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Abstract 

Resilient supplier selection problem is a key decision problem for an organization to gain competitive 

advantage. In the presence of multiple conflicting evaluation criteria, contradicting decision makers, and 

imprecise information sources, this problem becomes even more difficult to solve with the classical 

optimization approaches. Multi-Criteria Decision Analysis (MCDA) is a viable alternative approach for 

handling the imprecise information associated with the evaluation proffered by the decision makers.  In 

this work, we present a comprehensive algorithm for ranking a set of suppliers based on aggregated 

information obtained from crisp numerical assessments and reliability adjusted linguistic appraisals from 

a group of decision makers. We adapted two popular tools - Single Valued Neutrosophic Sets (SVNS) 

and Interval-valued fuzzy sets (IVFS) and extended them to incorporate both crisp and linguistic 

evaluations from the decision makers to obtain aggregated SVNS and IVFS. This information is then used 

to rank the suppliers by using TOPSIS method. We present a case study to illustrate the mechanism of the 

proposed algorithm and show sensitivity of the supplier ranking with respect to the priorities of evaluation 

criteria. 
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1. Introduction 

Due to the competitive nature of the current open market economy, a manufacturer’s ability to avoid 

and/or absorb disruptions in supply chain has become a crucial requirement to survive and thrive in the 

market. The flow of material and information through the present-day supply chains can be disrupted by 

diverse unpredictable natural catastrophes such as earthquakes, floods, hurricanes, or unexpected man-

made disasters such as labor strikes, bankruptcy or terrorist attack [1]. These disruptive events with low 

probability of occurrences can cause huge financial impact on supply chain operations. The Japanese 

earthquake occurred in 2011 struck the supply chains of motor vehicle companies such as GM and Toyota 

[2]. The unexpected disaster resulted in substantially reduced production capacity in the U.S., while full 

restoration of the supply chain capacity took months. As a small example, the earthquake disrupted the 

operations of Renesas Electronics, manufacturer of 40% of the world’s supply of automotive 

microcontrollers; the disruption was felt by the worldwide automotive industry. To avoid or absorb the 

disruptions caused by disasters, either natural or anthropogenic, a manufacturer must design its supply 

chain network to be resilient. To a great extent, resilience capacity of a supply chain is preserved by 

resilient suppliers. Yossi [3] and Rice [4] have introduced the definition of supply chain resilience and 

resilient supplier characteristics. A resilient supplier has high capability to resist or absorb disaster impact 

and can get back to usual performance quickly following a disaster. To select an optimal resilient supplier 

among multiple alternatives, plentiful aspects need to be taken into consideration.  

Supplier selection is a complicated, yet crucial decision problem because of its far-reaching influence on 

the quality, efficiency and reliability of the supply chain. The decision problem involves weighing several 

alternatives against multiple conflicting criteria. This becomes even more complicated when evaluation is 

done by multiple decision makers, each using their own perceptions about importance of criteria and the 

performance of the alternatives. Furthermore, pertinent information is often imprecise and available in 

linguistic form. Multi Criteria Decision Analysis (MCDA) is one of the most promising approaches to 

solve this complex decision-making process, as addressed by several researchers [5-11]. Howard and 

Ralph [12] first introduce MCDA as an extension of decision theory that considers multiple conflicting 

objectives. MCDA is methodology for evaluating alternatives based on individual preference, often 

against conflicting criteria, and combining them into one single appraisal. Due to its versatility, MCDA 

approaches are widely adopted in the fields of transportation, immigration, education, investment, 

environment, energy, defense and healthcare [5-10].  

The applications of MCDA in supplier selection are numerous and extensive. As one of the most popular 

MCDA method, AHP (Analytical Hierarchy Process) is widely adopted among the research on supplier 

selection [13, 14]. AHP was firstly proposed by Saaty [15] and then refined by Golden et al [16], which is 
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always used for ranking alternatives with qualitative data. In AHP, a complex master problem could be 

decomposed to plenty of subproblems in several levels, in which way the unidirectional hierarchical 

relationships between levels are more understandable. Then pairwise comparison between alternatives are 

conducted to determine the importance of the criteria and preference over all alternatives. With the help 

of AHP, the evaluation of alternatives could be extended to qualitative field while multiple criteria are 

considered, and the consistency of the system are satisfied. However, as the qualitative data are given by 

the decision makers based on experience, knowledge and judgment, the discrepancy among the decision 

makers, which would result in subjective influence in data, are not considered. Thus, the uncertainty and 

imprecise nature in the data are not dealt with, which may lead to low reliability and robustness of the 

result. To develop a more accurate and reliable approach to evaluated the alternatives, TOPSIS 

(Technique for order preference by similarity to an ideal solution) was developed by Yoon [17] and 

Hwang et al. [18] based on the concept that the optimal solution should have the closest distance from the 

Positive Ideal Solution (PIS) and longest distance from the Negative Ideal Solution (NIS). The PIS and 

NIS are determined by the objective of the components of the variables, and the distances are usually 

measured by Euclidean Distance while handling supplier selection problems. Different from AHP, the 

input data are quantitative numbers so that the computation could be processed. Due to its high accuracy, 

the application of TOPSIS in supplier selection is also numerous. One of these studies [19] proposed an 

application of TOPSIS in the supplier selection process in Iran Auto Supply Chain. In his research, both 

Numerical and Linguistic evaluation criteria are considered. To evaluate all the criteria simultaneously 

with quantitative data, the authors assigned numerical numbers (without consideration of fuzziness of data 

set) to each class in the linguistic criteria directly and generated the quantitative decision matrix. After the 

normalization and calculation of entropy measurement for the quantitative decision matrix, the weight of 

each criterion is determined, and TOPSIS is then adopted to measure the performance of each alternative 

supplier. Finally, the list of preference of the alternative suppliers are generated based on their ranking 

score and the optimal supplier is selected. In addition, to better evaluate the alternative suppliers, some of 

the researchers aggregate AHP with TOPSIS to develop a comprehensive decision-making framework [20, 

21]. However, most of these methods are developed with respect to crisp data, and the uncertainty, 

impreciseness and fuzziness nature of the data extracted from real world are not considered.  

While crisp data is inadequate to model real life situations, intuitionistic fuzzy set was introduced by 

Atanassov [22] and is adopted to the aggregated decision-making framework by Haldar et al. and Boran 

et al. [23, 24]. As it is often difficult for an expert to exactly quantify his or her opinion as a number in 

interval [0,1], it’s more suitable to represent this degree of certainty by an interval. Wang and Li [25] 

defined the concept of Interval-valued Fuzzy Sets (IVFS) and it has been widely applied in real-world 

problems. IVFS includes two indexes, which are the lower limit of degree of membership and the upper 
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limit of degree of membership respectively. Because the interval-valued fuzzy set theory can provide a 

more accurate modeling, Ashtiani et al. [26] extend the application of IVFS in TOPSIS to solve Multi 

Criteria Decision Making problems. The algorithm of the interval-valued fuzzy TOPSIS is proposed and a 

numerical example considering linguistic criteria are presented in his research to demonstrate the 

practicability and of the model.  

