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In this paper, we define a new axiomatic definition of interval neutrosophic similarity measure, which is presented
by interval neutrosophic number (INN). Later, the objective weights of various attributes are determined via Shannon
entropy theory; meanwhile, we develop the combined weights, which can show both subjective information and objective
information. Then, we present three approaches to solve interval neutrosophic decision-making problems by multi-
attributive border approximation area comparison (MABAC), evaluation based on distance from average solution
(EDAS), and similarity measure. Finally, the effectiveness and feasibility of algorithms are conceived by two illustrative
examples.
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1. INTRODUCTION

The intuitionistic fuzzy set (IFS), poineered by Atanassov [1], is an extension of the fuzzy set [2] which can deal
with the lack of knowledge of nonmembership degrees. IFS is summarized by a membership degree and a nonmem-
bership degree, so it can describe the fuzzy character of data more constitutionally and minutely. However, IFSs
can deal only with vague information, but not incongruous information which exists in a real environment. For ex-
ample, when an expert gives the opinion about a certain statement, he or she may say that the possibility that the
statement is true is 0.4, the degree of false statement is 0.5, and the possibility that he or she is not sure is 0.3.
For incongruous information, Smarandache [3] initially presented the neutrosophic set from a philosophical point of
view. A neutrosophic set (NS) is summarized by a truth-membership degree, an indeterminacy-membership degree,
and a falsity-membership degree. It generalizes the concept of the classic set, fuzzy set (FS) [2], and tautological
set [3]. Additionally, with regard to the aforementioned example about an expert statement, it can be expressed as
(0.4, 0.5, 0.3) by NSs. Later, Rivieccio [4] pointed out that a NS is a set where each element of the universe has a
truth-membership, an indeterminacy-membership, and a falsity-membership, and it lies in]0−, 1+[, the nonstandard
unit interval. From a scientific point of view, the NS and set-theoretic operators should be specified. Otherwise, it will
be hard to apply in real situations. Hence, Wang et al. [5] proposed a single-valued neutrosophic set (SVNS) which is
a variation of a NS, and also introduced the set-theoretic operators. At present, SVNSs have attracted much attention
and obtained some achievements [6–19].

In fact, sometimes the degree of truth, falsity, and indeterminacy of a certain statement cannot be defined exactly
in the real situations but are denoted by several possible interval values. Hence, Wang et al. [20] proposed the seminal
theory of interval neutrosophic sets (INSs) and presented the set-theoretic operators of INSs. Kraipeerapun and Fung
[21] introduced an ensemble network and interval neutrosophic sets approach to the problem of binary classification.
Kraipeerapun et al. [22] described the integration of neural network ensembles and interval neutrosophic sets using the
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bagging technique for predicting regional-scale potential for mineral deposits as well as quantifying uncertainty in the
predictions. Lupíañez [23] studied some relations between the interval neutrosophic set and its topology. Zhang et al.
[24] proposed some operations and a comparison method for interval neutrosophic numbers (INNs), and applied them
to multiple attribute decision-making (MADM). Ye [25] proposed some similarity measures for INSs, and applied
them to MADM. Şahin and Karabacak [26] gave a system of axioms for inclusion measure of INSs and also developed
a simple inclusion measure for ranking the INSs. Tian et al. [27] established two optimization models to determine
the attribute weights in MADM situations where knowledge regarding the weight information is incomplete and the
attribute values are INN. Zhang et al. [28] proposed an improved weighted correlation coefficient based on integrated
weight for INSs. Zhao et al. [29] presented an interval neutrosophic MADM method based on generalized weighted
aggregation operator. Ye [30] introduced an interval neutrosophic MADM method based on the possibility degree
ranking method and ordered weighted aggregation operators of INNs. Liu and Tang [31] introduced some power
generalized aggregation operators based on INSs. Liu and Wang [32] presented a MADM method based on a interval
a neutrosophic prioritized OWA operator. A time-aware approach using INS to select cloud service was proposed by
Ma et al. [33]. Zhang et al. [34] proposed a MADM method based on ELECTRE IV for INSs. Meanwhile, Liu et al.
[35] also proposed a MADM method based on ELECTRE for INSs. Şahin [36] presented a cross-entropy measure on
INSs. By considering credibility on every evaluation value of attributes in interval neutrosophic decision-making, Ye
[37] proposed two credibility-induced interval neutrosophic weighted operators, and investigated their properties in
detail. Yang et al. [38] generalized a linear assignment method to accommodate the interval neutrosophic sets based
on the Choquet integral. Meanwhile, inspired by soft set theory [39], linguistic set theory [40] and hesitant fuzzy
set theory [41], some extensional models such as interval neutrosophic soft set [42], interval neutrosophic linguistic
set [43,44], and interval neutrosophic hesitant fuzzy set [45,46] are shown. Ye [47] also introduced the concept of
simplified neutrosophic sets (SNSs), which can be described by three real numbers in the real unit interval [0, 1],
and proposed a multiple attribute decision-making method using the aggregation operators of SNSs. Furthermore,
We also introduced the concept of a simplified neutrosophic set (SNS), which is a subclass of a neutrosophic set and
includes the concepts of INS and SVNS, and defined some operational laws of SNSs.

In order to compute the similarity measure of two INSs, we propose a new axiomatic definition of the similarity
measure, which takes the form of INN. Comparing with the existing studies [25,28,48], our similarity measure can
retain more original decision information.

Evaluation based on distance from average solution (EDAS), originally proposed by Ghorabaee et al. [49], is a
new MADM method for inventory ABC classification. It is very useful when we have some conflicting parameters.
The desirable alternative has a smaller distance from the ideal solution and a greater distance from the nadir solution
in these MADM methods. Ghorabaee et al. [50] extended the EDAS method to supplier selection.

The multiattributive border approximation area comparison (MABAC) method is a novel method presented in
[51]. It has a systematic process, simple computation procedure, and sound logic. Inspired by Pythagorean fuzzy sets
[52,53], Peng and Yang [54] applied the MABAC to R&D project selection for obtaining the best project.

