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Abstract This paper derived single-valued neutrosophic graphs from single-valued
neutrosophic hypergraphs via strong equivalence relation. We show that any weak
single-valued neutrosophic graph is a derived single-valued neutrosophic graph and
any linear weak single-valued neutrosophic tree is an extendable linear single-valued
neutrosophic tree.
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1 Introduction

Neutrosophy, as a newly-born science is a branch of philosophy that studies the origin,
nature and scope of neutralities, as well as their interactions with different ideational
spectra. It can be defined as the incidence of the application of a law, an axiom, an
idea, a conceptual accredited construction on an unclear, indeterminate phenomenon,
contradictory to the purpose of making it intelligible. Neutrosophic sets and systems
are a tool for publications on advanced studies in neutrosophy, neutrosophic set, neu-
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trosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995
and their applications in any field, such as the neutrosophic structures developed in
algebra, geometry, topology, etc.

Neutrosophic set and neutrosophic logic are generalizations of the fuzzy set and
respectively fuzzy logic (especially of intuitionistic fuzzy set and respectively intu-
itionistic fuzzy logic). In neutrosophic logic a proposition has a degree of truth (T ),
a degree of indeterminacy (I ) and a degree of falsity (F), where T, I, F are standard
or non-standard subsets of ]−0, 1+[.

Most of the problems in engineering, medical science, economics, environments
etc. have various uncertainties. In 1995, Smarandache talked for the first time about
neutrosophy and in 1999 and 2005 [11,14] he initiated the theory of neutrosophic set
as a newmathematical tool for handling problems involving imprecise, indeterminacy,
and inconsistent data. Alkhazaleh et al. generalized the concept of fuzzy soft set to
neutrosophic soft set and they gave some applications of this concept in decision
making and medical diagnosis [4].

A graph is a convenient way of representing information involving relationship
between objects. The objects are represented by vertices and the relations by edges.
When there is vagueness in the description of the objects or in their relationships or
in both, normally that we need to design a fuzzy graph model. The extension of fuzzy
graph theory [12,16] have been developed by several researchers including intuition-
istic fuzzy graphs [1,13] considered the vertex sets and edge sets as intuitionistic fuzzy
sets.

Smarandache [15] have defined four main categories of neutrosophic graphs, two
of which are based on literal indeterminacy (I ), which are called; I -edge neutrosophic
graph and I -vertex neutrosophic graph, these concepts are studied deeply and have
gained popularity among the researchers due to their applications via real world prob-
lems [7,17]. The other twographs are based on (t, i, f ) components and are called; The
(t, i, f )-Edge neutrosophic graph and the (t, i, f )-vertex neutrosophic graph, these
concepts are not developed at all. Later on, Broumi et al. [5] introduced a third neu-
trosophic graph model. This model allowed the attachment of truth-membership (t),
indeterminacy-membership (i) and falsity-membership degrees ( f ) both to vertices
and edges, and investigated some of their properties.

Fuzzy hypergraph was introduced by the Kaufmann [10]. Lee-kwang et al. gener-
alized the concept of fuzzy hypergraph and redefined it to be useful for fuzzy partition
of a system. Akram and Dudek [2] investigated some properties of intuitionistic fuzzy
hypergraph and gave applications of intuitionistic fuzzy hypergraph.

Akram et al. [3] are defined the concepts of single-valued neutrosophic hypergraph,
line graph of single-valued neutrosophic hypergraph, dual single-valued neutrosophic
hypergraph and transversal single-valued neutrosophic hypergraph.

Regarding these points, the aim of this paper is to generalize the notion of single-
valued neutrosophic graphs by considering the notion of strong equivalence relation
and to define the concept of extendable single-valued neutrosophic graphs. It is a
normal question about the relationships between extendable single-valued neutro-
sophic graphs and extendable single-valued neutrosophic hypergraphs. From here
comes the main motivation for this and in this regard, we have considered the quo-
tient of single-valued neutrosophic hypergraphs via equivalence relations. Also, we
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want to establish the relationship between (α, β, γ )-level single-valued neutrosophic
graphs and (α, β, γ )-level single-valued neutrosophic hypergraphs. Moreover, by
using strong equivalence relation, we have defined a well-defined operation on single-
valued neutrosophic hypergraphs that the quotient of any single-valued neutrosophic
hypergraphs via this relation is a single-valued neutrosophic graph.

We use single-valued neutrosophic hypergraphs to represent of the complex sys-
tems as networks, social, biological, ecological and technological systems where the
use of complex networks gives very limited to information about the structure of
the system. By introducing the concept of the complex hyper-network, the use of
complex hypernetworks appears to be a necessary for exploring these systems and
representation their relationships. We have introduced several valuable measures as
truth-membership, indeterminacy and falsity-membership values for studying com-
plex hyper-networks, such as node and hypergraph centralities as well as clustering
coefficients for both the hyper-networks and the networks.

2 Preliminaries

In this section, we recall some definitions and results that are indispensable to our
research paper.

Definition 2.1 [6] Let G = {x1, x2, . . . , xn} be a finite set. A hypergraph on G is a
family H = (G, {Ei }mi=1) of subsets of G such that

(i) for all 1 ≤ i ≤ m, Ei �= ∅;
(ii)

m⋃

i=1

Ei = G.

A simple hypergraph (Sperner family) is a hypergraph H = (G, {Ei }mi=1) such
that

(iii) Ei ⊂ E j �⇒ i = j .

The elements x1, x2, . . . , xn of G are called vertices, and the sets E1, E2, . . . , Em

are the edges (hyperedges) of the hypergraph. For any 1 ≤ k ≤ m if |Ek | ≥ 2, then
Ek is represented by a solid line surrounding its vertices, if |Ek | = 1 by a cycle on the
element (loop). If for all 1 ≤ k ≤ m|Ek | = 2, the hypergraph becomes an ordinary
(undirected) graph.

Definition 2.2 [8] Let (G, {Ex }x∈G) be a hypergraph, where for any x ∈ G, Ex is one
of hyperedges such that x ∈ Ex . Then a binary relation ρ on G is defined as follows:
for every integer n ≥ 1, ρn is defined as follows:

xρn y ⇐⇒ |Em
x | = |Em

y |, where |Em
x | = min{|Et |; x ∈ Et } or |Em

x | ≤ |Ex |

and n = min{deg(x), deg(y)}.
Obviously the relation ρ =

⋃
n≥1

ρn is an equivalence relation on G. We denote

the set of all equivalence classes of ρ by G/ρ. Hence G/ρ = {ρ(x) | x ∈ G}.
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Theorem 2.3 [8] Let (G, {Ex }x∈G) be a hypergraph. Then there exists an operation
∗ on G/ρ such that (G/ρ, ∗) is a graph.

Definition 2.4 [8] Let H = (G, {Ex }x∈G) be a hypergraph. Then H is called a com-
plete hypergraph, if for any x, y ∈ G there exits a hyperedge E such that {x, y} ⊆ E
and a complete hypergraph with n elements is shown by K ∗

n . Let H = (G, {Ei }n+1
i=1 )

be a complete hypergraph.

(i) H is called a joint complete hypergraph, if for any 1 ≤ i ≤ n, |Ei | = i, Ei ⊆ Ei+1
and |En+1| = n;

(ii) H is called a discrete complete hypergraph, if for any 1 ≤ i �= j ≤ n, |Ei | =
|E j |, Ei ∩ E j = ∅ and |En+1| = n;

Definition 2.5 [18] Let X be a set. A single-valued neutrosophic set A in X
(SVN-SA) is a function A : X −→ [0, 1] × [0, 1] × [0, 1] with the form
A = {(x, TA(x), IA(x), FA(x)) | x ∈ X} where the functions TA, IA, FA define
respectively the truth-membership function, an indeterminacy-membership function,
and a falsity-membership function of the element x ∈ X to the set A such that
0 ≤ TA(x) + IA(x) + FA(x) ≤ 3. Moreover, Supp(A) = {x | TA(x) �= 0, IA(x) �=
0, FA(x) �= 0} is a crisp set.
Definition 2.6 [5] A single-valued neutrosophic graph (SVN-G) is defined to be a
form G = (V, E, A, B) where

(i) V = {v1, v2, . . . , vn}, TA, IA, FA : V −→ [0, 1] denote the degree of mem-
bership, degree of indeterminacy and non-membership of the element vi ∈ V ;
respectively, and for every 1 ≤ i ≤ n,we have 0 ≤ TA(vi )+ IA(vi )+FA(vi ) ≤ 3.

