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ABSTRACT 

Graph theory has applications in many areas of the computing, social and natural science. 

The theory is also intimately related to many branches of mathematics, including matrix theory, 

numerical analysis, probability, topology and combinatory. The fact is that graph theory serves 

as a mathematical for any system involving a binary relation. Over the last 50 year graph theory 

has evolved into an important mathematical tool in the solution of a wide variety of problems in 

many areas of society. A graph labeling is an assignment of integers to the vertices or edges or 

both, subject to certain conditions have been motivated by practical problems, labeled graphs 

serve useful mathematical models for a broad range of applications such as: coding theory, 

including the design of good types codes, synch-set codes, missile guidance codes and 

convolutional codes with optimal auto correlation properties. They facilitates the optimal 

nonstandard encodings of integer’s, labeled graph have also been applied in determining 

ambiguities in x-ray crystallographic analysis to design a communication network addressing 

system, data base management in determining optimal circuit layouts and radio astronomy 

problems etc. 
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INTRODUCTION 

A graph G = (V,E) comprises of two finite sets: V(G), the vertex set of the graph, 

regularly indicated by just V, which is a nonempty set of elements called vertices, and E(G), the 
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edge set of the graph, frequently signified by just E, which is a set (potentially empty) of 

elements called edges. A graph, at that point, can be thought of as a drawing or diagram 

comprising of an assortment of vertices (spots or points) together with edges (lines) joining 

certain pairs of these vertices. Figure 1 gives a graph G = (V,E) with V(G) = { v1, v2, v3, v4, v5 } 

and E(G) = { e1, e2, e3, e4, e5, e6, e7 }. 

 

Figure 1: A graph G with five vertices and seven edges 

Sometimes we speak to an edge by the two vertices that it interfaces. In Figure 1 we have e1 = 

(v1, v2), e2 = (v1 ,v4). An edge e of graph G is said to be episode with the vertex v if v is an end 

vertex of e. For example in Figure 1 an edge e1 is episode with two vertices v1 and v2. An edge e 

having indistinguishable end vertices called a loop. At the end of the day, in a loop a vertex v is 

joined to itself by an edge e. The level of a vertex v, composed d(v), is the number of edges 

occurrence with v. In Figure 1.1 we have d(v1) = 3, d(v2) = 2, d(v3) = 3, d(v4) = 4 and d(v5) = 2. 

On the off chance that for some positive whole number k, d(v) = k for each vertex v of graph G, 

at that point G is called k-customary.  

A graph G is called associated if there is a way between each pair of vertices. When there is no 

worry about the bearing of an edge the graph is called undirected. The graph in Figure 1 is an 

associated and undirected graph. In contrast to most different territories in Mathematics, the 

theory of graphs has a definite beginning stage, when the Swiss mathematician Leonard Euler 

(1707-1783) considered the problems of the seven Konigsberg spans. In the mid eighteenth 

century the city of Konigsberg (in Prussia) was isolated into four areas by the Pregel waterway. 

Seven scaffolds associated these districts as appeared in Figure 2 (a). Areas are appeared by A, 

B, C, D individually. It is said that the townsfolk of Konigsberg delighted themselves by 

attempting to discover a course that crossed each extension just once (It was OK to go to a 

similar island any number of times). 
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Figure 2: (a) A map of Konigsberg (b) A graph representing the bridges of Konigsberg 

Euler examined whether it is conceivable to have such a course by utilizing the graph appeared 

in Figure 2 (b). He distributed the primary paper in graph theory in 1736 to show the difficulty of 

such a course and give the conditions which are important to allow such a walk. Graph theory 

was destined to consider problems of this sort.  

Graph theory is one of the themes in a zone of mathematics portrayed as Discrete Mathematics. 