Considering that different attribute weights will determine the ranking results of alternatives, we study a new
method to determine the attribute weights by combining the subjective factor with the objective factor. This model is
different from the existing methods, which can be divided into two parts: one is the subjective weighting determination
methods and the other is the objective weighting determination methods, which can be calculated by the Shannon
entropy method [55]. The subjective weighting methods focus on the preference information of the decision-maker
[7,24,25,28,29,37], while they ignore the objective information. The objective weighting does not take the preference
of the decision-maker into account; in other words, the similar methods fail to take the risk attitude of the decision-
maker into account [27]. The function of our model can show both the subjective information and the objective
information. Hence, a novel combined model to obtain attribute weights is proposed.

As far as we know, however, the study of the decision-making problem based on proposed similarity measure,
EDAS, and MABAC methods has not been reported in the existing academic literature. Therefore, it is a glamorous
research topic to apply similarity measure, EDAS, and MABAC methods in decision-making to rank and obtain
the best alternative under an interval neutrosophic environment. Meanwhile, through a comparison analysis of the
existing algorithms, their objective information is executed, and the approach which maintains consistency of its
results is determined.
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The remainder of this paper is organized as follows: In Section 2, we review some fundamental concepts of NS,
SVNS, and INS. In Section 3, a new axiomatic definition of interval neutrosophic similarity measure and distance
measure is investigated. In Section 4, three decision approaches based on MABAC, EDAS, and similarity measure
under interval neutrosophic environment are shown. In Section 5, two illustrative examples are proved to state the
proposed methods. In Section 6, we compare the novel proposed approaches with the existing interval neutrosophic
decision-making approaches. The paper makes a conclusion in Section 7.

2. PRELIMINARIES

In this section, we first recall some basic ideas of NS, SVNS, and INS, and their properties.

2.1 Interval Neutrosophic Set

NS is a portion of neutrosophy, which researches the origin and domain of neutralities, as well as their interactions
with diverse ideational scope [3], and is a convincing general formal framework, which extends the presented sets
[1,2] from a philosophical point of view. Smarandache [3] introduced the definition of NS as follows:

Definition 1 ([3]). Let X be a universe of discourse, with a class of elements inX denoted byx. A NS B in X
is summarized by a truth-membership functionTB(x), an indeterminacy-membership functionIB(x), and a falsity-
membership functionFB(x). The functionsTB(x), IB(x), andFB(x) are real standard or nonstandard subsets of
]0−, 1+[. That is,TB(x) : X →]0−, 1+[, IB(x) : X →]0−, 1+[, andFB(x) : X →]0−, 1+[.

There is restriction on the sum ofTB(x), IB(x), andFB(x), so0− ≤ supTB(x)+supIB(x)+supFB(x) ≤ 3+.
As mentioned above, it is hard to apply the NS to solve some real problems. Hence, Wang et al. [5] presented

SVNS, which is a subclass of the NS and mentioned the definition as follows:

Definition 2 ([5]). Let X be a universe of discourse, with a class of elements inX denoted byx. A SVNS N
in X is summarized by a truth-membership functionTN (x), an indeterminacy-membership functionIN (x), and a
falsity-membership functionFN (x). Then a SVNSN can be denoted as follows:

N = {< x, TN (x), IN (x), FN (x) >| x ∈ X}, (1)

whereTN (x), IN (x), FN (x) ∈ [0, 1] for ∀x ∈ X. Meanwhile, the sum ofTN (x), IN (x), andFN (x) fulfills the
condition0 ≤ TN (x) + IN (x) + FN (x) ≤ 3. For a SVNSN in X, the triplet(TN (x), IN (x), FN (x)) is called the
single-valued neutrosophic number (SVNN). For convenience, we can simply usex = (Tx, Ix, Fx) to represent a
SVNN as an element in the SVNSN .

Definition 3 ([20]). Let X be a universe of discourse, with a class of elements inX denoted byx. An INS A
in X is summarized by a truth-membership functionTA(x), an indeterminacy-membership functionIA(x), and a
falsity-membership functionFA(x). Then an INSA can be denoted as follows:

A = {< x, TA(x), IA(x), FA(x) >| x ∈ X}. (2)

For each pointx in X, TA(x) = [TL
A (x), TU

A (x)], IA(x) = [IL
A(x), IU

A (x)], FA(x) = [FL
A (x), FU

A (x)] ⊆ [0, 1], and
0 ≤ TU

A (x) + IU
A (x) + FU

A (x) ≤ 3. For convenience, we can simply usex = ([TL, TU ], [IL, IU ], [FL, FU ]) to
represent an INN as an element in the INSA.

Definition 4 ([3]). An INS N is contained in other INSM , N ⊆ M if and only if TL
N (x) ≤ TL

M (x), TU
N (x) ≤

TU
M (x), IL

N (x) ≥ IL
M (x), IU

N (x) ≥ IU
M (x), FL

N (x) ≥ FL
M (x), FU

N (x) ≥ FU
M (x) for ∀x.

Definition 5 ([24]). Letx1 = ([TL
1 , TU

1 ], [IL
1 , IU

1 ], [FL
1 , FU

1 ]) andx2 = ([TL
2 , TU

2 ], [IL
2 , IU

2 ], [FL
2 , FU

2 ]) be two INNs,
andλ > 0; then the operations for the INNs are defined as follows:

(1) λx1 = ([1− (1− TL
1 )λ, 1− (1− TU

1 )λ], [(IL
1 )λ, (IU

1 )λ], [(FL
1 )λ, (FU

1 )λ]);
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(2) xλ
1 = ([(TL

1 )λ, (TU
1 )λ], [1− (1− IL

1 )λ, 1− (1− IU
1 )λ], [1− (1− FL

1 )λ, 1− (1− FU
1 )λ]);

(3) x1
⊕

x2 = ([TL
1 + TL

2 − TL
1 TL

2 , TU
1 + TU

2 − TU
1 TU

2 ], [IL
1 ∗ IL

2 , IU
1 ∗ IU

2 ], [FL
1 ∗ FL

2 , FU
1 ∗ FU

2 ]);

(4) x1
⊗

x2 = ([TL
1 ∗TL

2 , TU
1 ∗TU

2 ], [IL
1 +IL

2 −IL
1 IL

2 , IU
1 +IU

2 −IU
1 IU

2 ], [FL
1 +FL

2 −FL
1 FL

2 , FU
1 +FU

2 −FU
1 FU

2 ]);

(5) xc
1 = ([FL

1 , FU
1 ], [1− IU

1 , 1− IL
1 ], [TL

1 , TU
1 ]).