(ii) E ⊆ V×V, TB , IB , FB : E −→ [0, 1] are called degree of the truth-membership,
the indeterminacy-membership and the falsity-membership of the edge (vi , v j ) ∈
E respectively, such that for any 1 ≤ i, j ≤ n, we have TB(vi , v j ) ≤
min{TA(vi ), TA(v j )}, IB(vi , v j ) ≥ max{IA(vi ), IA(v j )}, FB(vi , v j ) ≥ max
{FA(vi ), FA(v j )} and 0 ≤ TB(vi , v j ) + IB(vi , v j ) + FB(vi , v j ) ≤ 3. Also A
is called the single-valued neutrosophic vertex set of V and B is called the single-
valued neutrosophic edge set of E .

Definition 2.7 [3]

(i) A single-valued neutrosophic hypergraph (SVN-HG) is defined to be a pair
H = (V, {Ei }mi=1), where V = {v1, v2, . . . , vn} is a finite set of vertices and
{Ei = {(v j , TEi (v j ), IEi (v j ), FEi (v j ))}}mi=1 is a finite family of non-trivial neu-

trosophic subsets of the vertex V such that V =
⋃m

i=1
supp(Ei ). Also {Ei }mi=1

is called the family of single-valued neutrosophic hyperedges of H and V is the
crisp vertex set of H .

(ii) Let 1 ≤ α, β, γ ≤ 1, then A(α,β,γ ) = {x ∈ X | TA(x) ≥ α, IA(x) ≥ β, FA(x) ≤
γ } is called (α, β, γ )-level subset of A.

3 (Weak) single-valued neutrosophic hypergraphs (graphs) (SVN-HG)

In this section, we introduce concept of weak single-valued neutrosophic graph and
via equivalence relations, construct quotient single-valued neutrosophic hypergraphs.
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Moreover, for any (α, β, γ ) ∈ [0, 1]3, we investigate on (α, β, γ )-level hypergraphs
and show that any finite set can be a (α, β, γ )-level (partitioned) hypergraph.

Let H = (G, {Ei }ni=1) be a hypergraph, 1 ≤ i, j ≤ n and k ∈ N. Then H is called
a partitioned hypergraph, if P = {E1, E2, . . . , En} is a partition of G. We will denote
the set of partitioned hypergraphs with |P| = k on G that |Ei | = |E j |, by P(k)

h (H)

and the set of all partitioned hypergraphs on H , by Ph(H).

Proposition 3.1 Let G be a finite set and R be an equivalence relation on H. Then
the following statements hold:

(i) H = (
G, {R(x)}x∈G

)
is a (partitioned) hypergraph;

(ii) H = (
G, Ex,y = {R(x) ∪ R(y)}x,y∈G

)
is a complete (hyper)graph.

Proof Since R is an equivalence relation on H , we get that P = {Ex = R(x)}x∈H is
a partition of H and so H = (

G, {R(x)}x∈G
)
is a (partitioned) hypergraph. Moreover,⋃

x∈G R(x) = G implies that H = (
G, Ex,y = {R(x) ∪ R(y)}x,y∈G

)
is a complete

(hyper)graph, especially whence for any x ∈ G, |R(x)| = 1, then H = (
G, Ex,y =

{R(x) ∪ R(y)}x,y∈G
)
is a complete graph. ��

Corollary 3.2 The following statements are hold.

(i) Let G be a set, |G| = n and Q = {G/R | R is an equivalence relation on G}.
Then |Q| =

∑n

k=1

1

k!
∑k

i=0
(−1)i

(
k

i

)
(k − i)n.

(ii) Any finite set can be a (partitioned) single-valued neutrosophic hypergraph.
(iii) Any finite set can be a complete single-valued neutrosophic hypergraph.

Proof (i) [9]. (i i), (i i i) Let G = {a1, a2, . . . , an}. By Proposition 3.1, there exists
r ≤ n such that H = (G, {Ei = R(xi )}ri=1) is a partitioned hypergraph. For any
1 ≤ i ≤ r, consider Ei = {(xi , i/(10n), (i + 1)/(10n), (i + 2)/(10n))}. Since for any
n ∈ N, 3n + 3 ≤ 10n , we obtain H = (G, {Ei = R(xi )}ri=1) which it is a partitioned
single-valued neutrosophic hypergraph. ��

Definition 3.3 Let G = (V, E, A, B) be a single-valued neutrosophic graph. Then
G = (V, E, A, B) is called a weak single-valued neutrosophic graph, if supp(A) =
V and for any vi , v j ∈ V have TB(vi , v j ) = min{TA(vi ), TA(v j )}, IB(vi , v j ) =
max{IA(vi ), IA(v j )} and FB(vi , v j ) = max{FA(vi ), FA(v j )}.

Example 3.4 Let V = {a1, a2, . . . , an}. Consider the complete graph Kn and define
A : V → [0, 1] by TA(ai ) = 1/ i, IA(ai ) = 1/(i + 1), FA(ai ) = 1/(i + 2) and
B : V × V → [0, 1] by TB(ai , a j ) = TA(ai ) × TA(a j ), IB(ai , a j ) = FB(ai , a j ) =
IA(ai ) + TA(a j ). It is clear that (V, A, B) is a complete single-valued neutrosophic
graph and supp(A) = V .
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Corollary 3.5 Any finite set can be a complete weak single-valued neutrosophic
graph.

Proof It is obtained from Corollary 3.2. ��
Lemma 3.6 Let X be a finite set and A = {(x, TA(x), IA(x), FA(x)) | x ∈ X} be
a single-valued neutrosophic set in X. If R is an equivalence relation on X, then
A/R = {(R(x), TR(A)(R(x)), IR(A)(R(x)), FR(A)(R(x)) | x ∈ X} is a single-valued

neutrosophic set, where TR(A)(R(x)) =
∧

t R x
TA(t), IR(A)(R(x)) =

∨
t R x

IA(t)

and FR(A)(R(x)) =
∨

t R x
FA(t).

Proof Let X = {x1, x2, . . . , xn} and P = {R(x1), R(x2), . . . , R(xk)} be a partition
of X , where k ≤ n. Since for any xi ∈ X, TA(xi ) ≤ 1, IA(xi ) ≤ 1 and FA(xi ) ≤ 1,
we get that

∧
t R xi

TA(t) ≤ 1,
∨

t R xi
IA(t) ≤ 1 and

∨
t R xi

FA(t) ≤ 1. Hence

for any 1 ≤ i ≤ k, 0 ≤
∧

t R xi
TA(t) +

∨
t R xi

IA(t) +
∨

t R xi
FA(t) ≤ 3 and

so R(A) = {(R(xi ),
∧

t R xi
TA(t),

∨
t R xi

IA(t),
∨

t R xi
FA(t))}ki=1 is a single-

valued neutrosophic set in X/R. ��
Theorem 3.7 Let V = {v1, v2, . . . , vn} and H = (V , {v j , TEi (v j ), IEi (v j ),

FEi (v j ))}mi=1) be a single-valued neutrosophic hypergraph. If R is an equiva-
lence relation on H, then H/R = (

R(V ), {R(v j ), TR(Ei )(R(v j )), IR(Ei )(R(v j )),

FR(Ei )(R(v j ))}nj=1

)
is a partitioned single-valued neutrosophic hypergraph.

Proof By Lemma 3.6, {R(v j ), TR(Ei )(R(v j )), IR(Ei )(R(v j )), FR(Ei )(R(v j ))}nj=1 is a

finite family of single-valuedneutrosophic subsets ofV /R. SinceV = ⋃m
i=1 supp(Ei ),

we get that
⋃m

i=1 supp(R(Ei )) = R(
⋃m

i=1 supp(Ei )) = R(V ). It follows
that H/R = (R(V ), {R(v j ), TR(Ei )(R(v j )), IR(Ei )(R(v j )), FR(Ei )(R(v j ))}nj=1) is a

single-valued neutrosophic hypergraph. Since R is an equivalence relation on V , for
any x �= y ∈ V we get that R(x) ∩ R(y) = ∅ and so it is a partitioned single-valued
neutrosophic hypergraph. ��
Example 3.8 Consider a joint complete single-valued neutrosophic hypergraph H =
(V , {Ei }ni=1), where V = {a1, a2, . . . , an} and for any 1 ≤ i ≤ n, Ei =
{(ai , i/10n, (i + 1)/10n), (i + 2)/10n)}. Clearly R = {(ai , ai ), (ar , as) | r + s =
n + 1, 1 ≤ i ≤ n} is an equivalence relation on V and so we obtain V /R =
{R(a1), R(a2), R(a3), . . . , R(a(n/2)−1), R(an/2)}. It follows that

H/R =
({

R(a1), R(a2), R(a3), . . . , R(a(n/2)−1), R(an/2)
}
,

×{(
R(ai ), i/10

n, (i + 1)/10n, (i + 2)/10n
)
,
(
R(an−i+1),

×(n − i + 1)/10n, (n − i + 2)/10n, (n − i + 3)/10n
)}n/2

i=1

)
.