The problems just as the strategies for solution in discrete mathematics contrast on a very basic 

level from those in constant mathematics. In discrete mathematics we "check" the number of 

articles while in constant mathematics we "measure" their sizes. Albeit discrete mathematics 

started as right on time as man figured out how to check, it is ceaseless mathematics which has 

since quite a while ago ruled the historical backdrop of mathematics. This image started to 

change in twentieth century. The principal significant improvement was the change that occurred 

in the origination of mathematics. Its main issue transformed from the idea of a number to the 

idea of a set which was progressively reasonable to the techniques for discrete mathematics than 

to those of consistent mathematics. The second sensational point was the expanding utilizat ion of 

PCs in the public eye. A great part of the theory of software engineering utilizes ideas of discrete 

mathematics.  

Graph theory as an individual from the discrete mathematics family has an amazing number of 

applications, to software engineering as well as to numerous different sciences (physical, organic 

and social), designing and trade. A portion of the significant topics in graph theory are appeared 

in Figure 3.  
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Figure 3: Some Graph Theory 

The purpose of this study is to give a few outcomes in a class of problems arranged as Graph 

labeling. Leave G alone an undirected graph without loops or twofold associations between 

vertices. In labeling (valuation or numbering) of a graph G, we partner unmistakable nonnegative 

whole numbers to the vertices of G as vertex labels (vertex esteems or vertex numbers) so that 

each edge gets a particular positive whole number as an edge name (edge worth or edge number) 

contingent upon the vertex labels of vertices which are occurrence with this edge.  

Enthusiasm for graph labeling started in mid-1960s with a guess by Kotzig-Ringel and a paper 

by Rosa[90]. In 1967, Rosa distributed a spearheading paper on graph labeling problems. He 

called a function ƒ a β-labeling of a graph G with n edges (Golomb [45] along these lines called 

such labeling graceful and this term is presently the well known one) if ƒ is an infusion from the 

vertices of G to the set {0, 1, … , n} to such an extent that, when each edge is labeled with the 

supreme estimation of the contrast between the labels of the two end vertices, the subsequent 

edge labels are particular. This labeling gives a successive labeling of the edges from 1 to the 

number of edges. Any graph that can be gracefully labeled is a graceful graph. 

Examples of graceful graphs are shown in Figure 1.4. 
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Figure 4: Examples of graceful labeling of graphs 

Although numerous groups of graceful graphs are known, a general essential or adequate 

condition for gracefulness has not yet been found. Likewise It isn't known whether all tree 

graphs are graceful. Another significant labeling is a α-labeling or α-valuation which was 

additionally presented by Rosa [90]. A α-valuation of a graph G is a graceful valuation of G 

which likewise fulfills the accompanying condition: there exists a number γ (0 ≤ γ <E(G)) to 

such an extent that, for any edge e∈ E(G) with the end vertices u, v ∈ V(G), min { vertex name 

(v), vertex name (u) } ≤ γ < max { vertex mark (v), vertex name (u) }  

Obviously in the event that there exists a α-valuation of graph G, at that point G is a bipartite 

graph. The main graph in Figure 4 is a way with six edges and it has a α-labeling with γ =3.  

During the previous thirty years, more than 200 papers on this points have been showed up in 

diaries. Despite the fact that the guess that all trees are graceful has been the focal point of a 

large number of these papers, this guess is as yet unproved. Tragically there are hardly any broad 

outcomes in graph labeling. In reality in any event, for problems as barely engaged as the ones 

including the unique classes of graphs, the labelings have been hard-won and include a huge 

number of cases.  

Finding a graph that has a α-labeling is another regular methodologies in numerous papers. The 

accompanying condition (because of Rosa) is known to be important and on account of cycles 

likewise adequate for a 2-ordinary graph G = (V,E) to have a α-labeling: ⏐E(G)⏐≡ 0 (mod 4). In 

1982, Kotzig guessed that this condition is likewise adequate for a 2-normal graph with parts.  