Theorem 1([24]). Letx1 = ([TL
1 , TU

1 ], [IL
1 , IU

1 ], [FL
1 , FU

1 ]) andx2 = ([TL
2 , TU

2 ], [IL
2 , IU

2 ], [FL
2 , FU

2 ]) be two INNs,
andλ, λ1, λ2 > 0, then we have

(1) x1
⊕

x2 = x2
⊕

x1;

(2) x1
⊗

x2 = x2
⊗

x1;

(3) λ(x1
⊕

x2) = λx1
⊕

λx2;

(4) (x1
⊗

x2)λ = xλ
1

⊗
xλ

2 ;

(5) λ1x1
⊕

λ2x1 = (λ1 + λ2)x1;

(6) xλ1
1

⊗
xλ2

1 = xλ1+λ2
1 .

Definition 6 ([25]). Letx1 = ([TL
1 , TU

1 ], [IL
1 , IU

1 ], [FL
1 , FU

1 ]) andx2 = ([TL
2 , TU

2 ], [IL
2 , IU

2 ], [FL
2 , FU

2 ]) be two INNs;
then the Hamming distance betweenx1 andx2 can be defined as follows:

dh(x1, x2) =
1
6
(| TL

1 − TL
2 | + | TU

1 − TU
2 | + | IL

1 − IL
2 | + | IU

1 − IU
2 | + | FL

1 − FL
2 | + | FU

1 − FU
2 |). (3)

For comparing two INNs, Liu and Tang [31] introduced a cosine similarity measure method for an INN.

Definition 7 ([31]). Let x = ([TL, TU ], [IL, IU ], [FL, FU ]) be an INN; then the cosine similarity measure is defined
as follows:

cos(x, x∗) =
TL + TU

√
2((TL)2 + (TU )2 + (IL)2 + (IU )2 + (FL)2 + (FU )2)

. (4)

It measures the cosine similarity measure betweenx = ([TL, TU ], [IL, IU ], [FL, FU ]) and the ideal solution
x∗ = ([1, 1], [0, 0], [0, 0]) for the comparison of INNs. Suppose that two INNsx1 = ([TL

1 , TU
1 ], [IL

1 , IU
1 ], [FL

1 , FU
1 ])

andx2 = ([TL
2 , TU

2 ], [IL
2 , IU

2 ], [FL
2 , FU

2 ]); if cos(x1, x
∗) ≤ cos(x2, x

∗), thenx1 ≤ x2.

However, we can find some drawbacks ofcos(x, x∗) when we compare two INNs.

(1) For two INNsx1 andx2, if x1 = ([0, 0], [0, 0], [0, 0]) andx2 = ([0, 0], [0, 0], [0, 0]), thencos(x1, x
∗) and

cos(x2, x
∗) are undefined or insignificant. In this case, one cannot apply it to comparex1 andx2. In fact, if

x1 = ([0, 0], [0, 0], [0, 0]) andx2 = ([0, 0], [0, 0], [0, 0]), thenx1 = x2.

(2) For two INNsx1 = ([0, 0], [0, 0], [1, 1]) andx2 = ([0, 0], [1, 1], [0, 0]), thencos(x1, x
∗) = cos(x2, x

∗) = 0.
In fact,x1 6= x2.

We also can find more unreasonable results whenTL
1 = TL

2 andTU
1 = TU

2 , meanwhile, by obtaining the
special values of(IL

1 )2 + (IU
1 )2 + (FL

1 )2 + (FU
1 )2 = (IL

2 )2 + (IU
2 )2 + (FL

2 )2 + (FU
2 )2. For example,

x1 = ([0.4, 0.5], [0.6, 0.8], [0.6, 0.7]) andx2 = ([0.4, 0.5], [0, 1], [0.6, 0.7]); based on Liu and Tang [31],
cos(x1, x

∗) = cos(x2, x
∗), but in fact,x1 6= x2.

(3) For two INNsx1 = ([TL
1 , TU

1 ], [IL
1 , IU

1 ], [FL
1 , FU

1 ]) andx2 = ([k ∗TL
1 , k ∗TU

1 ], [k ∗ IL
1 , k ∗ IU

1 ], [k ∗FL
1 , k ∗

FU
1 ])(0 < k < 1), we can know thatcos(x1, x

∗) = cos(x2, x
∗). But in fact,x1 6= x2.

From the above discussion, it is unreasonable to apply to MADM. In order to solve these disadvantages, we
propose a score function (improved similarity measure) in the following.
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Definition 8. Let x = ([TL, TU ], [IL, IU ], [FL, FU ]) be an INN; then the proposed score functions1,1(x) is defined
as follows:

s1,1(x) =
2
3

+
TL + TU

6
− IL + IU

6
− FL + FU

6
. (5)

It measures the Hamming similarity(1− dh(x, x∗)) betweenx = ([TL, TU ], [IL, IU ], [FL, FU ]) and the ideal
solutionx∗ = ([1, 1], [0, 0], [0, 0]) for the comparison of INNs.

It also brings us to the problem of cases 2 and 3, so we can add two parametersα andβ to adjust the results. In
our intuition, we hope that the smaller of the[IL, IU ] (more indeterminate or inconsistent information) and the bigger
of the[FL, FU ] when[TL, TU ] are equal, so the INN is bigger. Hence, we define a better score function as follows:

sα,β(x) =
2
3

+
TL + TU

6
− α

IL + IU

6
− β

FL + FU

6
, (6)

where0 < β < α ≤ 1, 0 ≤ sα,β(x) ≤ 1. Meanwhile, when the equal condition(sα,β(x1) = sα,β(x2)), in fact, it
cannot hold(x1 6= x2). We can adjust the parametersα andβ to obtain ideal results. In the following section, we set
α = 0.5, β = 0.3.

Definition 9 ([24]). Let xj(j = 1, 2, · · · , n) be a series of the INNs, andw = (w1, w2, · · · , wn)T be the weight
vector of xj(i = 1, 2, · · · , n); then an interval neutrosophic weighted averaging (INWA) operator is a mapping
INWA, Xn → X, where

INWA(x1, x2, · · · , xn) =
n⊕

j=1

(wjxj)

=





1−

n∏

j=1

(1− TL
j )wj , 1−

n∏

j=1

(1− TU
j )wj


 ,




n∏

j=1

(IL
j )wj ,

n∏

j=1

(IU
j )wj


 ,




n∏

j=1

(FL
j )wj ,

n∏

j=1

(FU
j )wj





 . (7)

However, we can see that the INWA operator has drawbacks in some cases, described as follows.
Letxj(j = 1, 2, · · · , n) be a series of INNs. If there isi such thatxi = ([1, 1], [0, 0], [0, 0]), then based on Eq. (7),

we can have INWA(x1, x2, · · · , xn) = ([1, 1], [0, 0], [0, 0]). This result may cause counterintuitive phenomena in
MADM. In other words, it only determines byxi to make a decision and the decision information of others can be
neglected.