Computation shows that H/R is a partitioned single-valued neutrosophic hypergraph.
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Corollary 3.9 Let V = {v1, v2, . . . , vn} and H = (V , {v j , TEi (v j ), IEi (v j ),

FEi (v j ))}mi=1) be a single-valued neutrosophic hypergraph. If R is an equivalence
relation on H, then H � R = (

R(V ), {R(v j ), TR(Ei )(R(v j )), IR(Ei )(R(v j )), FR(Ei )

(R(v j ))}mi=1

)
is a single-valued neutrosophic hypergraph, where

TR(A)(R(x)) =
∧

x R t∈Ei
TA(t), IR(A)(R(x)) =

∨

x R t∈Ei

IA(t)

and FR(A)(R(x)) =
∨

x R t∈Ei
FA(t).

Example 3.10 Let H = ({a, b, c, d}, E1, E2) be a single-valued neutrosophic hyper-
graph in Fig. 1, and R = {(x, x), (a, c), (c, a) | x ∈ {a, b, c, d}}.

Clearly H � R is obtained in Fig. 2a and H/R is obtained in Fig. 2b.

Corollary 3.11 Let H = (V , {Ei }mi=1) be a single-valued neutrosophic hypergraph
and R be an equivalence relation on H. Then

(i) if H/R = (
R(V ), {R(v j ), TR(Ei )(R(v j )), IR(Ei )(R(v j )), FR(Ei )(R(v j ))}tj=1

)

and H � R= (
R(V ), {R(v j ), TR(Ei )(R(v j )), IR(Ei )(R(v j )), FR(Ei )(R(v j ))}si=1

)
,

then m ≤ s < t;
(ii) if R =

⋃m

i=1
Ei × Ei , then H/R = H � R.

Definition 3.12 Let H = (V , {Ei }mi=1) be a single-valued neutrosophic hypergraph,

0 ≤ α, β, γ ≤ 1 and E (α,β,γ )

i = {x ∈ V | TEi (x) ≥ α, IEi (x) ≥ β, FEi (x) ≤

Fig. 1 Partitioned SVN-HG

(a, 0.1, 0.2, 0.3)
(b, 0.4, 0.5, 0.6) (d, 0.6, 0.1, 0.7)

(c, 0.7, 0.8, 0.9)

(a, 0.1, 0.8, 0.9)

(b, 0.4, 0.5, 0.6)

(d, 0.6, 0.1, 0.7)
(c, 0.1, 0.8, 0.9)

(a)

(a
, 0
.1,
0.8

, 0
.9)

(b,
0.4

, 0
.5,
0.6
)

(d, 0.6, 0.1, 0.7)

(c,
0.1

, 0
.8,
0.9
)

(b)

Fig. 2 SVN-HG 2a and 2b. a SVN-HG H � R b SVN-HG H/R
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γ }, where 1 ≤ i ≤ m. Then H (α,β,γ ) = (V
(α,β,γ ) = ⋃m

i=1 E
(α,β,γ )

i , E (α,β,γ ) =
{E (α,β,γ )

i }mi=1) is called an (a strong) (α, β, γ )-level hypergraph if (for any 1 ≤ i ≤ m

we have, E (α,β,γ )

i �= ∅) E (α,β,γ ) �= ∅.
Proposition 3.13 Let H = (V , {Ei }mi=1) be a single-valued neutrosophic hypergraph
and 0 ≤ α, β, γ ≤ 1. If H (α,β,γ ) = (V (α,β,γ ), E (α,β,γ )) is a (α, β, γ )-level hyper-
graph, then it is a single-valued neutrosophic hypergraph.

Proof Since H (α,β,γ ) is a (α, β, γ )-level hypergraph, for any 1 ≤ i ≤ m we have,
E (α,β,γ )

i �= ∅, we obtain r ≤ m such that for any 1 ≤ i ≤ r, E (α,β,γ )

i �= ∅. Now
consider V

(α,β,γ ) = ⋃r
i=1 E

(α,β,γ )

i , where for any 1 ≤ i ≤ r,

E (α,β,γ )

i = {(v j , TEi (v j ), IEi (v j ), FEi (v j ))}ri=1.

Hence H (α,β,γ ) = (V (α,β,γ ), {E (α,β,γ )

i }ri=1) is a single-valued neutrosophic hyper-
graph. ��
Theorem 3.14 Let H = (V , {Ei }mi=1) be a single-valued neutrosophic hypergraph
and 0 ≤ α, β, γ ≤ 1. If R is an equivalence relation on H and H (α,β,γ ) =
(V (α,β,γ ), E (α,β,γ )) is a (α, β, γ )-level hypergraph, then

(i) H (α,β,γ )/R = (R(V (α,β,γ )), R(E (α,β,γ ))) is a single-valued neutrosophic
hypergraph and is a (α, β, γ )-level hypergraph.

(ii) H (α,β,γ ) � R = (R(V (α,β,γ )), R(E (α,β,γ ))) is a single-valued neutrosophic
hypergraph and is a (α, β, γ )-level hypergraph.

(iii) (H/R)(α,β,γ ) = (R(V )(α,β,γ ), R(E)(α,β,γ )) is a single-valued neutrosophic
hypergraph.

Proof (i), (i i) Let V = {x1, x2, . . . , xn}. Since E (α,β,γ )) �= ∅, then there exists
1 ≤ i ≤ m, so that E (α,β,γ )

i �= ∅. Let xi ∈ E (α,β,γ )

i , then R(xi ) ∈ R(V (α,β,γ ))

and R(E (α,β,γ )

i ) �= ∅ and is a hyperedge. Since R is an equivalence relation and
⋃n

i=1 E
(α,β,γ )

i = V (α,β,γ ), we get that H (α,β,γ )/R = (R(V (α,β,γ )), R(E (α,β,γ ))) is a
hypergraph. ��
Example 3.15 Consider the single-valued neutrosophic hypergraph in Fig. 1 and
equivalence relation R in Example 3.10. Let α = 0.1, β = 0.2 and γ = 0.8, then
we obtain that E (α,β,γ )

1 = {a, b} and E (α,β,γ )
2 = {d} and so we have the hypergraph

in Fig. 3. Since V
(α,β,γ ) = {a, b, d}, we get that V

(α,β,γ )
/R = {{a, c}, {b}, {d}}

and so we have the hypergraph in Fig. 4b. Now, consider V /R = {{a, c}, {b}, {d}},
since (R(E1))

(α,β,γ ) = {}, (R(E2))
(α,β,γ ) = {} and (R(E3))

(α,β,γ ) = {b}, we get the
hypergraph (H/R)(α,β,γ ) = ((V /R)(α,β,γ ), (E/R)(α,β,γ )) in Fig. 4a.

Example 3.15, shows that necessarily, (H/R)(α,β,γ ) is not an (α, β, γ )-level hyper-
graph.

Theorem 3.16 Let H = (V , {Ei }mi=1) be a single-valued neutrosophic hypergraph.
Then there exists 0 ≤ α, β, γ ≤ 1 such that H (α,β,γ ) = H and so H (α,β,γ )/R = H/R.
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Fig. 3 (α, β, γ )-level
hypergraph

(a, 0.1, 0.2, 0.3)
(b, 0.4, 0.5, 0.6)

(d, 0.6, 0.1, 0.7)

(b, 0.4, 0.5, 0.6)

(a) (a
, 0
.1,
0.8

, 0
.9)

(b,
0.4

, 0
.5,
0.6
)

(d, 0.6, 0.1, 0.7)

(c,
0.1

, 0
.8,
0.9
)

(b)

Fig. 4 SVN-HG 4a and 4b. a SVN-HG (H/R)(α,β,γ ) b SVN-HG H (α,β,γ )/R

Proof Let α =
∧m

i=1
TEi , β =

∧m

i=1
IEi and γ =

∨m

i=1
FEi . Then for any 1 ≤ i ≤

m and any x ∈ Ei we get TEi (x) ≥ (
∧m

i=1
TEi )(x) = α. In a similar way we obtain

that IEi (x) ≥ β and FEi (x) ≤ γ . Since for any 1 ≤ i ≤ m, E (α,β,γ )

i = Ei , we get that

E (α,β,γ ) �= ∅, V
(α,β,γ ) =

⋃
E (α,β,γ ) = V and so (

⋃m

i=1
E (α,β,γ )

i , {E (α,β,γ )

i }mi=1)

= H.

Corollary 3.17 Let H = (V , {Ei }mi=1) be a single-valued neutrosophic hypergraph.
Then there exists 0 ≤ α, β, γ ≤ 1 such that (H/R)(α,β,γ ) = H (α,β,γ )/R.

Example 3.18 Consider the single-valued neutrosophic hypergraph in Fig. 1 and
equivalence relation R in Example 3.10. Let α = 0.1, β = 0.1 and γ = 0.9, then we
obtain that E (α,β,γ )

1 = {a, b} and E (α,β,γ )
2 = {c, d} and so we have the hypergraph in

Fig. 1.