To characterize the indeterminacy more explicitly and apply more easily in the real world, Wang et al. [27, 

28] proposed the concept of single valued neutrosophic set (SVNS) and defined various properties of 

SVNS. SVNS consists of three components, which are truth-membership degree, the indeterminacy-

membership degree and the falsity membership degree respectively, which gives us an additional 

possibility to represent uncertainty, imprecise, incomplete, and inconsistent information existing in real 

world. As SVNS is more suitable to handle the uncertainty, imprecise, inconsistent and incomplete 

information existing in real world, Sahin and Yiğider [21] introduced SVNS in TOPSIS to replace the 

crisp data in the decision matrix and the results show that the single valued neutrosophic TOPSIS can be 

preferable for dealing with incomplete, undetermined and inconsistent information in MCDA problems. 

However, only linguistic criteria are evaluated were considered, while many of the essential and 

significant criteria evaluation may be expressed in numerical form in the process of supplier evaluation.  

The existing research have shown promising potential of MCDA methods in supplier selection problems. 

However, there are still scope of extending the current methods to make the decision process more fitting 

to the real-world problems. The study done by Shahroudi and Tonekaboni [19] presented the application 

of TOPSIS in supplier selection, where both linguistic and numerical criteria were considered. The works 

of Ashtiani et al. [26] and Sahin and Yiğider [21] showed the effectiveness of IVFS and SVNS within the 

TOPSIS process. However, there is still a lack of a systematic approach where alternative suppliers can be 

evaluated concerning both linguistic and numerical criteria with uncertainty in the data. To the best of our 

knowledge, there is no method currently present that could evaluate the alternative suppliers from 

resilient perspective based on numerical criteria and linguistic criteria simultaneously while considering 

the impreciseness and unreliable nature of the data. To address this problem, we proposed an algorithm 

based on possibilistic approach that extends the fuzzy-based TOPSIS to numerical criteria along with the 

linguistic criteria. Furthermore, in our proposed method, the reliability-based membership degree is 

adopted to bridge the gap in considering crisp data and the fuzzy set (SVNS and IVFS) on numerical 

criteria simultaneously to help decision maker evaluating the alternative set of suppliers from resilient 

point of view in a comprehensive way.  

We organize the rest of the paper as follows: in the Section 2, we introduce the methodology and present 

the preliminary concepts for designing the algorithm. Then in Section 3, we present the detailed 
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computation process of the algorithm. In Section 4, we present an illustrative example of a resilient 

supplier selection problem following our algorithm. Finally, in Section 5 we conclude our paper with 

discussion on our findings and potential future research.  

2. Methodology 

In our MCDA model, we adapted two fuzzy-based approaches, IVFS and SVNS, to characterize the 

assessment given by decision makers as well as the weight of criteria and decision makers. Although 

these two approaches share some similarities; the primary difference is how the linguistic evaluations are 

represented by fuzzy numbers. Firstly, we computed the weight of criteria based on IVFS and SVNS 

theory and fuzzified the universe of discourse of numerical criteria according to the obtained weight. With 

the fuzzified frame of discernment, the membership function and associated membership degree for each 

linguistic class is calculated. After that, the derived membership degrees are modified with respect to 

reliability indices and normalized to be regarded as the weight of each class in a certain criterion for the 

supplier’s performance measurement. Multiplied by the components of corresponding IVFS or SVNS of 

each linguistic class, the weighted average of each component is generated and the integrated IVFS or 

SVNS decision matrixes for numerical criteria are constructed. Then the obtained decision matrixes are 

coordinated with respect to the weight of criteria based on the algorithm for these two fuzzy approaches. 

Possessing the weighted decision matrixes, TOPSIS method is processed to compute the closeness 

coefficient (CC), which is deemed to be the ranking score of the suppliers to determine the list of 

preference of suppliers. To make it more understandable, we would introduce some significant 

preliminaries in our methodology. 

2.1.  Multi Criteria Decision Analysis  

Multi Criteria Decision Analysis (MCDA) provides a comprehensive decision analysis framework that 

could help the stakeholders balance the pros and cons of the alternatives in a multi-dimensional 

optimization problem, in which alternatives, evaluation criteria and decision makers are the essential 

variables. The analysis process of MCDA and the corresponding steps in our decision-making model 

could be summarized as follows [29]: 

Table 1. Framework of MCDA. 

Step 1 
Defining the decision 

problem 

Select optimal supplier with highest resilience 

over a group of alternative suppliers 

Step 2 
Selecting and structuring 

criteria 

Identify the evaluation criteria with respect to 

supplier resilience 

Step 3 Measuring performance 

Gather data about the alternatives’ performance 

on the criteria and summarize this in a decision 

matrix  

Step 4 Scoring alternatives  
Evaluate the performance of the alternative 

suppliers based on the objective of the criteria 
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Step 5 
Weighting criteria and 

decision makers  

Determine the weight of criteria and decision 

makers based on their importance 

Step 6 
Calculating aggregate 

scores 

Use the alternatives’ scores on the criteria and the 

weights for the criteria and decision makers to get 

“total value” by which the alternatives are ranked 

with TOPSIS 

Step 7 Dealing with uncertainty 
Perform Sensitivity analysis to understand the 

level of robustness of the MCDA results 

Step 8 
Reporting and 

examination of findings 

Interpret the MCDA outputs, including sensitivity 

analysis, to support decision making  

 

2.2. Technique for order preference by similarity to an ideal solution (TOPSIS) 

TOPSIS is a decision-making technique that the alternatives are evaluated based on their distance to the 

ideal solution. The closer the distance of an alternative to the ideal solution, the higher a grade it would 

gain. In our research, Euclidian Distance is used to measure the performance of the alternatives and the 

function is described as below [21]: 

𝑠𝑖
+ = √∑ {(𝑎𝑖𝑗 − 𝑎𝑗

+)
2

+ (𝑏𝑖𝑗 − 𝑏𝑗
+)

2
+ (𝑐𝑖𝑗 − 𝑐𝑗

+)
2
}

𝑛

𝑗=1

 𝑖 = 1,  2,  … ,  𝑛 
(2.1) 

𝑠𝑖
− = √∑ {(𝑎𝑖𝑗 − 𝑎𝑗

−)
2

+ (𝑏𝑖𝑗 − 𝑏𝑗
−)

2
+ (𝑐𝑖𝑗 − 𝑐𝑗

−)
2
}

𝑛

𝑗=1

 𝑖 = 1,  2,  … ,  𝑛    
(2.2) 

�̃�𝑗 =
𝑠_

𝑠+ + 𝑠−
,    0 ≤ �̃�𝑗 ≤ 1     (2.3) 

 

Where 𝑠𝑖
+  and 𝑠𝑖

−  are the positive and negative ideal solution respectively, �̃�𝑗  is the closeness 

coefficient(CC), 𝑎𝑖𝑗 , 𝑏𝑖𝑗 , 𝑐𝑖𝑗  are the component of the alternatives on criteria j and 𝑎𝑗
+ , 𝑏𝑗

+ , 𝑐𝑗
+  are the 

corresponding components of the Positive Ideal Solution (PIS) and 𝑎𝑗
− , 𝑏𝑗

− , 𝑐𝑗
−  are the corresponding 

components of Negative Ideal Solution (NIS). 

2.3. Interval Valued Fuzzy Set (IVFS) 

An interval valued fuzzy set A defined on (−1, +1) is given by [30]: 

A = {(x, [𝜇𝐴
𝐿 (𝑥), 𝜇𝐴

𝑈(𝑥)]} 

𝜇𝐴
𝐿 (𝑥), 𝜇𝐴

𝑈(𝑥): 𝑋 → [0,1]   ∀𝑥 ∈ 𝑋, 𝜇𝐴
𝐿 (𝑥) ≤  𝜇𝐴

𝑈(𝑥)                                 (2.4) 

𝜇𝐴(𝑥) = [𝜇𝐴
𝐿 (𝑥), 𝜇𝐴

𝑈(𝑥)] 

A = {(x, 𝜇𝐴(𝑥))}, 𝑥 ∈ (−∞, +∞) 

; where 𝜇𝐴
𝐿 (𝑥) is the lower limit of degree of membership and 𝜇𝐴

𝑈(𝑥)is the upper limit of degree of 

membership. 
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If the membership degree is expressed in triangular interval valued fuzzy numbers, it can be also 

demonstrated as: 

𝑥 = [(𝑥1, 𝑥1
′ );  𝑥2;  (𝑥3

′ , 𝑥3)]                                                        (2.5) 

; where 𝑥1, 𝑥1
′ , 𝑥2, 𝑥3

′  and 𝑥3 could be illustrated in the following figure: 

 

Figure 1. Illustration for the Triangular Interval Valued Fuzzy Number. 

Table 2 shows the corresponding IVFS according to the linguistic terms: 

Table 2. Linguistic Terms and Associated IVFS. 

Linguistic Terms IVFS (a, a′, b, c′, c) 

Weight Linguistic Terms in IVFS 

VUI 0 0 0 0.15 0.15 

UI 0 0.15 0.3 0.45 0.55 

M 0.25 0.35 0.5 0.65 0.75 

I 0.45 0.55 0.7 0.8 0.95 

VI  0.55 0.75 0.9 0.95 1 

 

Performance Linguistic Terms in IVFS 

VB  0 0 0 1 1.5 

B 0 0.5 1 2.5 3.5 

MB 0 1.5 3 4.5 5.5 

M 1 2.5 4 5.5 6.5 

MG 2.5 3.5 5 6.5 7.5 

G 4.5 5.5 6 7 8.5 

VG 5.5 6.5 7 8 9.5 

VVG 7.5 8.5 9 9.5 10 

EG 8.5 9.5 10 10 10 

 

In Table 2, {VUI, UI, M, I, VI } is a set of linguistic weights for decision makers refers to Very Unimportant, 

Unimportant, Medium, Important and Very Important respectively, and 

{VB, B, MB, M, MG, G, VG, VVG, EG } is a set of linguistic weights for criteria refers to Very Bad, Bad, 

Medium Bad, Medium, Medium Good, Good, Very Good, Very Very Good and Extremely Good 

respectively. 
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For two IVFS 𝑣 = [(𝑣1, 𝑣1
′ );  𝑣2;  (𝑣3

′ , 𝑣3)] and 𝑢 = [(𝑢1, 𝑢1
′ );  𝑢2;  (𝑢3

′ ,  𝑢3)], the algorithm for finding the  

compound IVFS is as follows: 

𝑣 ∗ 𝑢 = [(𝑣1 ∗ 𝑢1, 𝑣1
′ ∗ 𝑢1

′ ); 𝑣2 ∗ 𝑢2; ( 𝑣3
′ ∗ 𝑢3

′ , 𝑣3 ∗  𝑢3)]                           (2.6) 

; where ∗∈ {+, −,×,÷} 

Assume there are t  decision makers, 𝑉𝑘 = [(𝑣1𝑘 , 𝑣1𝑘
′ );  𝑣2𝑘;  (𝑣3𝑘

′ , 𝑣3𝑘)]  refers to the weight of 

kth decision maker in the form of IVFS,  𝐼𝑗𝑘 = [(𝑢1𝑗𝑘 , 𝑢1𝑗𝑘
′ ); 𝑢2𝑗𝑘;  (𝑢3𝑗𝑘

′ , 𝑢3𝑗𝑘)] represent the weight of 

jth criteria given by kth decision maker in the form of IVFS, then the aggregated weight of jth criteria in 

the form of IVFS could be calculated based on (2.6) as follows: 

𝐼𝑗 = [(
1

𝑡
∑ 𝑣1𝑘𝑢1𝑗𝑘𝑘 ,

1

𝑡
∑ 𝑣1𝑘

′ 𝑢1𝑗𝑘
′ );  

1

𝑡
∑ 𝑣2𝑘𝑢2𝑗𝑘𝑘𝑘 ; (

1

𝑡
∑ 𝑣3𝑘

′ 𝑢3𝑗𝑘
′

𝑘 ,
1

𝑡
∑ 𝑣3𝑘𝑢3𝑗𝑘)]𝑘           (2.7) 

Similarly, if the performance measurement for ith  alternative given by kth  decision maker  𝑃𝑖𝑘 =

[(𝑒1𝑖𝑘 , 𝑒1𝑖𝑘
′ ); 𝑒2𝑖𝑘;  (𝑒3𝑖𝑘

′ , 𝑒3𝑖𝑘)], then the aggregated performance measurement of ith alternative in the 

form of IVFS could be calculated as follows: 

𝑃𝑖 = [(
1

𝑡
∑ 𝑣1𝑘𝑒1𝑖𝑘

′
𝑘 ,

1

𝑡
∑ 𝑣1𝑘

′ 𝑒1𝑖𝑘
′ ); 

1

𝑡
∑ 𝑣2𝑘𝑒2𝑖𝑘𝑘𝑘 ; (

1

𝑡
∑ 𝑣3𝑘

′ 𝑒3𝑖𝑘
′

𝑘 ,
1

𝑡
∑ 𝑣3𝑘𝑒3𝑖𝑘)]𝑘          (2.8) 

2.4. Single Valued Neutrosophic Set (SVNS) 

A single valued neutrosophic set (SVNS) can be defined as follows [21]: 

Let X be a universe of discourse. A single valued neutrosophic set A over X is an object having the form  

𝐴 = {〈𝑥, u𝐴(𝑥), r𝐴(𝑥), v𝐴(𝑥)〉: 𝑥 ∈ 𝑋}                                            (2.9) 

where u 𝐴(x): X →  [0,1] , r𝐴(𝑥) : X →  [0,1]  and v𝐴(𝑥) : X →  [0,1]  with 0 ≤  uA(x) +  rA(x) +

 vA(x) ≤  3 for all x ∈  X. The intervals u𝐴(𝑥), r𝐴(𝑥) and v𝐴(𝑥) denote the truth- membership degree, the 

indeterminacy-membership degree and the falsity membership degree of x to A, and can be simplified as 

a, b, c respectively. Table 3 shows the corresponding SVNS according to the linguistic terms:  

Table 3. Linguistic Terms and Associated SVNS. 

Linguistic Terms           SVNS (a, b, c) 

Weight Linguistic Terms in SVNS 

VI 0.9 0.1 0.1 

I 0.75 0.25 0.2 

M 0.5 0.5 0.5 

UI 0.35 0.75 0.8 

VUI 0.1 0.9 0.9 

 

Performance Linguistic Terms in SVNS  

VB 0.2 0.85 0.8 

B 0.3 0.75 0.7 

MB 0.4 0.65 0.6 

M 0.5 0.5 0.5 
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MG 0.6 0.35 0.4 

G 0.7 0.25 0.3 

VG 0.8 0.15 0.2 

VVG 0.9 0.1 0.1 

EG 1 0 0 

 

Assume the decision makers’ group consists of t participants, A𝑘 =  (a𝑘 , b𝑘 , c𝑘)  express the SVNS 

importance of the kth decision maker. Then the weight of kth decision maker can be calculated as follows: 

𝜎𝑘 =
𝑎𝑘+𝑏𝑘(

𝑎𝑘
𝑎𝑘+𝑐𝑘

)

∑ 𝑎𝑘+𝑏𝑘(
𝑎𝑘

𝑎𝑘+𝑐𝑘
)𝑡

𝑘=1

,  𝜎𝑘 ≥ 0 𝑎𝑛𝑑 ∑ 𝜎𝑘
𝑡
𝑘=1 = 1.                                  (2.10) 

The aggregated SVNS decision matrix D with respect to decision makers is defined by D = ∑ 𝛿𝑘
𝑡
𝑘=1 𝐷𝑘, 

where 

 D = (

𝑑11 ⋯ 𝑑1𝑗

⋮ ⋱ ⋮
𝑑𝑖1 ⋯ 𝑑𝑖𝑗

)                                                                (2.11) 

And 

 𝑑𝑖𝑗 = (𝑢𝑖𝑗 , 𝑟𝑖𝑗 , 𝑣𝑖𝑗) = (1 − ∏ (1 − 𝑎𝑖𝑗
(𝑘)

)𝜎𝑘 ,  ∏ (𝑏𝑖𝑗
(𝑘)

)𝜎𝑘 , ∏ (𝑐𝑖𝑗
(𝑘)

)𝜎𝑘)𝑡
𝑘=1                                𝑡

𝑘=1
𝑡
𝑘=1  (2.12) 

Let w 𝑗
(k)

=  (a 𝑗
(𝑘)

, b𝑗
(𝑘)

, c𝑗
(𝑘)

) be an SVN number expressing the importance of criteria j (j =  1, 2, … ) by the kth 

decision maker. The SVNS describing the weight of the jth criteria can be calculated using the method 

proposed by: 

𝑤𝑗 = (1 − ∏ (1 − 𝑎𝑗𝑘)
𝜎𝑘

,  𝑡
𝑘=1 ∏ 𝑏𝑗𝑘

𝜎𝑘 ,  𝑡
𝑘=1 ∏ 𝑐𝑗𝑘

𝜎𝑘) 𝑡
𝑘=1                                                     (2.13) 

While the weight vector of all criteria is presented as: 

W = (𝑤1, 𝑤2, … , 𝑤𝑗)                                                                                             (2.14) 

Then the aggregated weighted SVNS decision matrix can be obtained as: 

𝐷∗ = D ⊗ W (2.15) 

Based on the product algorithm of SVNS: 

𝐴1⊗𝐴2 = (𝑎1𝑎2,  𝑏1 + 𝑏2 − 𝑏1𝑏2, 𝑐1 + 𝑐2 − 𝑐1𝑐2)                                                 (2.16) 

The algorithm of SVNS is totally different to that of IVFS based on (2.6-2.8), so we adopt these two 

fuzzy approaches to demonstrate the effectiveness and robustness of our decision-making model. 
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2.5. Membership Function 

The definition of membership function was first introduced by Zadeh [31], where the membership 

functions were used to operate on the domain of all possible values. In fuzzy logic, membership degree 

represents the truth value of a certain proposition. Different from the concept of probability, truth value 

represents membership in vaguely defined sets. For any set X, the membership degree of an element x of 

X in fuzzy set A is denoted as 𝜇𝐴(𝑥), which quantifies the grade of membership of the element x to the 

fuzzy set A. 

Ullah et al. [32] presented a method to fuzzify the universe of discourse of the numerical criteria and 

formulate the membership function to calculate the membership degree with range data as shown in 

Figure 2: 

 
Figure 2. Frame of Discernment. 

For the frame of discernment shown in the above figure, the membership functions of the different classes 

are calculated as follows: 

𝑚𝐵 = 𝑚𝑎𝑥 (0,  
𝑎3 − 𝑥

𝑎3 − 𝑎
) 

                                                   𝑚𝑀𝐵 = max (0,  min(
𝑥−𝑎1

𝑎3−𝑎1
,

𝑎5−𝑥

𝑎5−𝑎3
)                                          (2.17) 

      𝑚𝑉𝑉𝐺 = max (0,  
𝑥 − 𝑎11

𝑏 − 𝑎11
)  

 

; where 𝑎𝑖 = 𝑎 +
𝑏−𝑎

2×7
,   𝑖 = 1,2, … , (2 × 7 − 1), and 7 is the number of class in this frame of discernment. 

The membership functions are assumed to be triangular and symmetric. The membership function for 

each class depends on the frame of discernment of the criteria. 

2.6. Reliability-based Membership Function 

As the membership functions are assumed triangular and symmetric, the uncertainty and impreciseness of 

the functions need to be taken into consideration. Jiang et al [33] proposed a reliability-based membership 

function to deal with uncertainty of information and the reliability of information sources. The reliability 

of the membership functions is measured by the static reliability index and dynamic reliability index, 

which are defined by the similarity among classes and the risk distance between the test samples and the 

overlapping area among classes respectively. The comprehensive reliability is computed by the product of 
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the two index and the reliability-based membership function are fused using Dempster’s combination rule 

[34, 35]. The numerical examples provided by Jiang et al. verified the effectiveness of the reliability-

modified functions. 

The static reliability index is measured by the overlap area between two adjacent classes as follows: 

 
Figure 3. Illustration of Static Reliability Index. 

The shaded part is the overlap between class M and MG. The larger this area, the more possible that an 

input data is wrongly recognized as M or MG while it’s actually MG or M. So, the Similarity between M 

and MG 𝑠𝑖𝑚𝑀,𝑀𝐺  in a certain criterion can be described as [33]: 

             𝑠𝑖𝑚𝑀,𝑀𝐺 =
∫ min

𝑐≤𝑥≤𝑑
(𝑚𝑀(𝑥),𝑚𝑀𝐺(𝑥))𝑑𝑥

𝑑

𝑐

∫ 𝑚𝑀(𝑥)+𝑚𝑀𝐺(𝑥)−∫ min
𝑐≤𝑥≤𝑑

(𝑚𝑀(𝑥),𝑚𝑀𝐺(𝑥))𝑑𝑥
𝑑

𝑐

                                                    (2.18)   

The static reliability index 𝑅𝑠 then can be calculated as:  

𝑅𝑠 = ∑(1 − 𝑠𝑖𝑚𝑖𝑙)

𝑖<𝑙

                                                                              (2.19) 

While 𝑖 and 𝑙 are the adjacent classes in the same universe of discourse in one criterion. 

The dynamic reliability index is measured with a set of test sample and the risk distance between every 

peak of overlap and the test value. 

 
Figure 4. Illustration of Dynamic Reliability Index. 

If 𝑃𝑀,𝑀𝐺  is the peak of the overlap of M and MG, and 𝑇𝑗 is the test sample for this criterion 𝐶𝑗, the distance 

𝑑 between 𝑇𝑗 and 𝑃𝑀,𝑀𝐺  represents the risk distance that related to the uncertainty of the test sample.  

The risk distance can be formulated as [33]: 

𝑑𝑀,𝑀𝐺 =
|T𝑗−𝑃𝑀,𝑀𝐺|

𝐷
                                                             (2.20) 

; where D is the range of the universe of discourse of C𝑗, which is (a − b). 
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After calculating all the risk distance, the total dynamic reliability index can be determined as: 

𝑅𝑑 = 𝑒∑ 𝑑(𝑙−1)𝑙
𝑛
2                                                              (2.21) 

Then the Comprehensive reliability index can be defined as: 

𝑅 = 𝑅𝑠 × 𝑅𝑑                                                               (2.22) 

After the normalization: 

𝑅∗ =
𝑅

max (𝑅)
                                                            (2.23) 

The reliability-based membership degree can be calculated as: 

𝑚𝑙
𝑅 = 𝑅∗ × 𝑚𝑙                                                                    (2.24) 

; where l is a class in a universe of discourse. 

2.7. Evaluation Criteria 

The evaluation criteria are divided into two groups: Resiliency Criteria and Critical Criteria [30]. The 

description of the criteria is summarized as follows: 

Table 4. Description of Evaluation Criteria. 

Criteria Description 

Resiliency 

Criteria 

Supply chain density The quantity and geographical spacing of nodes within a supply chain 

Supply chain complexity 
The number of nodes in a supply chain and the interconnections 

between those nodes 

Responsiveness The response speed of the supplier to market demand 

Critical 

Criteria 

Number of critical nodes 

in a Supply chain 

Node criticality is the relative importance of a given node or set of 

nodes within a supply chain 

Re-engineering 
The corrective procedure for the incorporation of any engineering 

design change within the product 

Buffer capacity 
The level of extra stock that is maintained to mitigate the risk of 

stock-outs due to uncertainties in supply and demand. 

Supplier’s resource 

flexibility 

The different logistics strategies which can be adopted either to 

release a product to a market or to procure a component from a 

supplier 

Lead time The delay between the initiation and execution of a process 

 

3. Computation Process 

To better illustrate the detailed steps of our proposed decision-making algorithm, we provide a 

comprehensive flow that describes the computation process. The computation process includes both the 

IVFS and SVNS approaches and is summarized as follows: 

Step 1: Categorize the criteria into different group. 
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Firstly, we determined the feature and objective of each criterion to prepare for further computation. 

 

Table 5. Categorization of Criteria. 

Categorization Criteria Obj. 

Numerical 

C1 Number of critical nodes in a Supply chain Min 

C2 Buffer capacity Max 

C3 Lead time Min 

Linguistic 

C4 Supply chain density Min 

C5 Supply chain complexity Max 

C6 Responsiveness Max 

C7 Re-engineering Max 

C8 Supplier’s resource flexibility  Max 

 

Step 2: Calculate the weight of each decision maker and criterion. 

To determine the frame of discernment of the numerical criteria, we need to obtain their weight in 

advance. Suppose we have i alternative suppliers 𝑆𝑖, j evaluation criteria 𝐶𝑗 and k decision makers 𝐷𝑀𝑘. 

Assume 𝐷𝑘 refers to the linguistic weight of 𝐷𝑀𝑘, 𝐿𝑗𝑘 refers to the importance of criteria j given by 𝐷𝑀𝑘, 

based on Table 3 and equation (2.10) and (2.13), the weight of each DM and criterion in SVNS approach 

could be calculated as 𝑤𝑐𝑗 . 

Table 6. Calculated SVNS for Weight of Criteria. 

Criteria 
Weight 

a b c 

C1 w𝑎1 w𝑏1 w𝑐1 

C2 w𝑎2 w𝑏2 w𝑐2 

… … … … 

C𝑗 w𝑎𝑗  w𝑏𝑗 w𝑐𝑗 

 

For IVFS approach, based on (2.7), we just need to transfer the linguistic data to IVFS data for further 

computation. 

Step 3: For the numerical criteria, fuzzify their universe of discourse based on their importance and 

determine the membership function of the classes. 

After we get the weight of the numerical criteria, the number of classes and frame of discernment could 

be determined. Based on the obtained weight, the number of classes in each corresponding criterion can 

be assigned. The higher the weight of criteria, the more number of classes are divided. 
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In the fuzzification process, the span of the universe of discourse is generated by the minimum and 

maximum of all the crisp data for a certain criterion including all the alternative suppliers. For example, if 

the minimum and maximum of crisp data in C𝑗 are 𝑎0 and 𝑎18 concerning all the suppliers in C𝑗 then the 

span of universe of discourse of C𝑗 is (𝑎0, 𝑎18). Assume we decide to assign 9 classes to C𝑗 based on the 

weight of C𝑗 , then the universe of discourse underlying the regular scheme of C𝑗  can be fuzzified as 

follows [32]: 

 
Figure 5. Illustration of Fuzzification. 

𝑎𝑖 = 𝑎0 +
𝑎18−𝑎0

18
,  𝑖 = 1, 2, … ,18                                                                               (3.1) 

The membership function of each class 𝑚𝐹 in Figure 4 can be formulated as [32]: 

        𝑚𝑉𝐵 = 𝑚𝑎𝑥 (0,  
𝑎3−𝑥

𝑎3−𝑎0
)                                                                                                                                           

 

𝑚𝐵 = max (0,  min(
𝑥−𝑎1

𝑎3−𝑎1
,

𝑎5−𝑥

𝑎5−𝑎3
)                                                                         (3.2)                                      

 

𝑚𝐸𝐺 = max (0,  
𝑥−𝑎15

𝑎18−𝑎15
)                                                                                                                                                

 

Step 4: Transfer the crisp data in the numerical criteria to range data and calculate membership degree. 

Firstly, put the crisp data in an ascending order. Take numerical criteria C𝑗  for example, if we have the 

crisp data of the suppliers concerning criteria C𝑗: 

Table 7. Crisp Data of 𝐶𝑗. 

C𝑗 
Min Max 

Supplier DM1 DM2 … DM𝑘 

S1 𝑁1𝑗1 𝑁1𝑗2 … 𝑁1𝑗𝑘 𝑁1𝑗𝑛 𝑁1𝑗𝑚 

S2 𝑁2𝑗1 𝑁2𝑗2 … 𝑁2𝑗𝑘 … … 

… … … … … … … 

S𝑖 𝑁𝑖𝑗1 𝑁𝑖𝑗2 … 𝑁𝑖𝑗𝑘 … … 

 

; where S𝑖 refers to ith supplier, 𝑁𝑖𝑗𝑘 refers to the crisp data of supplier i on criteria j given by decision 

maker k, 𝑁1𝑗𝑛  and 𝑁1𝑗𝑚are the minimum and maximum values for 𝑆1 on 𝐶𝑗. 
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Assume that N1j1<N1j2<…<N1jk for 𝑆1 (if there is any outlier in the crisp data, we will exclude the outliers 

with Excel TRIMMEAN), the range value of 𝑆1on C𝑗 could be described as r𝑖𝑗 (N111, N11k). For 𝑆1, there 

are k crisp data given by decision makers through DM1 to DM𝑘. These k data consist the data sample for 

𝑆1concerning C𝑗. Regarding these k crisp data as a data set for 𝑆1, the range of this data set is from the 

minimum to the maximum, which are N111 and N11𝑘. So, the range value for 𝑆1 is (N1j1, N1jk). This way, 

all the k  crisp data given by the decision makers are aggregated in the range value and all their 

contribution are included in this range value. In this process, we don’t consider the weight of decision 

makers. After that, the decision makers are no longer involved in the computation process of Numerical 

Criteria because their contribution has been presented in the range value, which would be the fundamental 

input through the whole model. 

After we get the range value, we can calculate membership degree for each class according to the 

membership function [32]: 

𝑚𝑖𝑗 =
∫ 𝑚𝐹(𝑥)𝑑𝑥

 

𝑥∈𝑅

‖�́�‖
                                                                        (3.3) 

; where R refers to the span of the criteria and ‖�́�‖ refers to the largest segment of R that belongs to the 

support 𝑚𝐹.  

This way, the membership degree of 𝑆𝑖  on C𝑗  at linguistic class l could be calculated as 𝑀𝑖𝑗𝑙 , 𝑙 =

1,  2,  3,  … ,  9. 

Step 5: Calculate the normalized reliability-based membership degree. 

According to function (2.18-2.24), comprehensive reliability indexes for C𝑗  could be generated as Rc𝑗. 

Then based on (2.25), the original membership degree can be modified. To get the normalized weight of 

each class and make them add up to 1, we should normalize the membership value as: 

𝑛𝑖𝑗𝑙 =
𝑚𝑖𝑗𝑙

∑ 𝑚𝑖𝑗𝑙
9
𝑙=1

                                                                 (3.4) 

Then the original membership degree 𝑀𝑖𝑗𝑙 can be normalized as 𝐴𝑖𝑗𝑙 , Where ∑ 𝐴𝑖𝑗𝑙
9
𝑙=1 = 1,  𝑙 =

1,  2,  3,  … ,  9 

Step 6: Generate the integrated SVNS and IVFS for every alternative supplier concerning each criterion. 

To get SVNS for the numerical criteria, we integrated SVNS and the membership degree we calculated 

above to generate the integrated SVNS for the numerical criteria. In this integration process, the 

membership degree is regarded as the weight of each linguistic class for every alternative on the criteria. 
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Then the membership degree is multiplied by the components of the corresponding SVNS presented in 

Table 3 to obtain the integrated SVNS. The components of the integrated SVNS for each S𝑖 on C𝑗 could 

be calculated as: 

𝑎𝑖𝑗 = ∑ 𝐴𝑖𝑗𝑙𝑙 𝑎𝑙 , 𝑙 = 1, 2, …, 9                                                                  (3.5) 

𝑏𝑖𝑗 = ∑ 𝐴𝑖𝑗𝑙𝑙 𝑏𝑙 , 𝑙 = 1, 2, … , 9                                                               (3.6) 

𝑐𝑖𝑗 = ∑ 𝐴𝑖𝑗𝑙𝑙 𝑐𝑙 , 𝑙 = 1, 2, … , 9                                                                (3.7) 

; where 𝑎𝑙, 𝑏𝑙 and 𝑐𝑙 are the corresponding components of class l in Table 3. 

The integrated SVNS for 𝑆𝑖 on 𝐶𝑗can be described as (a𝑖𝑗 , b𝑖𝑗 , c𝑖𝑗), Where 𝑗 = 1, 2, 3. Similarly, based on 

Table 2, the components of the integrated IVFS for each S𝑖  on C𝑗  could also be calculated based on 

following functions: 

𝑎𝑖𝑗 = ∑ 𝐴𝑖𝑗𝑙𝑙 𝑎𝑙 , 𝑙 = 1, 2, …, 9                                                                         (3.8) 

𝑎′𝑖𝑗 = ∑ 𝐴𝑖𝑗𝑙𝑙 𝑎′𝑙 , 𝑙 = 1, 2, …, 9                                                                         (3.9) 

𝑏𝑖𝑗 = ∑ 𝐴𝑖𝑗𝑙𝑙 𝑏𝑙 , 𝑙 = 1, 2, …, 9                                                          (3.10) 

𝑐′𝑖𝑗 = ∑ 𝐴𝑖𝑗𝑙𝑙 𝑐′𝑙 , 𝑙 = 1, 2, …, 9                                                          (3.11) 

𝑐𝑖𝑗 = ∑ 𝐴𝑖𝑗𝑙𝑙 𝑐𝑙 , 𝑙 = 1, 2, …, 9                                                            (3.12) 

; where 𝑎𝑙, 𝑎′𝑙, 𝑏𝑙, 𝑐′𝑙 and 𝑐𝑙 are the corresponding components of class l in Table 2. 

Step 7: Construction of aggregated decision matrix with respect to decision makers for linguistic criteria.  

If 𝐿𝑖𝑗𝑘 refers to the linguistic data of S𝑖 on C𝑗 given by 𝐷𝑀𝑘, based on (2.11) and (2.12) and Table 3, the 

aggregated SVNS with respect to decision makers can be obtained as (a𝑖𝑗 , b𝑖𝑗 , c𝑖𝑗), where j = 4, 5, … , 8. 

Similarly, based on (2.8) and Table 2, the aggregated IVFS with respect to decision makers can be 

obtained as well. 

Step 8: Aggregate the numerical criteria matrix and the linguistic criteria matrix. 

As we have got all the SVNS for both numerical and linguistic criteria, we are able to build up a complete 

SVNS matrix. Similarly, the decision matrix as IVFS could also be generated.  

Step 9: Construction of aggregated weighted decision matrix with respect to criteria 

By using the weight of criteria matrix Table 6 and the aggregated weighted SVNS matrix Table 8, the 

aggregated weighted SVNS decision matrix can be obtained based on (2.15) and (2.16): 
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Table 8. SVNS Decision Matrix. 

Complete SVNS Decision Matrix 

Supplier  
SVNS 

C1 … C𝑗 

S1 (a11, b11, c11) … (a1𝑗 , b1𝑗 , c1𝑗) 

S2 (a21, b21, c21) … (a2𝑗 , b2𝑗 , c2𝑗) 

… … … … 

S𝑖 (a𝑖1, b𝑖1, c𝑖1) … (a𝑖𝑗 , b𝑖𝑗 , c𝑖𝑗) 

 

Aggregated Weighted SVNS Decision Matrix 

S1 (a11, b11, c11)∗ … (a1𝑗 , b1𝑗 , c1𝑗)∗ 

S2 (a21, b21, c21)∗ … (a2𝑗 , b2𝑗 , c2𝑗)∗ 

… … … … 

S𝑖 (a𝑖1, b𝑖1, c𝑖1)∗ … (a𝑖𝑗 , b𝑖𝑗 , c𝑖𝑗)∗ 

; where j = 1, 2, … , 8 

For the IVFS approach, we must normalize the decision matrix in advance. Given 𝑥𝑖𝑗 =

[(𝑎𝑖𝑗 , 𝑎𝑖𝑗
′ ); 𝑏𝑖𝑗;  (𝑐𝑖𝑗

′ , 𝑐𝑖𝑗)], based on the following functions [26] 

𝑟𝑖𝑗 = [(
𝑎𝑖𝑗

𝑐𝑗
+ ,

𝑎
𝑖𝑗

′

𝑐𝑗
+) ; 

𝑏𝑖𝑗

𝑐𝑗
+ ;  (

𝑐
𝑖𝑗

′

𝑐𝑗
+ ,

𝑐𝑖𝑗

𝑐𝑗
+)],   ∀ j ∈ 𝐺1                                                                          (3.13) 

 𝑟𝑖𝑗 = [(
𝑎𝑗

−

𝑎
𝑖𝑗

′
,

𝑎𝑗
−

𝑎𝑖𝑗
) ; 

𝑎𝑗
−

𝑏𝑖𝑗
;  (

𝑎𝑗
−

𝑐𝑖𝑗
,

𝑎𝑗
−

𝑐
𝑖𝑗

′
)],   ∀ j ∈ 𝐺2                                                              (3.14) 

𝑐𝑗
+ = max

𝑖
𝑐𝑖𝑗 ,   ∀ j ∈ 𝐺1                                                                                                  (3.15) 

𝑎𝑗
− = min

𝑖
𝑎

𝑖𝑗

′
,   ∀ j ∈ 𝐺2                                                                                                 (3.16) 

; where 𝐺1 = {𝐶2, 𝐶5, 𝐶6, 𝐶7, 𝐶8} ,  𝐺2 = {𝐶1, 𝐶3,𝐶4} based on Table 5. 

Then, the aggregated weighted IVFS decision matrix can be obtained based on (2.8). 

Step 11: Determine positive-ideal solution and negative-ideal solution 

According to SVNS theory and the principle of classical TOPSIS method, SVNS-PIS and SVNS-NIS can 

be defined as below [21]: 

𝜌+ = (𝑎𝑗
+,  𝑏𝑗

+,  𝑐𝑗
+)                                                                    (3.17) 

𝜌− = (𝑎𝑗
−,  𝑏𝑗

−,  𝑐𝑗
−)                                                                                              (3.18) 

; where 𝜌+ is the PIS and 𝜌− is the NIS and 

𝑎𝑗
+ = (

max
𝑖

𝑎𝑗 ,      𝑖𝑓 𝑗 ∈ 𝐺1

min
𝑖

𝑎𝑗 ,      𝑖𝑓 𝑗 ∈ 𝐺2

)                                                   𝑎𝑗
− = (

max
𝑖

𝑎𝑗 ,      𝑖𝑓 𝑗 ∈ 𝐺2

min
𝑖

𝑎𝑗 ,      𝑖𝑓 𝑗 ∈ 𝐺1

) 
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𝑏𝑗
+ = (

max
𝑖

𝑏𝑗 ,      𝑖𝑓 𝑗 ∈ 𝐺2

min
𝑖

𝑏𝑗 ,      𝑖𝑓 𝑗 ∈ 𝐺1

)                                                     𝑏𝑗
− = (

max
𝑖

𝑎𝑗 ,      𝑖𝑓 𝑗 ∈ 𝐺1

min
𝑖

𝑎𝑗 ,      𝑖𝑓 𝑗 ∈ 𝐺2

) 

 

𝑐𝑗
+ = (

max
𝑖

𝑐𝑗 ,      𝑖𝑓 𝑗 ∈ 𝐺2

min
𝑖

𝑐𝑗 ,      𝑖𝑓 𝑗 ∈ 𝐺1

)                                                     𝑐𝑗
− = (

max
𝑖

𝑎𝑗 ,      𝑖𝑓 𝑗 ∈ 𝐺1

min
𝑖

𝑎𝑗 ,      𝑖𝑓 𝑗 ∈ 𝐺2

) 

 

For IVFS approach, however, the IVFS-PIS and IVFS-NIS could be defined as [26]: 

𝜌+ = [(1,1); 1; (1,1)]                                                                  (3.17) 

𝜌− = [(0,0); 0; (0,0)]                                                                                           (3.18) 

 

Step 12: Calculate the Euclidian distance measures from SVN positive-ideal solution and SVN negative-

ideal solution, the closeness coefficient(CC) and rank the alternatives 

Based on function (2.1), (2.2), and (2.3), the closeness coefficient (CC) of the alternatives are obtained 

and the list of preference are generated according to descending order for SVNS approach.  

For IVFS approach, the Euclidian Distance could be calculated based on the following functions [26]: 

𝐷𝑖1
+ = ∑ √

1

3
[(𝑎𝑖𝑗 − 1)

2
+ (𝑏𝑖𝑗 − 1)

2
+ (𝑏′

𝑖𝑗 − 1)
2

𝑗                                         (3.19) 

𝐷𝑖2
+ = ∑ √

1

3
[(𝑎′𝑖𝑗 − 1)

2
+ (𝑏′𝑖𝑗 − 1)

2
+ (𝑏𝑖𝑗 − 1)

2
𝑗                                        (3.20) 

𝐷𝑖1
− = ∑ √

1

3
[(𝑎𝑖𝑗 − 0)

2
+ (𝑏𝑖𝑗 − 0)

2
+ (𝑏′

𝑖𝑗 − 0)
2

𝑗                                         (3.21) 

𝐷𝑖2
− = ∑ √

1

3
[(𝑎′𝑖𝑗 − 0)

2
+ (𝑏′𝑖𝑗 − 0)

2
+ (𝑏𝑖𝑗 − 0)

2
𝑗                                        (3.22) 

The Closeness Coefficient for IVFS could be obtained by: 

𝑅𝐶1 =
𝐷𝑖2

−

𝐷𝑖2
+ +𝐷𝑖2

− ,       𝑅𝐶2 =
𝐷𝑖1

−

𝐷𝑖1
+ +𝐷𝑖1

−                                              (3.23) 

RC𝑖
∗ =

𝑅𝐶1+𝑅𝐶2

2
                                                               (3.24) 

The following flow diagram shows the steps of our MCDA algorithm: 
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Figure 6. Framework of the Proposed MCDA algorithm.  
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4. Numerical Example 

 We randomly generated a data set, archived in appendix A to test the effectiveness of the proposed 

algorithm. We assumed that 10 decision makers (DM) have been appointed to evaluate 8 alternative 

suppliers with respect to 8 performance evaluation criteria that were discussed in section 2.7.  

4.1 Result Analysis  

 The preferential ranking scores of the several alternative suppliers generated by the proposed algorithm 

using SVNS and IVFS approaches are presented in Table 9 and Table 10. A comparative analysis of the 

ranking score obtained in these two approaches are presented in Figure 7. We found that the final ranks of 

the alternative suppliers are almost same, and supplier 3 is selected as the optimal one in both SVNS and 

IVFS approaches, showing the robustness of the proposed decision-making algorithm. 

Table 9. Ranking of the Suppliers. 

SVNS Approach 

Supplier  d+ d- cc Ranking 

S1 0.447 0.52 0.538 3 

S2 0.656 0.409 0.384 8 

S3 0.364 0.783 0.683 1 

S4 0.639 0.476 0.427 6 

S5 0.565 0.607 0.518 4 

S6 0.644 0.512 0.443 5 

S7 0.346 0.675 0.661 2 

S8 0.617 0.428 0.409 7 

 

IVFS Approach 

Supplier  d1
+ d2

+ d1
- d2

- RC1 RC2 RC Ranking 

S1 3.5 4.3 4.3 5 0.5 0.4 0.456 3 

S2 5.3 4.7 3.1 3.9 0.5 0.4 0.409 7 

S3 4.2 3.7 5.4 4.3 0.6 0.5 0.546 1 

S4 3.4 4.5 4.2 5.1 0.5 0.4 0.442 6 

S5 5.2 8.2 3.5 8.2 0.5 0.4 0.451 4 

S6 5.2 5.2 3.4 5.4 0.5 0.4 0.45 5 

S7 4.5 3.9 4 5.2 0.6 0.5 0.521 2 

S8 5.5 4.9 2.9 3.6 0.4 0.3 0.385 8 

 

Table 10. Relationship between the Suppliers and the Criteria. 

Relationship Between the Suppliers and the Criteria 

Supplier  C1 C2 C3 C4 C5 C6 C7 C8 

S1 P N N N P N N P 

S2 P N P P N N N P 

S3 P P N P N N P P 

S4 N P N P N P P P 

S5 P P P P N N P N 

S6 P N N P N N N N 

S7 P N P P P N P P 

S8 N P P N P P P N 
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Figure 7. Comparison between SVNS and IVFN. 

Given the fact that performance of the candidate supplier(s) may differ on different criteria, the change in 

the importance of the criteria would change the overall performance of a candidate supplier concerning all 

the criteria. The relationship between the performance of the resilient suppliers and the criteria are 

summarized in Table 10 wherein P and N to positive and Negative association. A positive association 

signifies that the resiliency property of the suppliers would benefit from the increase of the weight of that 

criterion, implying that the CC of the supplier would be higher if the importance of the criterion is 

increased. More conclusively, a positive association implies that a supplier possesses a good resilience 

performance on this criterion. A negative association between the supplier’s performance and importance 

of the criteria has an opposite meaning.  

As previously mentioned, the membership functions are modified using the reliability index, we further 

compared the results of the Reliability-modified model and the original model and presented the outcome 

in Figure 9. The result shows that the consideration of the reliability has slightly changed the CC of the 

suppliers, concluding that the consideration of the reliability-based membership function influences the 

overall preferential ranking of the alternative suppliers. 

 

Figure 8. Comparison Between the Reliability-modified Model and Original Model   
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In addition, to further validate the importance of considering reliability-based membership function in 

MCDA framework, we adopt the method proposed in [13] to perform another set of comparative analysis.  

Because the existing method do not consider multiple decision makers, we only extract the data of DM1 

from our original data set to be consistent in the comparative analysis. Besides, crisp data 1 to 9 are 

assigned to linguistic terms from VB to EG to replace the SVNS. The comparison of the result of our 

proposed MCDA model and the classical model are presented in Figure 10. Apart from the three suppliers 

(1, 3 & 7), we observed significant changes in the ranking score of the candidate suppliers while adopting 

the reliability based SVNS approach as compared to traditional MCDA approach.  

            

         Figure 9. Comparison for Original Model.                         Figure 10. Comparison for Classical Model.  

4.2 Sensitivity Analysis 

In real world, the requirements of the decision-makers who need to select the optimal supplier differs 

significantly due to their diverse preferences on several criteria. For example, some of the decision-

makers may care more about buffer capacity while the others’ satisfaction would be fulfilled only when 

the alternative shows a superior performance on responsiveness. That is, the ranking of the supplier(s) 

may change while different weights are assigned to different criteria. To test whether our proposed 

algorithm is capable of explaining this, we conduct a sensitivity analysis with respect to the variation in 

the weight of criteria to observe the corresponding change in the CC and the final list of preference.  

The weight in the form of SVNS is summarized in Table 3. For SVNS, the higher the importance of a 

criterion, the larger the truth value. So, we can adopt the truth value to represent the SVNS weight to do 

the sensitivity analysis. Considering C7 as example, the SVNS for C7 is (0.34, 0.76, 0.79) and assuming 

the representative weight for 𝐶𝑗 is 𝛼𝑗, then we have 𝛼7 = 0.34. To check the impact of the value of 𝛼7 on 

the final ranking score (CC), we would slightly change the value of 𝛼7 . Because the weights are 

calculated from the original linguistic data based on Table 1, we can gradually change the original 
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linguistic data on C7 to obtain the 𝛼7 we desired. The original linguistic data for 𝐶7 and corresponding 

value of 𝛼7 could be summarized as follows: 

Table 11. Original Linguistic Data for Criteria 7 (𝐶7). 

Data Set Original Linguistic Data for C7 
α7 

DMs DM1 DM2 DM3 DM4 DM5 DM6 DM7 DM8 DM9 DM10 

Original Data Set UI UI VUI UI VUI VUI M M UI UI 0.34 

Data Set 1 VUI VUI VUI VUI VUI VUI VUI VUI VUI VUI 0.1 

Data Set 2 VUI VUI VUI VUI VUI VUI UI UI UI UI 0.2 

Data Set 3 VUI VUI VUI UI UI VUI M M UI UI 0.3 

Data Set 4 M M UI UI VUI VUI M M UI UI 0.4 

Data Set 5 M M UI M UI UI I I UI UI 0.5 

Data Set 6 I I UI UI UI UI I I UI M 0.6 

Data Set 7 I I M I M M VI I M M 0.7 

Data Set 8 VI VI I I UI M VI VI I I 0.8 

Data Set 9 VI VI VI VI VI VI VI VI VI VI 0.9 

 

While we change the value of 𝛼7, the SVNS weight of other criteria would remain the same based on 

(2.13). However, as the original performance measurement will be multiplied by the weight to get the 

weighted performance measurement, the suppliers who have better performance on C7 would benefit from 

the increased weight, leading to a higher CC which, eventually will change the preferential order of the 

alternative suppliers.  

Fig 7 shows the sensitivity analysis on C7. To make it easy to understand, we only pick supplier 3 and 

supplier 7 as they have the highest CC. 

                     

Figure 11. Sensitivity Analysis on α7. 

We found that, when 𝛼7 < 0.7, the optimal supplier is supplier 3; when 𝛼7 ≥ 0.7,supplier 3 loses its 

priority over supplier 7. We must mention that, as the α𝑖 are independent from each other, we only focus 

on one α𝑖 at one time. Particularly, in doing the sensitivity analysis against one criteria, only the weight of 

that criteria is adjusted while keeping the weight of other criteria constant.  In addition, because the 
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weight is in the form of SVNS, ∑ 𝛼𝑗𝑖 ≠ 1. But we could do the sensitivity analysis on every α𝑖 separately 

to check their influence on the final rank. The results are summarized in Table 12. 

Table 12. Result of the Sensitivity Analysis. 

αj Range Optimal Supplier Range  Optimal Supplier 

α1 (0.1,0.9) S3 - - 

α2 (0.1,0.9) S3 - - 

α3 (0.1,0.72) S3 (0.72,0.9) S7 

α4 (0.1,0.8) S3 (0.8,0.9) S7 

α5 (0.1,0.9) S3 - - 

α6 (0.1,0.75) S3 (0.75,0.9) S7 

α7 (0.1,0.7) S3 (0.7,0.9) S7 

α8 (0.1,0.75) S3 (0.75,0.9) S7 

5. Conclusion 

Because of the limitation of the current fuzzy-based TOPSIS method applied in the resilient supplier 

selection problem, there is not existing approach that could provide a comprehensive way to evaluate the 

alternative suppliers with respect to numerical and linguistic criteria simultaneously. We adapted and 

extended SVNS and IVFS techniques to consider quantitative and linguistic evaluation criteria in our 

decision-making algorithm. To consider the unreliability of the information, we calculated reliability 

indices to modify the obtained membership functions to make them reliability adjusted. With the help of 

reliability-based membership degree, the crisp data on numerical criteria are transferred to aggregated 

SVNS or IVFS decision matrix, which are then combined with the decision matrix on linguistic criteria 

and ranked by the TOPSIS tool. The comparative results generated from these two approaches (SVNS 

and IVFS) verifies the effectiveness of our algorithm. We also perform a sensitivity analysis to show how 

the priority of an evaluation criterion impact the preference ranking of the suppliers. The developed 

MCDA algorithm is an effective and reliable tool for supply chain stakeholders to evaluate multiple 

suppliers considering several conflicting criteria with imprecise and unreliable decision relevant 

information. In the future, we will try to find a candidate component in IVFS so that we could conduct a 

sensitivity analysis in IVFS approach as well. In addition, we will further extend this current work to 

develop a method that could optimize the weight of decision maker while aggregating the numerical data 

set. 
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