Moreover, based on Eq. (7), if there is an INN such thatxi = ([TL
i , TU

i ], [0, 0], [0, 0]), the aggregated value
is INWA(x1, x2, · · · , xn) = ([TL, TU ], [0, 0], [0, 0]). In other words, the indeterminacy-membership degree and the
falsity-membership degree of aggregated value must be zero. This result may cause counterintuitive phenomena in
some cases.

Hence, it is unreasonable and unsuitable to apply Eq. (7) to aggregate the information in MADM when meeting
the special cases mentioned above. Meanwhile, for interval neutrosophic Hamacher average operators [24], interval
neutrosophic Einstein average operators [24], interval neutrosophic prioritized average operators [32], and interval
neutrosophic power average operators [31], they have the same drawbacks with interval neutrosophic average opera-
tors.

Definition 10 ([24]). Let xj(j = 1, 2, · · · , n) be a series of the INNs, andw = (w1, w2, · · · , wn)T be the weight
vector ofxj(i = 1, 2, · · · , n); then an interval neutrosophic weighted geometric (INWG) operator is a mapping
INWG: Xn → X, where

INWG(x1, x2, · · · , xn) =
n⊗

j=1

x
wj

j (8)

=







n∏

j=1

(
TL

j

)wj
,

n∏

j=1

(
TU

j

)wj


,


1−

n∏

j=1

(
1− IL

j

)wj
, 1−

n∏

j=1

(
1− IU

j

)wj


,


1−

n∏

j=1

(
1− FL

j

)wj
, 1−

n∏

j=1

(
1− FU

j

)wj




.
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However, we can see that the INWG operator also has drawbacks in some cases, described as follows.
Letxj(j = 1, 2, · · · , n) be a series of INNs. If there isi such thatxi = ([0, 0], [1, 1], [1, 1]), then based on Eq. (8),

we can have INWG(x1, x2, · · · , xn) = ([0, 0], [1, 1], [1, 1]). This result may cause counterintuitive phenomena in
MADM. In other words, it only determines byxi to make a decision and the decision information of others can be
neglected.

Moreover, based on Eq. (8), if there is an INN such thatxi = ([0, 0], [IL
i , IU

i ], [FL
i , FU

i ]), the aggregated value
is INWA(x1, x2, · · · , xn) = ([0, 0], [IL, IU ], [FL, FU ]). In other words, the truth-membership degree of aggregated
value must be zero. This result may cause counterintuitive phenomena in some cases.

Hence, it is unreasonable and unsuitable to apply Eq. (8) to aggregate the information in MADM when meeting
the special cases mentioned above. Meanwhile, for interval neutrosophic Hamacher geometric operators [24], interval
neutrosophic Einstein geometric operators [24], interval neutrosophic prioritized geometric operators [32], and inter-
val neutrosophic power geometric operators [31], they have the same drawbacks with interval neutrosophic geometric
operators.

For solving the above drawbacks, we propose a revised aggregation operator in the following.

Definition 11. Let x = ([TL, TU ], [IL, IU ], [FL, FU ]) be an INN; then

x∆
T =





(
[∆,∆],

[
| IL − ∆

2
|, | IU − ∆

2
|
]

,

[
| FL − ∆

2
|, | FU − ∆

2
|
])

, if TL = TU = 0,
(

[∆, TU ],
[
| IL − ∆

2
|, IU

]
,

[
| FL − ∆

2
|, FU

])
, if TL = 0, TU 6= 0,

([TL, TU ], [IL, IU ], [FL, FU ]), if TL 6= 0,

(9)

x∆
I =





([
| TL − ∆

2
|, | TU − ∆

2
|
]

, [∆,∆],
[
| FL − ∆

2
|, | FU − ∆

2
|
])

, if IL = IU = 0,
([
| TL − ∆

2
|, TU

]
, [∆, IU ],

[
| FL − ∆

2
|, FU

])
, if IL = 0, IU 6= 0,

([TL, TU ], [IL, IU ], [FL, FU ]), if IL 6= 0, FL 6= 0,([| TL −∆ |, | TU −∆ |] ,

[
∆
2

,
∆
2

]
,

[
∆
2

,
∆
2
|
])

, if IL = IU = FL = FU = 0,

(10)

x∆
F =





([
| TL − ∆

2
|, | TU − ∆

2
|
]

,

[
| FL − ∆

2
|, | FU − ∆

2
|
]

, [∆,∆]
)
, if FL = FU = 0,

([
| TL − ∆

2
|, TU

]
,

[
| IL − ∆

2
|, IU

]
, [∆, FU ]

)
, if FL = 0, FU 6= 0,

([TL, TU ], [IL, IU ], [FL, FU ]), if FL 6= 0, IL 6= 0,([| TL −∆ |, | TU −∆ |] ,

[
∆
2

,
∆
2

]
,

[
∆
2

,
∆
2
|
])

, if IL = IU = FL = FU = 0,

(11)

where∆ is a positive fuzzy number and far less than any nonzeroTL, TU , IL, IU , FL, FU . Thenx∆
T is called the

∆-revised interval neutrosophic geometric number ofx; x∆
I andx∆

F are called the∆-revised interval neutrosophic
averaging number ofx.

Theorem 2. Letxj = ([TL
j , TU

j ], [IL
j , IU

j ], [FL
j , FU

j ]) be a series of INNs;x∆
T , x∆

I , andx∆
F are still INNs.

Proof.

(1) WhenTL
j 6= 0, IL

j 6= 0, andFL
j 6= 0, it meets the condition in Definition 3.