Corollary 3.19 The following statements are hold:

(i) Any finite set can be a (α, β, γ )-level (partitioned) hypergraph.
(ii) Any finite set can be a (α, β, γ )-level complete (hyper)graph.

4 Extendable single-valued neutrosophic graphs

In this section, we will define concept of derivable and extendable single-valued neu-
trosophic graphs and will show that any weak single-valued neutrosophic graph is a
derived single-valued neutrosophic graph.
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Definition 4.1 (i) Let G = (V, E, A, B) be a single-valued neutrosophic graph
and H = (V , {Ex }x∈V ) be a single-valued neutrosophic hypergraph. We say
that the single-valued neutrosophic graph G is derived from the single-valued
neutrosophic hypergraph H ifG is isomorphic to a nontrivial quotient of H.(G ∼=
H/ρ)

(i i) A single-valued neutrosophic graph G = (V, E, A, B) with underlying set
V is called an extendable single-valued neutrosophic graph, if there exists a
single-valued neutrosophic hypergraph H = (V , {Ex }x∈V ) and n ∈ N such that
|(V, A, B)| = |(V , {Ex }x∈V )| − n, and graph G is derived from hypergraph H .
If V = V we will say that it is an extended single-valued neutrosophic graph.

Theorem 4.2 Let H = (V , {Ei }mi=1) be a single-valued neutrosophic hypergraph.
Then there exists an operation “∗′′ on H/ρ such that (H/ρ, ∗) is a single-valued
neutrosophic graph.

Proof By Theorem 3.7, H/R = (
R(V ), {R(v j ), TR(Ei )(R(v j )), IR(Ei )(R(v j )),

FR(Ei )(R(v j ))}nj=1

)
is a partitioned single-valued neutrosophic hypergraph, where

TR(Ei )(R(x)) =
∧

x R t∈X
TEi (t), IR(Ei )(R(x)) =

∨

x R t∈X
IEi (t) and

FR(Ei )(R(x)) =
∨

x R t∈X
FEi (t).

For any ρ(x) = ρ((x, TEi (x), IEi (x), FEi (x))) and ρ(y) = ρ((y, TEi (y), IEi (y),
FEi (y)) ∈ H/ρ, define an operation “∗′′ on H/ρ by

ρ(x) ∗ ρ(x) =
{

̂ρ(x), ρ(y) if Ex ∩ Ey �= ∅,

∅̂ otherwise,

where for any x, y ∈ G, ̂(ρ(x), ρ(y)) is represented as an ordinary (simple) edge and
∅̂ = ρ̂(x) means that there is not edge. It is easy to see that

H/ρ = (
ρ(V ), {ρ(v j ), Tρ(Ei )(ρ(v j )), Iρ(Ei )(ρ(v j )), Fρ(Ei )(ρ(v j ))}nj=1, ∗

)

is a graph. Now, define T ρ(Ei ), I ρ(Ei ), Fρ(Ei ) : ρ(V ) × ρ(V ) −→ [0, 1] by

T ρ(Ei )(ρ(x), ρ(y)) =
∧

aρx, bρy
(Tρ(Ei )(a) ∧ Tρ(Ei )(b)), I ρ(Ei )(ρ(x), ρ(y)) =

∨
aρx, bρy

(Iρ(Ei )(a) ∨ Iρ(Ei )(b)) and Fρ(Ei )(ρ(x), ρ(y)) =
∨

aρx, bρy
(Fρ(Ei )(a) ∨

Fρ(Ei )(b)). It is clear to see that T ρ(Ei )(ρ(x), ρ(y)) ≤ (Tρ(Ei )(ρ(x))∧Tρ(Ei )(ρ(y))),
I ρ(Ei )(ρ(x), ρ(y)) ≥ (Iρ(Ei )(ρ(x)) ∨ Iρ(Ei )(ρ(y))) and Fρ(Ei )(ρ(x), ρ(y)) ≥
(Fρ(Ei )(ρ(x)) ∨ Fρ(Ei )(ρ(y))). Hence H/ρ = (

ρ(V ), {ρ(v j ), Tρ(Ei )(ρ(v j )),

Iρ(Ei )(ρ(v j )), Fρ(Ei )(ρ(v j ))}nj=1, ∗
)
is a single-valued neutrosophic graph. ��

Example 4.3 Let H = ({a, b, c, d, e, f, g}, {E1, E2, E3}) be a single-valued neutro-
sophic hypergraph in Fig. 5.
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Accessible single-valued neutrosophic graphs

(a, 0.1, 0.2,
0.3)

(b, 0.4, 0.5, 0.6) (d, 0.6, 0.1, 0.7) (f, 0.6, 0.7, 0.1)
(e, 0.2, 0.8, 0.4)

(g, 0.45, 0.15, 0.17)

(c, 0.7, 0.8, 0.9)

Fig. 5 Partitioned SVN-HG

ρ(a)(0.1, 0.5, 0.6)
•

ρ(e) (0.2, 0.8, 0.4)

(0.2,
0.8, 0

.9) •

ρ(c)(0.6, 0.8, 0.9)

(0.1, 0.8, 0.9) •

Fig. 6 SVN-G (H/ρ)

(a1, 0.2, 0.4, 0.6)

(a2, 0.4, 0.6, 0.6)
(a3, 0

.3, 0.
2, 0.4

)

(a4
, 0.8

, 0.9
, 0.1

)

(a5, 0.1, 0.9, 0.8)

Fig. 7 Joint complete SVN-HG

We have Em
a = Em

b = {a, b}, Em
c = Em

d = {b, c, d}, and Em
e = Em

f = Em
g =

{d, e, f, g}, thus we obtain ρ(a) = ρ(b) = {a, b}, ρ(c) = ρ(d) = {c, d} and ρ(e) =
ρ( f ) = ρ(g) = {e, f, g}. It follows that H/ρ = (ρ(V ), ρ({E1, E2, E3}), ∗) is the
single-valued neutrosophic graph in Fig. 6.

Example 4.4 Let V = {a1, a2, a3, a4, a5}. Then consider the joint complete single-
valued neutrosophic hypergraph H = (V , E1, E2, E3, E4, E5) in Fig. 7. We have
Em
a1 = {a1}, Em

a2 = {a1, a2}, Em
a3 = {a1, a2, a3}, Em

a4 = {a1, a2, a3, a4} and
Em
a5 = {a1, a2, a3, a4, a5}, thus we obtain ρ(a1) = {a1}, ρ(a2) = {a2}, ρ(a3) =

{a3}, ρ(a4) = {a4} and ρ(a5) = {a5}.
It follows that H/ρ = (ρ(V ), {(ρ(ai ), Tρ(Ei )(ρ(ai )), Iρ(Ei )(ρ(ai )), Fρ(Ei )

(ρ(ai )))}5i=1 where is obtained in Fig. 8.

Theorem 4.5 Any single-valued neutrosophic graph is a derived single-valued neu-
trosophic graph if and only if it is a weak single-valued neutrosophic graph.

Proof Let G = (V, E, A, B, ∗′) be a weak single-valued neutrosophic graph, in such
a way that V = {a1, a2, . . . , an} and E = {e1, e2, . . . , em}, where m ≤ n. Suppose
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ρ(a1)(0.2, 0.4, 0.6)

(0
.1,
0.9

, 0
.8)

(0.2, 0.6, 0.6)

ρ(a3) (0.3, 0.2, 0.4)

(0
.3

,0
.6

,0
.6
)

(0.3, 0.9, 0.4)

ρ(a5)(0.1, 0.9, 0.8) (0.1, 0.9, 0.8)
(0

.1
,0

.9
,0

.8
)

ρ(a2)(0.4, 0.6, 0.6)

ρ(a4)(0.8, 0.9, 0.1)

(0.
4,
0.9

, 0
.6) (0.1, 0.9, 0.8)

Fig. 8 Derived cycle SVN-G K4

that for any 1 ≤ i ≤ m, ei = {ai , ai ′ } = ai ∗′ ai ′ . Define a single-valued neutrosophic
hypergraph G = (V , {Ei }ni=1) as follows:

Ei = {(ai , TA(ai ), IA(ai ), FA(ai ))} ∪ Ai

such that for any 1 ≤ k ≤ n, we have |Ak | = k, Ak = {(x, TA(x), IA(x), FA(x)) |
TA(x) �= 0, IA(x) �= 0, FA(x) �= 0} and for any 1 ≤ i, i ′ ≤ n, |Ei | < |Ei+1| and
Ei ∩ Ei ′ �= ∅. It is easy to see that V = ⋃n

i=1 Ai ∪ V and since G = (V, E, A, B, ∗′)
is a weak single-valued neutrosophic graph, we get that H = (V , {Ei }ni=1) is a single-
valued neutrosophic hypergraph. Clearly for any 1 ≤ i ≤ n, ρ(ai ) = Ei and since
Ei ∩ Ei ′ �= ∅, we get that H/ρ = {ρ(ai ) | 1 ≤ i ≤ n} and so obtain

ρ(ai ) ∗ ρ(a j ) =
{

̂ρ(ai ), ρ(ai ′) if j = i ′,
∅̂ if j = i.

Nowdefine amapϕ : (H/ρ, ∗) −→ G = (V, E, A, B, ∗′)byϕ(ρ(ai , TA(ai ), IA(ai ),
FA(ai ))) = (ai , TA(ai ), IA(ai ), FA(ai )) and ϕ( ̂(ρ(ai ), ρ(ai ′))) = ei . Let x, y ∈ V .
If ρ(x) = ρ(y), then |Ex | = |Ey | and so Ex = Ey . Thus ϕ(ρ(x)) = ϕ(ρ(y)). Since
for any 1 ≤ i, i ′ ≤ n,

ϕ(ρ(ai ) ∗ ρ(ai ′)) = ϕ( ̂(ρ(ai ), ρ(ai ′))) = ei = ai ∗′ ai ′ = ϕ(ρ(ai )) ∗′ ϕ(ρ(ai ′)),

in other words, if ρ(ai ) and ρ(a′
i ) in G/ρ are adjacent, then ϕ(ρ(ai )) and ϕ(ρ(a′

i )) in
G are adjacent. So ϕ is a homomorphism. It is easy to see that ϕ is bijection and so is
an isomorphism. It follows that by Theorem 4.2, any weak single-valued neutrosophic
graph is a derived single-valued neutrosophic graph. By definition of single-valued
neutrosophic hypergraph, the converse of theorem is obtained immediately. ��
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Accessible single-valued neutrosophic graphs

c (0.7, 0.8, 0.9)(0.5, 0.5, 0.5)

a (0.4, 0.2, 0.3)

(0
.4

,0
.5

,0
.6
)

d

b (0.4, 0.5, 0.6)

(0
.4,
0.5

, 0
.6) (0.4, 0.8, 0.9)

5,(0.5, 0.8, 0.9)

Fig. 9 Extendable SVN-G G

(a, 0.4, 0.2, 0.3)

(b, 0.4, 0.5, 0.6)

(c, 0.7, 0.8, 0.9)

(d, 0
.9, 0.

4, 0.4
)

(e, 0.5,
0.5, 0.5

)

Fig. 10 SVN-HG H

Corollary 4.6 Let 0 ≤ α, β, γ ≤ 1. Then any weak single-valued neutrosophic graph
can be a derived (α, β, γ )-level graph.

Example 4.7 Consider the single-valued neutrosophic graph (G, A, B) in Fig. 9.
Now, consider the single-valued neutrosophic hypergraph H = (V , {E j }4j=1), where

V = {a, b, c, d, e}, E1 = {(a, 0.4, 0.2, 0.3)}, E2 = {(a, 0.4, 0.2, 0.3), (b, 0.4,
0.5, 0.6)}, E3 = {(b, 0.4, 0.5, 0.6), (c, 0.7, 0.8, 0.9), (d, 0.4, 0.4, 0.4)} and

E4 = {(b, 0.4, 0.5, 0.6), (c, 0.7, 0.8, 0.9), (d, 0.4, 0.4, 0.4), (e, 0.5, 0.5, 0.5)}.

Then (V , E1, E2, E3, E4) is a single-valued neutrosophic hypergraph in Fig. 10.

Since Em
a = {(a, 0.4, 0.2, 0.3)}, Em

b = {(a, 0.4, 0.2, 0.3), (b, 0.4, 0.5, 0.6)},
Em
c = {(b, 0.4, 0.5, 0.6), (c, 0.7, 0.8, 0.9), (d, 0.9, 0.4, 0.4)}and
Em
e ={(b, 0.4, 0.5, 0.6), (c, 0.7, 0.8, 0.9), (d, 0.9, 0.4, 0.4), (e, 0.5, 0.5, 0.5)},
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ρ(c)(0.7, 0.8, 0.9)(0.5, 0.5, 0.5)

ρ(a)(0.4, 0.2, 0.3)

(0
.4

,0
.5

,0
.6
)

ρ(e)

ρ(b)(0.4, 0.5, 0.6)

(0
.4,
0.5

, 0
.6) (0.4, 0.8, 0.9)

5,(0.5, 0.8, 0.9)

Fig. 11 Derivable SVN-G H/ρ

a1
•

a2
• ...

aj

•
aj+1

•
aj+2

• ...
an−1

•
an
•

Fig. 12 Linear tree T l
m

we get that

ρ((a, 0.4, 0.2, 0.3)) = {(a, 0.4, 0.2, 0.3)}, ρ((b, 0.4, 0.5, 0.6)) = {(b, 0.4, 0.5, 0.6)},
× ρ((c, 0.7, 0.8, 0.9)) = {(c, 0.7, 0.8, 0.9), (d, 0.9, 0.4, 0.4)} and
× ρ((e, 0.5, 0.5, 0.5)) = {(e, 0.5, 0.5, 0.5)}.

So we obtained the single-valued neutrosophic graph in Fig. 11.

Let V = {a1, a2, . . . , am}. Then we denote the linear tree on V in Fig. 12 and
denote it by T l

m .

Theorem 4.8 Let m ∈ N. Then linear weak single-valued neutrosophic tree
(T l

m, A, B) is an extendable linear single-valued neutrosophic tree.

Proof Let T l
m = (V, E) be a linear single-valued neutrosophic tree where V =

{a1, a2, . . . , am}. Now, consider a single-valued neutrosophic hypergraph H =
(V , {E j }nj=1), where for any 1 ≤ i ≤ m, |Ei | = i, (ai , TA(ai ), IA(ai ), FA(ai )) ∈
Ei , Ei ∩ Ei+1 = ∅, |Ei+1| − |Ei | = 1 and for any 1 ≤ j �= i, i +
1 ≤ m, E j ∩ Ei = ∅. It is easy to see that |V | > |V | and Em

ai =
{(ai , TA(ai ), IA(ai ), FA(ai )), (x, TA(x), IA(x), FA(x)) | x ∈ V } which in |Em

ai | =
i . It follows that for any 1 ≤ i ≤ m, ρ((ai , TA(ai ), IA(ai ), FA(ai ))) =
{(ai , TA(ai ), IA(ai ), FA(ai ))} and

ρ(ai ) ∗ ρ(a j ) =
{

̂ρ(ai ), ρ(ai ′) if i + 1 = i ′,
∅̂ if i + 1 �= i ′.
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Accessible single-valued neutrosophic graphs

Fig. 13 Linear tree T l
3 a(0.15, 0.25, 0.35)

•

b (0.45, 0.55, 0.65)
•

c (0.75, 0.89, 0.99)
•

.

(a, 0.15, 0.25, 0.35)

(b, 0.45, 0.55, 0.65)

(c, 0.79, 0.89, 0.99)

(d, 0.75, 0.85, 0.95)

Fig. 14 SVN-HG H

Since T l
m = (V, E) is a linear single-valued neutrosophic tree, for any 1 ≤ i, j ≤ m

we get that

TB(ρ((ai ), ρ((ai )) = TB({ai }, {a j }) = {TB(ai , a j )} ≤ {TA(ai ) ∧ TA(a j )}
= {TA(ai )} ∧ {TA(a j )} = TB(ρ((ai )) ∧ TB(ρ((a j )).

In a similar way can see that IB(ρ((ai ), ρ((ai )) ≥ IB(ρ((ai )) ∨ IB(ρ((a j ))

and FB(ρ((ai ), ρ((ai )) ≥ FB(ρ((ai )) ∨ FB(ρ((a j )). Since (V , {E j }nj=1)/ρ
∼=

(T l
m, A, B), (V , {E j }nj=1)/ρ is a linear single-valued neutrosophic tree and |V | > |V |

we get that (T l
m, A, B) is an extendable linear single-valued neutrosophic tree. ��

Example 4.9 Consider the linear single-valued neutrosophic tree (T l
3 , A, B) in Fig. 13.

Now, consider a single-valued neutrosophic hypergraph H = (V , {E j }4j=1),

where V = {a, b, c, d, e}, E1 = {(a, 0.15, 0.25, 0.35)}, E2 = {(a, 0.15, 0.25, 0.35),
(b, 0.45, 0.55, 0.65)}, E3 = {(b, 0.45, 0.55, 0.65), (c, 0.79, 0.89, 0.99), (d, 0.75,
0.85, 0.95)}.

Then (V , E1, E2, E3) is the single-valued neutrosophic hypergraph in Fig. 14.
Since Em

a = {(a, 0.15, 0.25, 0.35)}, Em
b = {(a, 0.15, 0.25, 0.35), (b, 0.45, 0.55,

0.65)} and Em
d = {(b, 0.45, 0.55, 0.65), (c, 0.79, 0.89, 0.99), (d, 0.75, 0.85, 0.95)},

weget thatρ((a, 0.15, 0.25, 0.35)) = {(a, 0.15, 0.25, 0.35)}, ρ((b, 0.45, 0.55, 0.65))
= {(b, 0.45, 0.55, 0.65)} and ρ((d, 0.75, 0.89, 0.99)) = {(c, 0.75, 0.89, 0.99), (d,

0.75, 0.89, 0.99)}. So we obtain the single-valued neutrosophic graph in Fig. 15.
It is clear that (V , {E j }4j=1)/ρ

∼= (T l
3 , A, B).

Corollary 4.10 Linear weak single-valued neutrosophic tree (T l
m, A, B) is an

extended if and only if m = 1 or m = 2.

Theorem 4.11 Let n ∈ N. Then complete weak single-valued neutrosophic graph
(Kn, A, B) is an extended complete single-valued neutrosophic graph.
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ρ(a)(0.15, 0.25, 0.35)
•

ρ(b)(0.45, 0.55, 0.65)
•

ρ(d) (0.75, 0.89, 0.99)
•

Fig. 15 Derived linear SVN-T T l
3

a1 a2 a3 a4 ... an−1 an

Fig. 16 Joint complete SVN-HG K ∗
n

Proof Let G = {a1, a2, . . . , an} and (Kn, A, B) be a complete single-valued neu-
trosophic graph. Now, consider the single-valued neutrosophic hypergraph H =
(V , {E j }nj=1), where V = {a1, a2, . . . , an} and for any 1 ≤ i ≤ n, Ei =
{(a1, TA(a1), IA(a1), FA(a1)), . . . , (ai , TA(ai ), IA(ai ), FA(ai ))} in Fig. 16.

Since for any 1 ≤ i ≤ n, Em
i = {(a1, TA(a1), IA(a1), FA(a1)), . . . , (ai , TA(ai ),

IA(ai ), FA(ai ))}, we get that for any 1 ≤ i ≤ n, ρ((ai , TA(ai ), IA(ai ), FA(ai ))) =
{(ai ,
TA(ai ), IA(ai ), FA(ai ))} and so for any 1 ≤ i �= j ≤ n, ρ(ai )∗ρ(a j ) = ̂ρ(ai ), ρ(a j ).
Since (Kn, A, B) is a complete single-valued neutrosophic graph, for any 1 ≤ i, j ≤ n
we get

FB(ρ((ai ), ρ((ai )) = FB({ai }, {a j }) = {FB(ai , a j )} ≥ {FA(ai ) ∨ FA(a j )}
= {FA(ai )} ∨ {FA(a j )} = FB(ρ((ai )) ∨ FB(ρ((a j )).

In a similar way can see that TB(ρ((ai ), ρ((ai )) ≤ TB(ρ((ai )) ∧ TB(ρ((a j )) and
IB(ρ((ai ), ρ((ai )) ≥ IB(ρ((ai )) ∨ IB(ρ((a j )). Hence H = (V , {E j }nj=1)

∼=
(Kn, A, B) and since V = n, have (Kn, A, B) is an extended complete single-valued
neutrosophic graph. ��

Example 4.12 Consider the complete single-valued neutrosophic graph (K4, A, B)

in Fig. 17. Now, for G = {a, b, c, d}consider single-valued neutrosophic hypergraph
H = (V , {E j }4j=1), where

E1 = {(a, 0.6, 0.8, 0.9)}, E2 = {(a, 0.6, 0.8, 0.9), (b, 0.4, 0.5, 0.6)},
E3 = {(a, 0.6, 0.8, 0.9), (b, 0.4, 0.5, 0.6), (c, 0.5, 0.6, 0.7)} and
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Accessible single-valued neutrosophic graphs

a
(0.6, 0.8, 0.9)

(0
. 5
,0
.8
, 0
.9
)

(0.6, 0.8, 0.9)

b

(0.4, 0.5, 0.6)

(0.4, 0.6, 0.7)

(0
.4
,0
.6
,0
.8
)

c

(0.5, 0.6, 0.7)

d
(0.7, 0.6, 0.8)

(0.
5,
0.6
, 0
.8)

(0.4, 0.8, 0.9)

Fig. 17 Cycle SVN-G K4

Fig. 18 SVN-HG H

(a, 0.6, 0.8, 0.9)

(b, 0.4, 0.5, 0.6)

(c, 0.5, 0.6, 0.7)

(d, 0.7, 0.6, 0.8)

E4 = {(a, 0.6, 0.8, 0.9), (b, 0.4, 0.5, 0.6), (c, 0.5, 0.6, 0.7), (d, 0.7, 0.6, 0.8)}.

Then (G, E1, E2, E3, E4) is a hypergraph in Fig. 18.

Since Em
a = {(a, 0.6, 0.8, 0.9)}, Em

b = {(a, 0.6, 0.8, 0.9), (b, 0.4, 0.5, 0.6)},
Em
c = {(a, 0.6, 0.8, 0.9), (b, 0.4, 0.5, 0.6), (c, 0.5, 0.6, 0.7)} and

Em
d = {(a, 0.6, 0.8, 0.9), (b, 0.4, 0.5, 0.6), (c, 0.5, 0.6, 0.7), (d, 0.7, 0.6, 0.8)},

we get thatρ((a, 0.6, 0.8, 0.9)) = {(a, 0.6, 0.8, 0.9)}, ρ((b, 0.4, 0.5, 0.6))

= {(b, 0.4, 0.5, 0.6)}, ρ((c, 0.5, 0.6, 0.7)) = {(c, 0.5, 0.6, 0.7)} and
×ρ((d, 0.7, 0.6, 0.8)) = {(d, 0.7, 0.6, 0.8)}.

So we obtain the single-valued neutrosophic graph in Fig. 19. It is clear that
(V , {E j }4j=1)/ρ

∼= (K4, A, B).
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ρ(a)
(0.6, 0.8, 0.9)

(0
.5

,0
.8

,0
.9
)

(0.6, 0.8, 0.9)

ρ(b)
(0.4, 0.5, 0.6)

(0.4, 0.6, 0.7)

(0
.4

,0
.6

,0
.8
)

ρ(c)
(0.5, 0.6, 0.7)

ρ(d)
(0.7, 0.6, 0.8)

(0.
5,
0.6

, 0
.8)

(0.4, 0.8, 0.9)

Fig. 19 Derivable complete K4

Corollary 4.13 Let (G, A, B)be aweak single-valued neutrosophic graph. (G, A, B)

is an extended single-valued neutrosophic graph if and only if is a (G, A, B) be a
complete weak single-valued neutrosophic graph.

Theorem 4.14 Let m, n ∈ N. Then complete weak single-valued neutrosophic
bigraph (Km,n, A, B) is an extendable complete single-valued neutrosophic bigraph.

Proof Let V = V ∪ V ′ = {a1, a2, . . . , am, a′
1, a

′
2, . . . , a

′
n} and (Km,n, V ∪ V ′, A, B)

be a complete single-valued neutrosophic bigraph. Consider hypergraph H =
(V , {Ei }mi=1∪{E ′

j }nj=1), where V is set of all vertices of hyperedges of H , for any 1 ≤
i ≤ m, 1 ≤ j ≤ n, ai ∈ Ei , a′

j ∈ E ′
j , |Ei+1| = |Ei | + 1, |E ′

1| = |Em | + 1, |E ′
j+1| =

|E ′
j |+1,

⋂m

i=1
Ei = ∅,

⋂n

j=1
E ′

j = ∅ and for any 1 ≤ i ≤ m, 1 ≤ j ≤ n, Ei∩E ′
j �=

∅. By definition for any 1 ≤ i ≤ m, 1 ≤ j ≤ n, Em
i = Ei , E ′m

j = E ′
j , ρ(ai ) = Ei

and ρ(a′
j ) = E ′

j . Hence for any 1 ≤ i ≤ m and 1 ≤ j ≤ n we obtain

ρ(x) ∗ ρ(y) =
{

̂ρ(x), ρ(y) if {x, y} = {ai , a′
j },

∅̂ otherwise.

Thus H = (V , {Ei }mi=1 ∪ {E ′
j }nj=1)

∼= Km,n .

Let V = {(ai , TA(ai ), IA(ai ), FA(ai ))}mi=1

⋃{(br , TA(br ), IA(br ), FA(br ))}lr=1⋃{(a′
j , TA(a′

j ), IA(a′
j ), FA(a′

j ))}nj=1

⋃{(b′
s, TA(b′

s), IA(b′
s), FA(b′

s))}ps=1, such that
for any 1 ≤ i ≤ m, 1 ≤ r ≤ l, 1 ≤ j ≤ n, 1 ≤ s ≤ p, TA(ai ) ≤
TA(br ), IA(ai ) ≥ IA(br ), FA(ai ) ≥ FA(br ), TA(a′

j ) ≤ TA(b′
s), IA(a′

j ) ≥ IA(b′
s)

and FA(a′
j ) ≥ FA(b′

s). It is easy to see that for any 1 ≤ i ≤ m, 1 ≤ j ≤ n we get
that,

Tρ(Ei )(ρ(ai )) = TEi (ai ), Iρ(Ei )(ρ(ai )) = IEi (ai ),

Fρ(Ei )(ρ(ai )) = FEi (ai ), Tρ(E ′
j )
(ρ(a′

j )) = TE ′
j
(a j ),

Iρ(E ′
j )
(ρ(a′

j )) = IE ′
j
(a′

j ) and
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c
(0.3, 0.5, 0.7)

(0
.3

,0
. 5

,0
.7
)

a

(0.2, 0.4, 0.6)

(0
.2

,0
.8

,0
.7
)

b

(0.7, 0.3, 0.3)

d
(0.2, 0.8, 0.7)

(0.
2,
0.8

, 0
.7) (0.2, 0.5, 0.7)

Fig. 20 Cycle SVN-G K4

(b1 , 0.2, 0.1, 0.6) (b, 0.8, 0.2, 0.3)

(b5, 0.4, 0
.6, 0.7) (b4, 0.3, 0.7, 0.6)

(d, 0.9, 0.8, 0.4)

(b2, 0.7, 0.1, 0.2)

(b3, 0.9, 0.3, 0.1)
(c, 0.4, 0.5, 0.7)

(a, 0.3, 0.4,
0.5)

Fig. 21 SVN-HG H

Fρ(E ′
j )
(ρ(a′

j )) = FE ′
j
(a′

j ).

Moreover, T ρ(Ei )(ρ(ai ), ρ(a′
j )) ≤ TEi (ai ) ∧ TE ′

j
(a′

j ), I ρ(Ei )(ρ(ai ), ρ(a′
j )) ≥

IEi (ai ) ∧ IE ′
j
(a′

j ) and Fρ(Ei )(ρ(ai ), ρ(a′
j )) ≥ FEi (ai ) ∧ FE ′

j
(a′

j ). It follows that
H/ρ is a complete single-valued neutrosophic bigraph. ��
Example 4.15 Consider the complete single-valued neutrosophic bigraph
(K2,2, A, B) in Fig. 20. Now, consider single-valued neutrosophic hypergraph H =
(V , {E j }4j=1) in Fig. 21. By the following computations,

Em
a = {(a, 0.3, 0.4, 0.5), (b1, 0.2, 0.1, 0.6)},

Em
b = {(b, 0.8, 0.2, 0.3), (b2, 0.7, 0.1, 0.2), (b3, 0.9, 0.3, 0.1)},

Em
c = {(c, 0.4, 0.5, 0.7), (a, 0.3, 0.4, 0.5), (b2, 0.7, 0.1, 0.2), (b3, 0.9, 0.3, 0.1)} and

Em
d = {(d, 0.9, 0.8, 0.4), (b5, 0.4, 0.6, 0.7), (b4, 0.3, 0.7, 0.6), (b1, 0.2, 0.1, 0.6),

×(b, 0.8, 0.2, 0.3)},
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ρ(c)
(0.3, 0.5, 0.7)

(0
.3

, 0
.5

,0
. 7
)

ρ(a)
(0.2, 0.4, 0.6)

(0
.2

,0
.8

,0
.7
)

ρ(b)
(0.7, 0.3, 0.3)

ρ(d)
(0.2, 0.8, 0.7)

(0.
2,
0.8

, 0
.7) (0.2, 0.5, 0.7)

Fig. 22 Derivable complete SVN-G K2,2

we get that,

ρ((a, 0.2, 0.4, 0.6)) = {(a, 0.3, 0.4, 0.5), (b1, 0.2, 0.1, 0.6)},
ρ((b, 0.7, 0.3, 0.3)) = {(b, 0.8, 0.2, 0.3), (b2, 0.7, 0.1, 0.2), (b3, 0.9, 0.3, 0.1)},
ρ((c, 0.3, 0.5, 0.7)) = {(c, 0.4, 0.5, 0.7), (a, 0.3, 0.4, 0.5), (b2, 0.7, 0.1, 0.2),

×(b3, 0.9, 0.3, 0.1)}and in a similar way,

ρ((d, 0.2, 0.8, 0.7)) = {(d, 0.9, 0.8, 0.4), (b5, 0.4, 0.6, 0.7), (b4, 0.3, 0.7, 0.6),

×(b1, 0.2, 0.1, 0.6), (b, 0.8, 0.2, 0.3)}.

So we obtain the single-valued neutrosophic graph in Fig. 22. It is clear that
(V , {E j }4j=1)/ρ

∼= (K2,2, A, B).

Corollary 4.16 Let (Km,n, A, B) be a complete weak single-valued neutrosophic
bigraph. Then (Km,n, A, B) is an extended complete weak single-valued neutrosophic
bigraph if and only if m = n = 1.

5 An applications of accessible single-valued neutrosophic
(hyper)graphs in complex networks

In this section, we describe some applications of accessible single-valued neutrosophic
graphs.

The study of complex networks play a main role in the important area of mul-
tidisciplinary research involving physics, chemistry, biology, social sciences, and
information sciences. These systems are commonly represented by means of simple
or directed graphs that consist of sets of nodes representing the objects under inves-
tigation, e.g., people or groups of people, molecular entities, computers, etc., joined
together in pairs by links if the corresponding nodes are related by some kind of rela-
tionship. These networks include the internet, the world wide web, social networks,
information networks, neural networks, food webs, and protein–protein interaction
networks. In some cases the use of simple or directed graphs to represent complex
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networks does not provide a complete description of the real-world systems under
investigation. For instance, in a collaboration network represented as a simple graph,
we only knowwhether scientists have collaborated or not, butwe can not knowwhether
three or more authors linked together in the network were coauthors of the same paper
or not. A possible solution to this problem is to represent the collaboration network as
a bipartite graph in which a disjoint set of nodes represents papers and another disjoint
set represents authors. However, in this case the homogeneity in the definition of nodes
is lost, because we have certain nodes that represent papers and others that represent
authors. In the study of connectivity, clustering and other topological properties, this
distinction between two classes of nodes with completely different interpretationsmay
lead to artifacts in the data.

A natural way of representing these systems is to use the hypergraphs. In the hyper-
graphs, hyper-edges can relate groups of more than two nodes. Thus, we can represent
the collaboration network as a hypergraph in which nodes represent authors and hyper-
edges represent the groups of authors that have published papers together. Despite the
fact that complex weighted networks have been covered in some detail in the physical
literature, there are no reports on the use of hypergraphs to represent complex systems.
Consequently, we will formally introduce the hypergraph concept as a generalization
for representing complex networks and will call them complex hyper-networks. The
hypergraph concept includes, as particular cases, a wide variety of other mathematical
structures that are appropriate for the study of complex networks. Since still these
representations are unsuccessful to deal with all the competitions of the world, for
that purpose SVN-HG are introduced. Now, we discuss applications of SVN-HG to
study the competition along with algorithms. The SVN-G have many utilizations in
different areas, where by using the especial equivalence relations, we connect SVN-
G and SVN-HG. We will first show some examples of complex systems for which
hypergraph representation is necessary.

Example 5.1 In social networks nodes represent people or groups of people, normally
called actors, that are connected by pairs according to some pattern of contact or
interactions between them. Such patterns can be of friendship, collaboration, busi-
ness relationships, etc. There are some cases in which hypergraph representations
of the social network are indispensable. Let X = {a1, a2, a3, a4, a5, a6, a7} be a
society and a1, a2, a3, a4, a5, a6, a7 be names of its people. These people create
some groups as E1 = {a1, a2, a3}, E2 = {a4, a3} and E1 = {a4, a5, a6, a7}. Let,
the degree of contribution in the business relationships of a1 is 10/100, degree of
indeterminacy of contribution is 0/100 and degree of false-contribution is 15/100,
i.e. the truth-membership, indeterminacy-membership and falsity-membership values
of the vertex human is (0.1, 0, 0.15). The likeness, indeterminacy and dislike-
ness of contribution in the business relationships this society is shown in the
Table 1.

Consider the social complex network H = ({a1, a2, a3, a4, a5, a6, a7}, {E1, E2,

E3}) in Fig. 23. Since

Em
a1 = Em

a2 = {(a1, 0.1, 0.05, 0.15), (a2, 0.2, 0.21, 0.25), (a3, 0.3, 0.05, 0.35)},
Em
a3 = Em

a4 = {(a3, 0.3, 0.05, 0.35), (a4, 0.4, 0.42, 0.45)} and
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Table 1 Likeness, indeterminacy and dislikness of a social network

People Truth-membership Indeterminacy-membership Falsity-membership

a1 0.1 0.05 0.15

a2 0.2 0.21 0.25

a3 0.3 0.05 0.35

a4 0.4 0.42 0.45

a5 0.5 0.05 0.55

a6 0.6 0.62 0.65

a7 0.7 0.72 0.75

(a3, 0.3, 0.05, 0.35)

(a1, 0.1, 0.05, 0.15)

(a4, 0.4, 0.42, 0.45)

(a7, 0.7, 0.72, 0.75)

(a5, 0.5, 0.05, 0.55)

(a6, 0
.6, 0.

62, 0
.65)

(a2, 0.2, 0.21, 0.25)

Fig. 23 Social complex network

ρ(a1)(0.1, 0.21, 0.25)
•

(0.1, 0.72, 0.75)

(0.1, 0.42, 0.45) (0.3,
0.72,

0.75)

ρ(a3)(0.3, 0.42, 0.45)

•

ρ(a5) (0.5, 0.72, 0.75)
•

Fig. 24 Social network

Em
a5 = Em

a6 = Em
a7 = {(a4, 0.4, 0.42, 0.45), (a5, 0.5, 0.05, 0.55), (a6, 0.6, 0.62, 0.65),

×(a7, 0.7, 0.72, 0.75)},

we get that

ρ((a1, 0.1, 0.05, 0.15)) = {(a1, 0.1, 0.21, 0.35), (a2, 0.1, 0.21, 0.35)},
ρ(a3, 0.3, 0.05, 0.35)) = {(a3, 0.3, 0.42, 0.45), (a4, 0.3, 0.42, 0.45)} and

ρ((a5, 0.4, 0.72, 0.75)) = {(a5, 0.4, 0.72, 0.75), (a6, 0.4, 0.72, 0.75),
× (a7, 0.4, 0.72, 0.75)}.

Sowe obtain the single-valued neutrosophic graph in Fig. 24. By Fig. 24, for society X ,
we have 3 representatives ρ(a1), ρ(a2) and ρ(a3) where the likeness, indeterminacy
and dislikeness of contribution in the business relationships of group of this society is
shown in the Table 2.
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Table 2 Likeness, indeterminacy and dislikness of SVN-G

Group representative Group representative Truth Indeterminacy Falsity

ρ(a1) ρ(a5) 0.1 0.72 0.75

ρ(a1) ρ(a3) 0.1 0.42 0.45

ρ(a3) ρ(a5) 0.3 0.72 0.75

Table 3 Likeness, indeterminacy and dislikness of social networks

People Truth-membership Indeterminacy-membership Falsity-membership

a 0.6 0.5 0.4

a′ 0.1 0.2 0.3

b 0.2 0.3 0.4

b′ 0.3 0.2 0.1

c 0.8 0.9 0.05

d 0.9 0.8 0.7

d ′ 0.5 0.6 0.7

e 0.4 0.5 0.6

f 0.7 0.8 0.9

g 0.99 0.05 0.9

Example 5.2 Trophic relations in ecological systems are normally represented through
the use of food webs, which are oriented graphs (digraphs) whose nodes represent
species and links represent trophic relations between species. Another way of repre-
senting foodwebs is bymeans of competition graphs, which have the same set of nodes
as the foodweb but in which two nodes are connected if, and only if, the corresponding
species compete for the same prey in the food web. In the competition graph we can
only know if two linked species have some commonprey, butwe can not know the com-
position of the whole group of species that compete for common prey. In order to solve
this problem a competition hypergraph has been proposed in which nodes represent
species in the food web and hyper-edges represent groups of species that compete for
common prey. It has been shown that in many cases competition hyper-networks yield
a more detailed description of the predation relations among the species in the food
web than competition graphs. Let X = {a, a′, b, b′, c, d, d ′, e, f, g} be a ecological
system and a, a′, b, b′, c, d, d ′, e, f, g be species. These species create some groups
species as E1 = {a, a′}, E2 = {a, b′, b}, E3 = {b, c, d ′, d} and E4 = {d, g, f, e, a′}.
Let, the degree of contribution in the business relationships of a is 60/100, degree of
indeterminacy of contribution is 50/100 and degree of false-contribution is 40/100,
i.e. the truth-membership, indeterminacy-membership and falsity-membership values
of the vertex human is (0.6, 0.5, 0.4). The likeness, indeterminacy and dislike-
ness of contribution in the business relationships this society is shown in the
Table 3.
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,0
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(e
, 0

.4,
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(f
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0.8

, 0
.9)

(g
, 0

.99
, 0

.05
, 0

.9)

(d, 0.9, 0.8, 0.7)

(a, 0.6, 0.5,
0.4)

(b , 0.
3, 0

.2,
0.1

) (b, 0.2, 0.3, 0.4)

(d , 0.
5, 0

.6,
0.7

)

(c, 0.8, 0.9, 0.05)

Fig. 25 Food competition hyper-network

Consider the food competition hyper-network is illustrated in Fig. 25. Since

Em
a = Em

a′ = {(a, 0.6, 0.5, 0.4), (a′, 0.1, 0.2, 0.3)},
Em
b = Em

b′ = {(a, 0.6, 0.5, 0.4), (b, 0.2, 0.3, 0.4), (b′, 0.3, 0.2, 0.1)} and
Em
c = Em

d = Em
d ′ = {(b, 0.2, 0.3, 0.4), (c, 0.8, 0.9, 0.05), (d, 0.9, 0.8, 0.7),

×(d ′, 0.5, 0.6, 0.7)}, and

Em
e = Em

f = Em
g = {(d, 0.9, 0.8, 0.7), (e, 0.4, 0.5, 0.6), ( f, 0.7, 0.8, 0.9),

×(g, 0.99, 0.05, 0.9), (a′, 0.1, 0.2, 0.3)},

we get that

ρ((a, 0.1, 0.5, 0.4)) = {(a, 0.1, 0.5, 0.4), (a′, 0.1, 0.5, 0.4)},
ρ(b, 0.2, 0.3, 0.4)) = {(b, 0.2, 0.3, 0.4), (b′, 0.2, 0.3, 0.4)}
ρ((c, 0.5, 0.9, 0.7)) = {(c, 0.5, 0.9, 0.7), (d, 0.5, 0.9, 0.7), (d ′, 0.5, 0.9, 0.7)} and
ρ((e, 0.4, 0.8, 0.9)) = {(e, 0.4, 0.8, 0.9), ( f, 0.4, 0.8, 0.9), (g, 0.4, 0.8, 0.9)}.

Sowe obtain the single-valued neutrosophic graph in Fig. 26. By Fig. 26, for society X ,
we have 4 representativesρ(a), ρ(b), ρ(c) andρ(e)where the likeness, indeterminacy
and dislikeness of trophic relations between species of group of this society is shown
in the Table 4.
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ρ(a)(0.1, 0.5, 0.4) •
(0.1

, 0.5
, 0.4

) (0.2, 0.8, 0.9)

(0.1, 0.9, 0.7) (0.4,
0.9, 0

.9)

ρ(b) (0.2, 0.3, 0.4)•

ρ(c)(0.5, 0.9, 0.7)

•

ρ(e) (0.4, 0.8, 0.9)•

Fig. 26 Food web

Table 4 Likeness, indeterminacy and dislikness of SVN-G

Group representative Group representative Truth Indeterminacy Falsity

ρ(a) ρ(b) 0.1 0.5 0.4

ρ(a) ρ(c) 0.1 0.9 0.7

ρ(b) ρ(e) 0.2 0.8 0.9

ρ(c) ρ(e) 0.4 0.9 0.9

6 Conclusion

The current paper has considered the notion of single-valued neutrosophic hypergraph,
single-valued neutrosophic graph and by introducingweak single-valued neutrosophic
graph, we have established a relation between them. Also:

(i) Any weak single-valued neutrosophic graph is a derived single-valued neutro-
sophic graph.

(ii) Every linear weak single-valued neutrosophic tree (T l
m, A, B) is an extendable

linear single-valued neutrosophic tree.
(iii) All complete weak single-valued neutrosophic graphs (Kn, A, B) are extended

complete single-valued neutrosophic graphs.
(iv) Any complete weak single-valued neutrosophic bigraph (Km,n, A, B) is an

extendable complete single-valued neutrosophic bigraph.
(v) The concept of intuitionistic neutrosophic sets provides an additional possibil-

ity to represent imprecise, uncertainty, inconsistent and incomplete information
which exists in real situations. In this research paper, we have described the
concept of single-valued neutrosophic graphs. We have also presented applica-
tions of single-valued neutrosophic hypergraphs and single-valued neutrosophic
graphs in food webs and social networks.

We hope that these results are helpful for further studies in graph theory. In our
future studies, we hope to obtain more results regarding graphs, hypergraphs and their
applications.
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