Labeled graphs fill in as valuable apparatuses for an expansive scope of applications. Sprout and 

Golomb in two brilliant reviews have introduced deliberately a use of graph labeling in many 

research fields, for example, coding theory problems, X-beam crystallographic investigation, 

correspondence network structure, ideal circuit design, basic voltage generator, and added 
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substance number theory. Right now limit our conversation to applications of graceful labeling 

and its varieties in decomposition of graphs, ideal arrangement of distinction sets, and number 

groupings, for example, the Skolem succession:  

A graph G is a constrained nonempty set of things gathered vertices with a ton of unordered pairs 

of unmistakable vertices of G which is called edges showed by V (G) and E (G), independently. 

In case e = {u, v} is an edge, we form e = uv; we express that e joins the vertices u and v; u and v 

are neighboring vertices; u and v are event with e. In case two vertices are not joined, by then we 

express that they are non-connecting. If two unmistakable edges are scene with a normal vertex, 

by then they are said to be coterminous each other. 

GRAPH DECOMPOSITION  

Definition 1: A decomposition of a graph G is a family H = (H1, H2, … ,Hn) of sub graphs of G 

such that each edge of G is contained in exactly one member of H. In fact G is the edge disjoint 

union of its sub graphs Hi 

 

 

Figure 5: Decomposition of a graph 

For example the graph G shown in Figure 1.5 has a decomposition H = (H1, H2, H3) into three 

K3: E(H1) = {(u1, u2), (u2, u6), (u1, u6), E(H2) = {(u2, u3), (u3, u4), (u2, u4), E(H3) = {(u1, u4), (u1, 

u6)} and V(H1) = (u1, u2, u6 ), V(H2) = (u2, u3, u4 ), V(H3) = (u4, u5, u6 ). 
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Definition 2: Let two graphs G and G′ be given. A G-decomposition of a graph G′ is a 

decomposition of G into sub graphs isomorphic to G. In other words, each member Hi in 

definition 2. must be isomorphic to G. We write ′ whenever a G-decomposition of G′ exists.  

The decomposition of graph G in Figure 5 is a K3-decomposition, i.e.,  

Definition 3: A decomposition H of a graph G into subgraphs H1,H2, … , Hn is said to be cyclic 

if there exists an isomorphism ƒ of G which induces a cyclic permutation fv of the set V(G) and 

satisfies the following implication: if Hi ∈ H then f (Hi) ∈ H for i = 1,2, … ,n. Here f (Hi) is the 

subgraph of G with vertex set {f (u); u ∈V(Hi)} and edgeset { (f (u), f (v) ); e = ( u, v )∈ E(Hi) }. 

PERFECT SYSTEM OF DIFFERENCE SETS 

Definition 4: Let c, m, p1, p2, … , pm be positive integers, and Si ={ X0i< X1i< … <Xpi,i}; i = 

1,2, … ,m be a sequence of integers and Di = { Xji - Xki , 0 ≤ k < j ≤ pi }, i = 1,2, … ,m be their 

difference sets. Then we say that the system {D1, D2, … ,Dm } is a perfect system of difference 

sets (PSDS) starting with c if 

 

Each set Di is called a component of PSDS {D1, D2, … ,Dm }. The size of Di is pi. A PSDS is 

called regular if all its components are of the same size i.e. p1 = p2 = … = pm = n-1. Traditionally 

a regular PSDS with m components of size n-1 starting at c is referred to as (m, n, c). 

then 

the elements of Di can be represented in the form of a difference triangle: 
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Biraud and Blum and Ribes [5] were most likely the initial ones to watch a connection between 

graceful labeling of graphs and PSDS. The ordinary PSDS (1,n,1) is a PSDS with one segment 

beginning with 1. There exists just two normal PSDS (1,n,1) [5]. They are 

 

The mirror images of the above PSDS are also PSDS. 

LABELING, COVERING AND DECOMPOSING OF GRAPHS 

Definition 5 A standards in a numerical framework (Σ; R) is said to be Smarandachely denied on 

the off chance that it carries on in at any rate two unique ways inside a similar set Σ, i.e., 

approved and invalided, or just invalided however in different unmistakable manners. A 

Smarandache framework (Σ; R) is a scientific framework which has at any rate one 

Smarandachely denied rule in R. 

Definition 6 For an integer m ≥ 2, let (Σ1; R1), (Σ2; R2), · · · , (Σm; Rm) be m mathematical 

systems different two by two. A Smarandache multi-space is a pair (Σ; e Re) with 

 

Definition 7 A maxims is said to be Smarandachely denied if the saying carries on in at any rate 

two unique ways inside a similar space, i.e., approved and invalided, or just invalided yet in 

numerous particular manners. 

Example 1 Let us consider an Euclidean plane R2 and three non-collinear points A, B and C. 

Characterize s-points as all standard Euclidean points on R2 and s-lines any Euclidean line that 

goes through one and only one of points A, B and C, for example, those appeared in Fig.6.  

(i) The adage (A5) that through a point outside to a given line there is just one equal going 

through it is presently supplanted by two articulations: one equal, and no equal. Leave L alone a 

s-line goes through C and is equal in the Euclidean sense to AB. Notice that through any s-point 
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not lying on AB there is one s-line corresponding to L and through some other s-point lying on 

AB there is no s-lines corresponding to L, for example, those appeared in Fig.6(a).  

(ii) The maxim that through any two particular points there exist one line going through them is 

presently supplanted by; one s-line, and no s-line. Notice that through any two unmistakable 

spoints D, E collinear with one of A, B and C, there is one s-line going through them and through 

any two particular s-points F, G lying on AB or non-collinear with one of A, B and C, there is no 

s-line going through them, for example, those appeared in Fig.6(b). 

 

Fig.6 

Definition 8 A combinatorial system CG is a union of mathematical systems (Σ1; R1),(Σ2; R2), · 

· · , (Σm; Rm) for an integer m, i.e., 

 

with an underlying connected graph structure G, where 

 

Vertex-Edge Labeled Graphs with Applications 

1 Application to Principal Fiber Bundles 

Definition 9 A labeling on a graph G = (V, E) is a mapping θL : V ∪ E → L for a name set L, 

meant by GL.  
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In the event that θL: E → ∅ or θL: V → ∅, at that point GL is known as a vertex labeled graph or 

an edge labeled graph, meant by GV or GE, separately. Else, it is known as a vertex-edge labeled 

graph. 

Example: 

 

Fig.7 

CONCLUSION 

A vertex v of a graph G is known as a cut-vertex of G if the evacuation of v expands the quantity 

of parts. An edge e of a graph G is known as a cut edge or extension if the evacuation of e 

expands the quantity of parts. A lot of edges S is called an edge cut of G if the quantity of 

segments of G - S is more prominent than that of G. A square of a graph is a maximal associated, 

non-unimportant subgraph without cut-vertices. A graph is non-cyclic in the event that it has no 

cycles. A tree is an associated non-cyclic graph. A tree with precisely one vertex of degree > 3 is 

known as a creepy crawly tree and an established tree comprising of k - branches where ith 

branch is a path of length I, is called an olive tree. Let G be a graph with vertex set{ v, v2, ..., v}. 

At that point the graph obtained by presenting n new vertices u1 , u2 , ..., u and edges u1 vi is 

indicated by G.The separation between two vertices u and v in an associated graph G is the 

length of the most limited u - v path in G and is signified by d(u, v). The level of a vertex v in a 

graph G, indicated by d(v), is the quantity of edges episode with v. The base degree among the 

vertices of G is indicated by 6(G), while the greatest degree among the vertices of G is signified 

by A(G). In the event that 6(G) = A(G) = r, at that point all vertices have a similar degree and G 

is known as a customary graph of degree r. In the event that d(v) = 0, v is called a disconnected 

vertex.  
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