(2) WhenTL
j = 0, TU

j 6= 0, or IL
j = 0, IU

j 6= 0, or FL
j = 0, FU

j 6= 0, it meets the condition in Definition 3.
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(3) WhenTL
j = 0, TU

j = 0, the revised INNx∆
T = ([∆,∆], [| IL

j − ∆/2 |, | IU
j − ∆/2 |], [| FL

j − ∆/2 |,
| FU

j −∆/2 |]). Because∆ is far less than any nonzeroIU
j , FU

j , then∆ + | IU
j −∆/2 | + | FU

j −∆/2 |=
∆ + IU

j −∆/2+ FU
j −∆/2 = IU

j + FU
j ≤ 3. Similarly, whenIL

j = 0, IU
j = 0 or FL

j = 0, FU
j = 0, it also

meets the condition in Definition 3.

Based on above analysis, we can conclude thatx∆
T , x∆

I , andx∆
F are still INNs.

Definition 12. Let xj = ([TL
j , TU

j ], [IL
j , IU

j ], [FL
j , FU

j ])(j = 1, 2, · · · , n) be a series of the INNs, then the∆-revised
interval neutrosophic weighted geometric operator (R-INWG) is defined as follows:

R-INWG(x1, x2, · · · , xn) =
n⊕

j=1

(x∆
j )wj , (12)

wherewj is the weight ofxj(i = 1, 2, · · · , n), wj ∈ [0, 1], and
∑n

j=1 wj = 1, x∆
j is the∆-revised INN ofxj .

Theorem 3. Let xj(j = 1, 2, · · · , n) be a series of the INNs, andw = (w1, w2, · · · , wn)T be the weight vector
of xj(i = 1, 2, · · · , n); then a revised interval neutrosophic weighted geometric (R-INWG) operator is a mapping
R-INWG:Xn → X, where

R-INWG(x1, x2, · · · , xn) =







n∏

j=1

((
TL

j

)∆
)wj

,
n∏

j=1

((
TU

j

)∆
)wj


 , (13)


1−

n∏

j=1

(
1− (

IL
j

)∆
)wj

, 1−
n∏

j=1

(
1− (

IU
j

)∆
)wj


 ,


1−

n∏

j=1

(
1− (

FL
j

)∆
)wj

, 1−
n∏

j=1

(
1− (

FU
j

)∆
)wj




 .

Theorem 4. Let xj = ([TL
j , TU

j ], [IL
j , IU

j ], [FL
j , FU

j ])(j = 1, 2, · · · , n) be a series of the INNs,xj 6= ([0, 0], [0, 0],
[0, 0])(j = 1, 2, · · · , n) and the aggregation result by Eq.(13) isx = ([TL, TU ], [IL, IU ], [FL, FU ]), thenTL and
TU are monotonically increasing when∆ is monotonically increasing andIL

j , IU
j , FL

j , FU
j are monotonically de-

creasing when∆ is monotonically increasing.

Proof. Divide the possible value into two cases (case 1 and case 2) whenTL
j = TU

j = 0. Case 1 hask1 IVNNs which
has revised by Eq.(9) withj ∈ mk1. Case 2 hask2 IVNNs which keep original values withj ∈ mk2. It is obvious that
k1 + k2 = n.

Based on Eq. (13), we can have

R-INWG(x1, x2, · · · , xn) =







n∏

j=1

((
TL

j

)∆
)wj

,
n∏

j=1

((
TU

j

)∆
)wj


,


1−

n∏

j=1

(
1−(

IL
j

)∆
)wj

, 1−
n∏

j=1

(
1−(

IU
j

)∆
)wj


,


1−

n∏

j=1

(
1−(

FL
j

)∆
)wj

, 1−
n∏

j=1

(
1−(

FU
j

)∆
)wj




=





 ∏

j∈mk1

∆wj

∏

j∈mk2

(
TL

j

)wj
,

∏

j∈mk1

∆wj

∏

j∈mk2

(
TU

j

)wj


,


1−

∏

j∈mk1

(
1− |IL

j −
∆
2
|
)wj ∏

j∈mk2

(
1− IL

j

)wj
, 1−

∏

j∈mk1

(
1− |IU

j − ∆
2
|
)wj ∏

j∈mk2

(
1− IU

j

)wj


 ,


1−

∏

j∈mk1

(
1− |FL

j − ∆
2
|
)wj ∏

j∈mk2

(
1− FL

j

)wj
, 1−

∏

j∈mk1

(
1− |FU

j − ∆
2
|
)wj ∏

j∈mk2

(
1− FU

j

)wj





 .

For truth-membership functionT , and letting∆1 < ∆2, then

Volume 7, Issue 5, 2017



402 Peng & Dai

∏

j∈mk1

∆wj

1

∏

j∈mk2

(
TL

j

)wj −
∏

j∈mk1

∆wj

2

∏

j∈mk2

(
TL

j

)wj =


 ∏

j∈mk1

∆wj

1 −
∏

j∈mk1

∆wj

2


 ∏

j∈mk2

(
TL

j

)wj ≤ 0,

∏

j∈mk1

∆wj

1

∏

j∈mk2

(
TU

j

)wj −
∏

j∈mk1

∆wj

2

∏

j∈mk2

(
TU

j

)wj =


 ∏

j∈mk1

∆wj

1 −
∏

j∈mk1

∆wj

2


 ∏

j∈mk2

(TU
j )wj ≤ 0.

Hence, we can conclude thatTL andTU are monotonically increasing when∆ is monotonically increasing.

For indeterminacy-membership functionI, and letting∆1 < ∆2, then

1−
∏

j∈mk1

(
1− |IL

j −
∆1

2
|
)wj ∏

j∈mk2

(
1− IL

j

)wj −

1−

∏

j∈mk1

(
1− |IL

j −
∆2

2
|
)wj ∏

j∈mk2

(
1− IL

j

)wj




≤
∏

j∈mk2

(
1− IL

j

)wj


 ∏

j∈mk1

(
1− |IL

j −
∆2

2
|
)wj

−
∏

j∈mk1

(
1− |IL

j −
∆1

2
|
)wj




(∆1,∆2 are real numbers and far less than any nonzeroIj , i.e.,Ij > ∆1, Ij > ∆2)

≤
∏

j∈mk2

(
1− IL

j

)wj


 ∏

j∈mk1

(
1− IL

j +
∆2

2

)wj

−
∏

j∈mk1

(
1− IL

j +
∆1

2

)wj


 ≥ 0,

1−
∏

j∈mk1

(
1− |IU

j − ∆1

2
|
)wj ∏

j∈mk2

(
1− IU

j

)wj −

1−

∏

j∈mk1

(
1− |IU

j − ∆2

2
|
)wj ∏

j∈mk2

(
1− IU

j

)wj




≤
∏

j∈mk2

(
1− IU

j

)wj


 ∏

j∈mk1

(
1− |IU

j − ∆2

2
|
)wj

−
∏

j∈mk1

(
1− |IU

j − ∆1

2
|
)wj




≤
∏

j∈mk2

(
1− IU

j

)wj


 ∏

j∈mk1

(
1− IU

j +
∆2

2

)wj

−
∏

j∈mk1

(
1− IU

j +
∆1

2

)wj


 ≥ 0.

Hence, we can conclude thatIL
j andIU

j are monotonically decreasing when∆ is monotonically increasing.
Similarly, for falsity-membership functionF and letting∆1 < ∆2, then we can conclude thatFL

j andFU
j are

monotonically decreasing when∆ is monotonically increasing. In this paper, we set∆ = 0.0001.

Definition 13. Let xj = ([TL
j , TU

j ], [IL
j , IU

j ], [FL
j , FU

j ])(j = 1, 2, · · · , n) be a series of the INNs, then the∆-revised
interval neutrosophic weighted averaging (R-INWA) operator is defined as follows:

R-INWA(x1, x2, · · · , xn) =
n⊕

j=1

wjx
∆
j , (14)

wherewj is the weight ofxj(i = 1, 2, · · · , n), wj ∈ [0, 1], and
∑n

j=1 wj = 1, x∆
j is the∆-revised INN ofxj .

Theorem 5. Let xj(j = 1, 2, · · · , n) be a series of the INNs, andw = (w1, w2, · · · , wn)T be the weight vector
of xj(i = 1, 2, · · · , n); then a revised interval neutrosophic weighted averaging (R-INWA) operator is a mapping
R-INWA,Xn → X, where
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R-INWA(x1, x2, · · · , xn) =





1−

n∏

j=1

(
1− (

TL
j

)∆
)wj

, 1−
n∏

j=1

(
1− (

TU
j

)∆
)wj


 ,




n∏

j=1

((
IL
j

)∆
)wj

,
n∏

j=1

((
IU
j

)∆
)wj


 ,




n∏

j=1

((
FL

j

)∆
)wj

,
n∏

j=1

((
FU

j

)∆
)wj




 . (15)

Theorem 6. Let xj = ([TL
j , TU

j ], [IL
j , IU

j ], [FL
j , FU

j ])(j = 1, 2, · · · , n) be a series of the INNs,xj 6= ([0, 0], [0, 0],
[0, 0]) (j = 1, 2, · · · , n) and the aggregation result by Eq. (15) isx = ([TL, TU ], [IL, IU ], [FL, FU ]); then TL

andTU are monotonically decreasing when∆ is monotonically increasing andIL
j , IU

j , FL
j , FU

j are monotonically
increasing when∆ is monotonically increasing.

3. A NEW INTERVAL NEUTROSOPHIC DISTANCE MEASURE AND SIMILARITY MEASURE

Definition 14. LetN1, N2, andN3 be three INSs onX. A distance measureD∆(N1, N2) is a mappingD∆, INS(X)×
INS(X) → INN, possessing the following properties:

(1) D∆(N1, N2) is an INN;

(2) D∆(N1, N2) = ([0, 0], [1, 1], [1, 1]), if N1 = N2;

(3) D∆(N1, N2) = D∆(N2, N1);

(4) If N1 ⊆ N2 ⊆ N3, thenD∆(N1, N2) ⊆ D∆(N1, N3) andD∆(N2, N3) ⊆ D∆(N1, N3).

Theorem 7. LetNi andNk be two INSs; thenD∆(Ni, Nk) is a distance measure.

D∆(Ni, Nk) =







n∑

j=1

wjmin
{| TL

ij − TL
kj |, | TU

ij − TU
kj |

}
,

n∑

j=1

wjmax
{| TL

ij − TL
kj |, | TU

ij − TU
kj |

}

 ,


1−

n∑

j=1

wjmax
{| IL

ij − IL
kj |, | IU

ij − IU
kj |

}
, 1−

n∑

j=1

wjmin
{| IL

ij − IL
kj |, | IU

ij − IU
kj |

}

 ,


1−

n∑

j=1

wjmax{| FL
ij − FL

kj |, | FU
ij − FU

kj |}, 1−
n∑

j=1

wjmin
{| FL

ij − FL
kj |, | FU

ij − FU
kj |

}



 , (16)

wherewj is the weight of thejth INN.

Proof. In order forD∆(Ni, Nk) to be qualified as a sensible distance measure for INSs, it must satisfy (1)–(4) of
axiomatic requirements.

(1) Since

0≤
n∑

j=1

wjmin
{| TL

ij − TL
kj |, | TU

ij − TU
kj |

} ≤
n∑

j=1

wjmax
{| TL

ij − TL
kj |, | TU

ij − TU
kj |

} ≤ 1,

0≤ 1−
n∑

j=1

wjmax
{| IL

ij − IL
kj |, | IU

ij − IU
kj |

} ≤ 1−
n∑

j=1

wjmin
{| IL

ij − IL
kj |, | IU

ij − IU
kj |

} ≤ 1,

0≤ 1−
n∑

j=1

wjmin
{| FL

ij − FL
kj |, | FU

ij − FU
kj |

} ≤ 1−
n∑

j=1

wjmax
{| FL

ij − FL
kj |, | FU

ij − FU
kj |

} ≤ 1,

soD∆(Ii, Ik) is an INN.

(2) Necessity:
SinceD∆(Ni, Nk) = ([0, 0], [1, 1], [1, 1]), we have
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n∑

j=1

wjmin
{| TL

ij − TL
kj |, | TU

ij − TU
kj |

}
= 0,

n∑

j=1

wjmax
{| TL

ij − TL
kj |, | TU

ij − TU
kj |

}
= 0,

1−
n∑

j=1

wjmax
{| IL

ij − IL
kj |, | IU

ij − IU
kj |

}
= 1, 1−

n∑

j=1

wjmin
{| IL

ij − IL
kj |, | IU

ij − IU
kj |

}
= 1,

1−
n∑

j=1

wjmax
{| FL

ij − FL
kj |, | FU

ij − FU
kj |

}
= 1, 1−

n∑

j=1

wjmin
{| FL

ij − FL
kj |, | FU

ij − FU
kj |

}
= 1.

Based on the randomicity ofwj , we can haveTL
ij = TL

kj , T
U
ij = TU

kj , I
L
ij = IL

kj , I
U
ij = IU

kj , F
L
ij = FL

kj , F
U
ij =

FU
kj for ∀j.

Hence,Ni = Nk.

Sufficiency:
SinceNi = Nk, we haveTL

ij = TL
kj , T

U
ij = TU

kj , I
L
ij = IL

kj , I
U
ij = IU

kj , F
L
ij = FL

kj , F
U
ij = FU

kj .
Furthermore,

n∑

j=1

wjmin
{| TL

ij − TL
kj |, | TU

ij − TU
kj |

}
= 0,

n∑

j=1

wjmax
{| TL

ij − TL
kj |, | TU

ij − TU
kj |

}
= 0,

1−
n∑

j=1

wjmax
{| IL

ij − IL
kj |, | IU

ij − IU
kj |

}
= 1, 1−

n∑

j=1

wjmin
{| IL

ij − IL
kj |, | IU

ij − IU
kj |

}
= 1,

1−
n∑

j=1

wjmax
{| FL

ij − FL
kj |, | FU

ij − FU
kj |

}
= 1, 1−

n∑

j=1

wjmin
{| FL

ij − FL
kj |, | FU

ij − FU
kj |

}
= 1.

Hence,D∆(Ni, Nk) = ([0, 0], [1, 1], [1, 1]).

(3) It is straightforward.

(4) If N1 ⊆ N2 ⊆ N3, then∀j, TL
1j ≤ TL

2j ≤ TL
3j , T

U
1j ≤ TU

2j ≤ TU
3j , I

L
1j ≥ IL

2j ≥ IL
3j , I

U
1j ≥ IU

2j ≥ IU
3j , F

L
1j ≥

FL
2j ≥ FL

3j andFU
1j ≥ FU

2j ≥ FU
3j .

Hence,| TL
1j − TL

2j |≤| TL
1j − TL

3j |, | TU
1j − TU

2j |≤| TU
1j − TU

3j |, | IL
1j − IL

2j |≥| IL
1j − IL

3j |, | IU
1j − IU

2j |≥|
IU

1j − IU
3j |, | FL

1j − FL
2j |≥| FL

1j − FL
3j |, | FU

1j − FU
2j |≥| FU

1j − FU
3j |.

Furthermore,
n∑

j=1

wjmin
{| TL

1j − TL
2j |, | TU

1j − TU
2j |

} ≤
n∑

j=1

wjmin
{| TL

1j − TL
3j |, | TU

1j − TU
3j |

}
,

n∑

j=1

wjmax
{| TL

1j − TL
2j |, | TU

1j − TU
2j |

} ≤
n∑

j=1

wjmax
{| TL

1j − TL
3j |, | TU

1j − TU
3j |

}
,

1−
n∑

j=1

wjmax
{| IL

1j − IL
2j |, | IU

1j − IU
2j |

} ≥ 1−
n∑

j=1

wjmax
{| IL

1j − IL
3j |, | IU

1j − IU
3j |

}
,

1−
n∑

j=1

wjmin
{| IL

1j − IL
2j |, | IU

1j − IU
2j |

} ≥ 1−
n∑

j=1

wjmin
{| IL

1j − IL
2j |, | IU

1j − IU
2j |

}
,

1−
n∑

j=1

wjmax
{| FL

1j − FL
2j |, | FU

1j − FU
2j |

} ≥ 1−
n∑

j=1

wjmax
{| FL

1j − FL
3j |, | FU

1j − FU
3j |

}
,

1−
n∑

j=1

wjmin
{| FL

1j − FL
2j |, | FU

1j − FU
2j |

} ≥ 1−
n∑

j=1

wjmin
{| FL

1j − FL
2j |, | FU

1j − FU
2j |

}
.

Consequently,D∆(N1, N2) ⊆ D∆(N1, N3).
Similarly, D∆(N2, N3) ⊆ D∆(N1, N3).
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Definition 15. Let N1, N2, and N3 be three INSs onX. A similarity measureS∆(N1, N2) is a mappingS∆,
INS(X)× INS(X) → INN, possessing the following properties:

(1) S∆(N1, N2) is an INN;

(2) S∆(N1, N2) = ([1, 1], [0, 0], [0, 0]), if N1 = N2;

(3) S∆(N1, N2) = S∆(N2, N1);

(4) If N1 ⊆ N2 ⊆ N3, thenS∆(N1, N3) ⊆ S∆(N1, N2) andS∆(N1, N3) ⊆ S∆(N2, N3).

Theorem 8. LetNi andNk be two INSs; thenS∆(Ni, Nk) is a similarity measure.

S∆(Ni, Nk) =





1−

n∑

j=1

wjmax
{| TL

ij − TL
kj |, | TU

ij − TU
kj |

}
, 1−

n∑

j=1

wjmin
{| TL

ij − TL
kj |, | TU

ij − TU
kj |

}

 ,




n∑

j=1

wjmin
{| IL

ij − IL
kj |, | IU

ij − IU
kj |

}
,

n∑

j=1

wjmax
{| IL

ij − IL
kj |, | IU

ij − IU
kj |

}

 ,




n∑

j=1

wjmin
{| FL

ij − FL
kj |, | FU

ij − FU
kj |

}
,

n∑

j=1

wjmax
{| FL

ij − FL
kj |, | FU

ij − FU
kj |

}




 , (17)

wherewj is the weight of thejth INN.

Especially, for any two INNsx1 andx2, the similarity measure betweenx1 = ([TL
1 , TU

1 ], [IL
1 , IU

1 ], [FL
1 , FU

1 ])
andx2 = ([TL

2 , TU
2 ], [IL

2 , IU
2 ], [FL

2 , FU
2 ]) is defined as follows:

S∆(Ni, Nk) =
([

1−max
{| TL

1 − TL
2 |, | TU

1 − TU
2 |} , 1−min

{| TL
1 − TL

2 |, | TU
1 − TU

2 |}]
,[

min
{| IL

1 − IL
2 |, | IU

1 − IU
2 |} , max

{| IL
1 − IL

2 |, | IU
1 − IU

2 |}]
,[

min
{| FL

1 − FL
2 |, | FU

1 − FU
2 |} , max

{| FL
1 − FL

2 |, | FU
1 − FU

2 |}])
. (18)

If x1 = x2, thenS∆(x1, x2) = ([1, 1], [0, 0], [0, 0]), i.e., the similarity is the biggest; ifx1 = ([1, 1], [0, 0], [0, 0]),
x2 = ([0, 0], [1, 1], [1, 1]) or x1 = ([0, 0], [1, 1], [1, 1]), x2 = ([1, 1], [0, 0], [0, 0]), thenS∆(x1, x2) = ([0, 0], [1, 1],
[1, 1]), i.e., the similarity is the smallest.

Based on the above Definitions 14 and 15, and Theorems 7 and 8, a direct argument proves the following propo-
sition.

Proposition 1. Let Ni andNk be two INSs; then

(1) S∆(Ni, Nk) = S∆(Ni ∩Nk, Ni ∪Nk);
(2) S∆(Ni, Ni ∩Nk) = S∆(Nk, Ni ∪Nk);
(3) S∆(Ni, Ni ∪Nk) = S∆(Nk, Ni ∩Nk);
(4) D∆(Ni, Nk) = D∆(Ni ∩Nk, Ni ∪Nk);
(5) D∆(Ni, Ni ∩Nk) = D∆(Nk, Ni ∪Nk);
(6) D∆(Ni, Ni ∪Nk) = D∆(Nk, Ni ∩Nk).

4. THREE ALGORITHMS FOR INTERVAL NEUTROSOPHIC DECISION-MAKING

4.1 Problem Description

Let A = {A1, A2, ..., Am} be a discrete set of alternatives,C = {C1, C2, ..., Cn} be a series ofn attributes, andW =
{w1, w2, ..., wn} be weight vector assigned for the attributes by the decision-makers withwj ∈ [0, 1], Σn

j=1wj = 1.
Assume that the evaluation of the alternativeAi with respect to attributeCj is represented by interval neutrosophic
matrix R = (rij)m×n = ([TL

ij , T
U
ij ], [IL

ij , I
U
ij ], [F

L
ij , F

U
ij ])m×n(i = 1, 2, · · · , m; j = 1, 2, · · · , n). The values united

with the alternatives for MADM problems can be shown in Table 1.
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TABLE 1: The interval neutrosophic MADM matrix

C1 C2 · · · Cn

A1 r11 r12 · · · r1n

A2 r21 r22 · · · r2n...
...

...
...

...
Am rm1 rm2 · · · rmn

4.2 The Method of Computing the Combined Weights

4.2.1 Determining the Objective Weights: Shannon Entropy Method

Shannon entropy [55] evaluates the expected information content of a certain message. The degree of uncertainty
in information can be measured using the entropy concept. The information entropy idea can regulate the decision
making process because it is able to measure existent contrasts between sets of data and thus clarify the intrinsic
information for the decision-maker.

The following procedure should be employed to determine integrated weights through Shannon entropy under
an interval neutrosophic environment.

Step 1. Normalize decision matrixR = (rij)m×n into R̃ = (r̃ij)m×n = ([T̃L
ij , T̃

U
ij ], [ĨL

ij , Ĩ
U
ij ], [F̃

L
ij , F̃

U
ij ])m×n by

Eq. (19):

r̃ij =





([TL
ij , T

U
ij ], [IL

ij , I
U
ij ], [F

L
ij , F

U
ij ]), Cj is benefit attribute,

([FL
ij , F

U
ij ], [1− IU

ij , 1− IL
ij ], [T

L
ij , T

U
ij ]), Cj is cost attribute.

(19)

Step 2. Compute the score functionsα,β(r̃ij) of r̃ij(i = 1, 2, · · · ,m; j = 1, 2, · · · , n) by Eq. (6).

Step 3. Normalize the score functionsα,β(r̃ij) by Pij = sα,β(r̃ij)/
∑m

i=1 sα,β(r̃ij).

Step 4. Calculate the entropy measure of the score function of the normalized decision matrix as follows:

Ej = − 1
ln m

m∑

i=1

Pij ln Pij . (20)

Step 5. Obtain objective weightsωj as follows:

ωj =
1− Ej∑n

j=1(1− Ej)
. (21)

4.2.2 Determining the Combined Weights: The Linear Weighted Comprehensive Method

Suppose that the vector of the subjective weight, given by the decision-makers directly, isw = {w1, w2, · · · , wn},
where

n∑
j=1

wj = 1, 0 ≤ wj ≤ 1. The vector of the objective weight, computed by Eq. (19) directly, isω =

{ω1, ω2, · · · ,ωn}, where
∑n

j=1 ωj = 1, 0≤ ωj ≤ 1.
Therefore, the vector of the combined weight$ = {$1, $2, · · · , $n} can be defined as follows:

$j = λwj + (1− λ)ωj , (22)

whereλ is the key degree (based on the real decision cases; in this paper, we setλ = 0.5),
∑n

j=1 $j = 1, 0≤ $j ≤ 1.
The objective weight and subjective weight are aggregated by the linear weighted comprehensive method. Ac-

cording to the addition effect, the larger the value of the subjective weight and the objective weight, the larger the
combined weight is, or vice versa. At the same time, we can obtain that Eq. (22) overcomes the limitation of only
considering either subjective or objective factor influence. The advantage of Eq. (22) is that the attribute weights and
rankings of alternatives can show both subjective information and objective information.
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4.3 Three Interval Neutrosophic Approaches in MADM

4.3.1 The Interval Neutrosophic MADM Approach Based MABAC

The MABAC is a new MADM method presented in [49]. Due to its straightforward computation procedure and the
steadiness (consistency) of solution, the MABAC method is a particularly practical and credible tool for decision-
making. In this subsection, a modified MABAC method within the interval neutrosophic environment is introduced
to help decision-makers.

Algorithm 1: MABAC

Step 1. Identify the alternatives and attributes, and obtain the interval neutrosophic matrixR = (rij)m×n (i =
1, 2, · · · ,m; j = 1, 2, · · · , n) which is shown in Table 1.

Step 2. Normalize decision matrixR = (rij)m×n into R̃ = (r̃ij)m×n = ([T̃L
ij , T̃

U
ij ], [ĨL

ij , Ĩ
U
ij ], [F̃

L
ij , F̃

U
ij ])m×n by

Eq. (19).

Step 3. