is the absolute value of the difference between the
mean intensity Tdði; jÞ and its local mean value Tdði; jÞ. In the proposed method, F is not processed using DAM and it keeps
unchanged. The directional a-mean operation can be regarded as a simplified anisotropic filtering process, in which the
strength of the smoothing is controlled by the value of a. This operation is faster than the standard formulation, while it
can also enhance the edge information, which is suitable for edge detection.

3. Proposed method

A new edge detection algorithm, neutrosophic set edge detection (NSED) is proposed. In NSED, an iterative directional a-
mean process is employed to make the detection more accurate, and the termination criterion for the process is defined
accordingly.

The gradients of the pixels in TdðaÞ are used to evaluate the degree of the pixels belonging to edge pixels, and a threshold
value of gradient is selected to determine whether the pixels are edge pixels.
ENSðXÞ ¼
1 krðTdðaÞÞkP rth

0 krðTdðaÞÞk < rth

(
ð14Þ
where krðTdðaÞÞk is the norm of the gradient on TdðaÞ, and rth is the threshold value to determine the edge pixels.
The DAM operation and gradient computation is taken iteratively. If extracted edges remain unchanged, the iteration pro-

cedure will be terminated. The DAM can be regarded as a low frequency filter. After the iterative processing, the image
becomes homogeneity. In this situation, the number of the detected edge pixels becomes constant, which makes the edge
detection result stable.

Based on the above definitions and operations, NSED is designed by executing the directional a-mean operation and edge
detection iteratively. At first, the image is transformed into the neutrosophic set domain. Then, the indeterminacy of the neu-
trosophic set is decreased using the directional a-mean filtering operation and the edge is preserved and enhanced. The
detection process is terminated when the detected edges become unchanged. The whole procedure is summarized as
follows:

(1) Input: Im, t = 0.
(2) Transform image to NS which results in Imð0ÞNS ¼ fT

ð0Þg.
(3) Perform the DAM operation on Imð0ÞNS which results in Imð0Þd .
(4) Compute E(0).
(5) t = t + 1.
(6) Perform DAM operation on Imðt�1Þ

d which results in ImðtÞd .
(7) Compute E(t)
If jEðtÞ � Eðt�1ÞjP e, go to 5).
(8) Return E(t�1) as the image edge.



Fig. 2. (a) The original chessboard image (b) the image with Gaussian noise (c) the ground truth of edge (d) the edge detection result by SMED (e) the edge
detection result by RROED (f) the edge detection result by BFED (g) the edge detection result by NSED.
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4. Experiments and discussions

To test the performance of the proposed method, a variety of artificial images and natural images with different noise
levels are employed. The NSED method is compared with that of the recently proposed scale multiplication edge detector
(denoted as SMED) by Bao et al. [4], which claimed it has significantly improved the performance of the traditional Canny
edge detector [3] and achieves better results than the anisotropic diffusion edge detector (ADED) by Black et al. [19]. In addi-
tion, the NSED method is also compared with another two edge detector methods based on robust rank-order test (denoted
as RROED) by Lim [20] and the bacterial foraging scheme (denoted as BFED) by Verma et al. [9], which claimed their perfor-
mances are robust to variations in noise on edge detection.

In the NSED method, three parameters, the local window size w in Eq. (2), the a value in Eq. (10) and gradient threshold
value rth in Eq. (15) are optimized using experiments, which are taken on the artificial images with different noise levels.
These parameters are tuned on the training image by doing a local discrete grid search routine with a fixed step-size on the
parameter space and in the feasible ranges of parameter values namely: w e [3,5,7], a e [01.0] andrth e [0.0010.9]. The grid
search routine is a standard optimization algorithm which consists, for several initial guesses of the parameters to be esti-
mated, in employing a moving 3-dimensional (w, a,rth) grid. The algorithm tries to center the grid on the best performance
score for parameters, moving in an appropriate direction at each iteration. The optimization is successful when the grid
becomes centered on the best performance score across all dimensions. The optimal parameters are obtained as w = 3,
a = 0.15 and rth = 0.04.

The metric figure of merit FOM proposed by Pratt [21] is used as the performance score, which is defined as:
Table 2
Edge de

Stan

20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
105
110
115

Aver

The bol
FOM ¼ 1
maxðNI;NAÞ

XNA

k¼1

1

1þ bd2ðkÞ
ð15Þ
where NI and NA are the numbers of the detected edge points and the actual edge points, respectively. d(k) is the distance
from the kth actual edge point to the nearest detected edge point. b is a scaling constant set to 1/9 in Pratt’s paper. The
greater the FOM, the better the detection results.
4.1. Experiments on artificial images

In this section, several synthetic images are used to compare the performance of the proposed NSED with those of the
SMED, RROED and BFED methods. The optimal parameters (w = 3, a = 0.15 and rth = 0.04) in NSED are employed in the fol-
lowing experiments. These parameters for SMED, PROED and BFED are optimized according to the guidelines in their papers.
For SMED, the scale parameters are s1 = 22 and s2 = 23, and the threshold constant is c = 6. In RROED method, 3 � 3 difference-
of-boxes for the Wilcoxon and T detectors are used. The threshold for these detectors are set at a significance level a = 0.05.
In BFED, the parameters are selected the default optimized values in [9]:
tection comparisons of SMED and NSED.

dard deviation SNR (dB) SMED RROED BFED NSED

E FOM E FOM E FOM E FOM

21.7754 0.0503 0.8774 0.0191 0.9163 0.0389 0.9507 0.0116 0.9861
19.8799 0.0534 0.8512 0.0199 0.8961 0.0392 0.9501 0.0136 0.9798
18.3461 0.0589 0.8026 0.0203 0.8741 0.0402 0.9512 0.0142 0.9780
16.9836 0.0686 0.7267 0.0211 0.8227 0.0395 0.9479 0.0156 0.9605
15.8179 0.0779 0.6465 0.0299 0.8015 0.0407 0.9401 0.0207 0.9551
14.7129 0.0943 0.5685 0.0306 0.7849 0.0425 0.9212 0.0202 0.9453
13.8486 0.1079 0.5141 0.0417 0.7163 0.0427 0.9119 0.0202 0.9404
13.0344 0.1249 0.4655 0.0527 0.6822 0.0439 0.9070 0.0190 0.9364
12.3123 0.1376 0.4298 0.0629 0.6123 0.0466 0.8902 0.0189 0.9343
11.6531 0.1518 0.4076 0.0723 0.5929 0.0473 0.8727 0.0206 0.9261
10.9455 0.1606 0.3929 0.0854 0.5256 0.0494 0.8555 0.0269 0.8940
10.4151 0.1731 0.3775 0.0966 0.4831 0.0506 0.8341 0.0288 0.8808

9.8376 0.1807 0.3677 0.1089 0.4126 0.0542 0.8011 0.0252 0.8748
9.3766 0.1881 0.3595 0.1184 0.3924 0.0563 0.7790 0.027 0.8632
8.9076 0.1950 0.3541 0.1292 0.3620 0.0624 0.7466 0.0292 0.8549
8.4628 0.2022 0.3480 0.1311 0.3511 0.0637 0.7257 0.0303 0.8478
8.0139 0.2075 0.3440 0.1412 0.3483 0.0702 0.6823 0.0294 0.8444
7.6421 0.2157 0.3373 0.1534 0.3401 0.0724 0.6536 0.0330 0.8365
7.2635 0.2204 0.3372 0.1639 0.3394 0.0783 0.6218 0.0398 0.7721
6.9123 0.2272 0.3330 0.1758 0.3340 0.0847 0.5953 0.0405 0.7667

age 12.3070 0.1448 0.4920 0.0837 0.5794 0.0532 0.8269 0.0242 0.8989

d values display the best measurements in the all evaluation results.
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� Total number of bacteria Nb = 3500 approx.
� Step size (c) = 1.
� Number of chemotactic steps Nc = 16.
� Number of elimination–dispersion events Ned = 4.
� Bacteria split ratio = 2:1.
� Threshold value (a) = 0.7.
� Threshold value for deciding number of bacteria to eliminate/reproduce (b) = 30.

Fig. 2(a) is an artificial image chessboard, and Fig. 2(b) is a noisy chessboard image having Gaussian noise, whose mean is 0
and standard deviation is 115. Fig. 2(c) is the ground truth of edge. Fig. 2(d–g) are the edge detection results generated by
SMED, RROED, BFED and NSED, respectively. It is seen that SMED and RROED do not suppress noise well on this artificial
noisy image. Many pixels are wrongly detected as edge in Fig. 2(d and e), while they are detected correctly in Fig. 2(g) by
NSED. BFED has better performance than SMED and RROED, while it is worse than NSED in Fig. 2(g). The edges of small
blocks in Fig. 2(g) are more consistent and distinct, which are better for further processing, such as object extraction and
detection. The result in Fig. 2(g) removes most of the false edges and achieves very high edge localization performance.
The shapes of the small blocks are precisely detected. It shows clearly that the NSED can perform better than other methods
for detecting edges on artificial images with noise.

To evaluate the performance of the edge detection algorithms quantitatively, two objective criteria are employed to eval-
uate the results of the algorithms.

To compare the edge detection results of the real edges on original images, a measurement edge detection error E by Ma
and Staunton [22] is employed, which is defined as:
E ¼ 1�#ðEo \ EnÞ
#ðEoÞ

ð16Þ
where Eo is the ideal edge result, and En is the real edge detection result by the method. #(�) is the number of elements in a
set. The smaller the E, the better the detection results.

The FOM and E provide quantitative measurements of the performance between the ideal edges and the real results by the
algorithms. The quality of the tested image can be described in terms of signal-to-noise ratio (SNR):
SNR (dB)
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Fig. 3. Edge detection performance comparison on artificial image (a) E comparison (b) FOM comparison.

Table 3
Statistical comparison on artificial image using E and FOM.

Metrics p-Value

SMED vs. NSED RROED vs. NSED BFED vs. NSED

E 2.3815 � 10�9 6.95079 � 10�6 7.24513 � 10�14

FOM 2.5378 � 10�11 1.11519 � 10�8 9.14105 � 10�6
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where Io(r,c) and In(r,c) represent the intensities of pixel (r,c) in the original and noisy images, respectively.
In the experiments, the chessboard image is employed as a noise-free image and the Gaussian noises with different stan-

dard deviations are added onto it. The images with Gaussian noises are employed to test the SMED, RROED, BFED and NSED.
Table 2 lists the values of E and FOM for their detection results on artificial images at different SNR levels and the compar-
isons are plotted in Fig. 3.

From Table 2 and Fig. 3, it is clear the NSED method achieves better performance and lower detection error at all SNR
levels. The detection errors of NSED method are all smaller than 0.0405, and the errors of SMED, RROED and BFED are all
bigger than those of NSED. When the SNR is low, the proposed method performs much better than other methods. The NSED
approach can obtain the optimum detection result with error rate 0.0405 which is very low when SNR is 6.9123 dB, while the
error of SMED approach reaches 0.2272. Meanwhile, the values of FOM of NSED are all bigger than those of SMED, RROED and
BFED at all SNR levels. The average value of FOM of NSED, SMED, RROED and BFED are 0.8989, 0.4920, 0.5794, and 0.8269,
respectively.

The performance of comparison is tested on each metric using the paired t-test. The testing results, p-values, are listed in
Table 3. All p-values are less than 0.05. The statistical analysis demonstrates the improvement is statistically significant com-
paring the NSED with SMED, RROED and BFED.
4.2. Experiments on real images

To validate the results, several different kinds of test images are considered to examine the versatility of the proposed
edge detector. In this section, four real images, Rice, House, Eight and Alumigns, are used to test the performance of the pro-
posed method. These images were selected based on the criteria they have either with clear boundary on the objects or
plenty of texture in the region. The results on these images can show the edge detection performance in different boundary
situations.
Original Edge Map SMED RROED BFED NSED 

(a) 

(b) 

(c) 

(d) 

Edge detection result comparisons on four original images (a) results on Rice image (b) results on House image (c) results on Eight image (d) results
grns image.
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Fig. 5. Edge detection result comparison on Rice image with different Gaussian noise levels (a) results on Rice image with Gaussian noise (r = 5) (b) results
on Rice image with Gaussian noise (r = 10) (c) results on Rice image with Gaussian noise (r = 15) (d) results on Rice image with Gaussian noise (r = 20).
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Fig. 6. Edge detection performance comparison on Rice image (a) E comparison (b) FOM comparison.
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Fig. 7. Edge detection result comparison on House image with different Gaussian noise levels (a) results on House image with Gaussian noise (r = 5) (b)
results on House image with Gaussian noise (r = 10) (c) results on House image with Gaussian noise (r = 15) (d) results on House image with Gaussian noise
(r = 20).
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Fig. 8. Edge detection performance comparison on House image (a) E comparison (b) FOM comparison.
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Fig. 9. Edge detection result comparison on Eight image with different Gaussian noise levels (a) results on Eight image with Gaussian noise (r = 5) (b) results
on Eight image with Gaussian noise (r = 10) (c) results on Eight image with Gaussian noise (r = 15) (d) results on Eight image with Gaussian noise (r = 20).

Standard deviation
5 10 15 20

Er
ro

r

0.00

.02

.04

.06

.08

.10

SMED
RROED
BFED
NSED

Standard deviation
5 10 15 20

FO
M

0.0

.2

.4

.6

.8
SMED
RROED
BFED
NSED

(a) (b)

Fig. 10. Edge detection performance comparison on Eight image (a) E comparison (b) FOM comparison.
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Fig. 11. Edge detection result comparison on Alumgrns image with different Gaussian noise levels (a) results on Alumgrns image with Gaussian noise (r = 5)
(b) results on Alumgrns image with Gaussian noise (r = 10) (c) results on Alumgrns image with Gaussian noise (r = 15) (d) results on Alumgrns image with
Gaussian noise (r = 20).
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Fig. 12. Edge detection performance comparison on Alumgrns image (a) E comparison (b) FOM comparison.
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Fig. 13. Edge detection result comparison on Rice image with different Salt and Pepper noise levels (a) results on Rice image with Salt and Pepper noise
(d = 0.05) (b) results on Rice image with Salt and Pepper noise (d = 0.1) (c) results on Rice image with Salt and Pepper noise (d = 0.15) (d) results on Rice
image with Salt and Pepper noise (d = 0.2).
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Fig. 14. Edge detection performance comparison on Rice image with Salt and Pepper noise (a) E comparison (b) FOM comparison.
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At first, the proposed method is compared with SMED, RROED and BFED on the images without noise. The detection
results are shown in Fig. 4. In Fig. 4, the second column is the ground truth edge image, which is obtained on the noise free
images using the traditional Canny edge detector. The results by different methods are shown in different columns.

Then, four original images are added to Gaussian noise with mean 0 and four standard deviations (r = 5, 10, 15, 20). The
noisy images and result images using different methods are shown in Figs. 5, 7, 9 and 11. In the first column of Figs. 5, 7, 9
and 11, the corrupted images have different standard deviations, and the second, third, fourth and fifth columns are the edge
detection results using SMED, RROED, BFED and NSED methods, respectively.

Fig. 5 is the results of Rice image having different noise levels. There are many false edges and noise in the results of SMED.
In the results of NSED, most edges of rice grains are extracted and no noise appears. BFED missed some edges when the noise
level increases. In Fig. 7, House image, the edges of house obtained by NSED are detected correctly and localized precisely.
NSED does not find many false edges when the noise standard deviation is high. The similar comparison results happen in
Figs. 9 and 11.

From Figs. 4, 5, 7, 9 and 11, it can be seen that the NSED method achieves very good results with few false edges and high
localization accuracies. At different noise levels, the NSED detects the most shapes of the objects, while the detection per-
formances of others are affected by the noise and some objective boundaries are lost and disconnected. Compared with
the results by other methods at all noise levels, the detection results by the NSED are smoother and more connected, and
edge position and orientation are more accurate, which can be demonstrated in the last column of Figs. 5, 7, 9 and 11.
The outperformance benefits from the facts the NSED approach handles the indeterminacy of the images well and DAM oper-
ation provides more directional information in neutrosophic set domain.

To compare the edge detection performance of the methods on real images quantitatively, the E and FOM values of the
result images of these methods are calculated at different noise levels. The comparison results are shown in Figs. 6, 8, 10 and
12, in which the result values of different methods are displayed using different bars, respectively. It is seen NSED obtains the
less E and bigger FOM than other methods at all noise levels.

In Fig. 6, the average E of the proposed method is 0.0221, much less than that of SMED (0.0877), RROED (0.04262) and
BFED (0.06586). The average FOM of the proposed method is 0.9761, much higher than that of the SMED (0.8828), RROED
(0.8377) and BFED (0.7918). There are similar results in Figs. 8, 10 and 12. It is not difficult to see NSED has better perfor-
mances than SMED, RROED and BFED.

In addition, the Rice image is added with Salt & Pepper noise with different noise density (noise density ds = 0.05, 0.1, 0.15,
0.2). The noisy images and result images are shown in Fig. 13, and the values of E and FOM are shown in Fig. 14. From Fig. 14,
it is seen that NSED performs better than others on the edge detection and localization with higher FOM values and less E
values.

The statistical analysis is also taken on the real images to test the performance of comparison on metrics E and FOM via a
paired t-test. The p-values are shown in Table 4. The results are similar to Table 3, and all p-values are less than 0.05. The
statistical analysis results also demonstrate that the improvement is statistically significant comparing the NSED with SMED,
RROED and BFED on the real images.

We also employ more real images to test the performance of NSED. The results on original images are show in Fig. 15, and
results on the images with Gaussian noise and on the images with different parameters and noise type are displayed in
Figs. 16 and 17, respectively.

From the comparisons and experiments on the visual effect and quantity measures in Figs. 4–17, the proposed method is
more effective on the edge details detection and noise restraining. It not only detects most true edges properly and accu-
rately and achieves the better localization accuracy, but also has higher E and FOM values with different noise levels.

An experiment is taken to compare the time consumption of NSED, SMED, RROED and BFED methods. The NSED takes less
than 21 s per image on average for an AMD Phenom (tm) 9500 Quad-core Processor, 2.2 GHz. Table 5 compares the average
computational time on an image for different algorithms. The NSED takes the similar CPU times as SMED and RROED meth-
ods, and higher speed than BFED method.

In the NSED method, the directional information was employed and a directional a-mean operation was adopted to over-
come the drawback of the traditional a-mean, which could blur the image and make the detected edges inaccurate. Here, an
experiment is taken to compare the NSED method with the method using the traditional a-mean operation (MNSED) on edge
detection. The comparison results are illustrated in Fig. 18. Because the MNSED method blurs the edges on the image, the
detected edge by MNSED is smooth and inaccurate, shown in Fig. 18(b). Especially, some small detailed edges are missed
in Fig. 18(c and d).
Table 4
Statistical comparison on real images using E and FOM.

Metric p-Value

SMED vs. NSED RROED vs. NSED BFED vs. NSED

E 4.0540 � 10�5 0.0016 0.0001
FOM 0.0001 8.582 � 10�6 5.1612 � 10�5
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Fig. 15. Edge detection results on six original images using NSED.
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4.3. Comparison with anisotropic diffusion algorithm

A new experiment was taken to compare the DAM filtering operation with the anisotropic diffusion algorithm [23] on the
edge detection. The DAM filtering operation was replaced using the original anisotropic diffusion filter (ADF), and other steps
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Fig. 16. Edge detection results on six images with Gaussian noise (r = 20) using NSED.
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and parameters were same as the NSED method. The edge detection results evaluated the FOM quantitatively. The results of
images are shown in Fig. 19 and the values of FOM are listed in Table 4. The results in Fig. 19 show the NSED method has
better performance than the method based on ADF. In Table 6, the FOM results of the NSED method are higher than those
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of the ADF based method, which also demonstrate the DAM filtering is superior to the original ADF processing. The superi-
ority of DAM leads to the better performance of the edge detection.

4.4. Experiment on the convergence

In NSED, the iteration process has been used to detect the edge on the image. To test the convergence of the edge detec-
tion in NSED, we perform an experiment to investigate its edge detection performance with different iteration times. In this
experiment, the noisy images are used to investigate the relationship between the numbers of the detected edge pixels and
the iteration numbers. The results are shown in Figs. 20 and 21. From the curves in Figs. 20 and 21, it shows the number of
detected edge pixels becomes stable after iteration number is greater than 20 times. The performance of edge detection
NSED converges and is stable.
Noise type and parameters Image with different 
noise 

NSED 

Gaussian noise ( =20) 

Salt and pepper (noise 
density paremeter = 0.2) 

Poisson noise 

Speckle noise ( =20)  

Localvar (Zero-mean 
Gaussian white noise with 

an intensity-dependent 
variance 0.1)

Fig. 17. Edge detection results using NSED on the image with different types of noise.

Table 5
Average CPU time for different algorithms.

Algorithm CPU time (s)

SMED 19
RROED 25
BFED 180
NSED 21
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Fig. 18. Edge detection result comparison on four original images using MNSED and NSED (a) results on Rice image (b) results on House image (c) results on
Eight image (d) results on Alumgrns image.
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4.5. Experiment on the parameters

The proposed method also needs three constant thresholds (w, a andrth) as parameters. The edge detection performance
becomes constant when these parameters are optimized. We employ an experiment on noisy images to show the perfor-
mance of the NSED with different values of parameters. During these parameters, w is the local window size and usually
assigned as 3, 5 or 7. In the experiment, we only consider the performance at different values of a and rth, and the value
of FOM is used to evaluate the edge detection performance. Figs. 22 and 23 display the relationship between FOM and a
andrth. From those two figures, we can see the values of FOM become constant when these parameters are close to the opti-
mized values (a = 0.15 andrth = 0.04). The experimental results demonstrate that the edge detection performance of NSED is
constant when the parameters are optimized.
4.6. Experiment on the large scale image database

We further test the performance of NSED in the large scale image dataset and conduct an experiment on a publicly avail-
able dataset namely Sowerby image database [24]. This database contains one hundred segmented images of road scenes in
countryside and their associated labels. The proposed method is also evaluated using two metrics E and FOM, and compared
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Fig. 19. Edge detection results on different noisy images (a) original images (b) noisy images with Gaussian noise (r = 25) (c) results of the method based on
ADF (d) results of the NSED.

Table 6
FOM values on different images.

Images ADF based method NSED

Discover 0.6064 0.7812
Eight 0.4081 0.4788
House 0.5101 0.5136
Average 0.5082 0.5912

Fig. 20. The relation between number of detected edge points and iteration numbers on the Eight image with Gaussian noise (r = 25).
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Fig. 21. The relation between number of detected edge points and iteration numbers on the Discover image with Gaussian noise (r = 25).
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Fig. 22. The relationship between the parameter Alpha and FOM.
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Fig. 23. The relationship between the parameter deltath and FOM.
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with the SMED method. The average E value for all images is 0.0143 for the SMED and 0.0078 for the NSED methods, and the
average FOM value for all images is 0.5491 for the SMED and 0.6651 for the NSED methods, respectively. The comparison is
tested on E and FOM metrics using the paired t-test. The p-values of the test on E and FOM are 2.0823 � 10�55 and 0.042,
respectively. Both p-values are less than 0.05. The statistical analysis demonstrates that the improvement is statistically
significant comparing the NSED with SMED on the images in the Sowerby database.
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5. Conclusions

A novel edge detection approach which combines the NS theory and directional a-mean operation is introduced in this
paper. According to the NS theory, the image is described by using three membership sets, T, I and F. The directional a-mean
operation is employed to reduce the image’s indeterminacy. We have carried out extensive experiments with various types
of noise and noise levels on various types of images, investigating the performance of the proposed method. Moreover,
extensive comparisons with SMED, RROED and BFED methods are carried out for showing the superiority of our proposal.
The comparison with the ADF method is also considered in the experiments. The obtained experimental results are evaluated
quantitatively with FOM and E values. In addition a comparative experiment is considered according to the average CPU
times. According to the experimental results, the proposed method can not only perform better on clear and simple images,
but also on the noisy and complex images, due to the fact that the proposed approach can handle the indeterminacy of the
images well. In addition, the run time of our method is quite close to the compared methods. A statistical test is also con-
sidered for further analyzing the experimental results, and the statistical test results show that the proposed method has a
significant improvement. We also test the performance of our proposal in the large scale image dataset and conducted an
experiment on a publicly available dataset namely the Sowerby image database. The obtained results indicate the better per-
formance of our proposal. According to various evaluation criterions, the proposed method can be used successfully in many
image processing applications. In the future, the NSED is planned for edge detection in medical images, and it will also find a
wide application in this area.
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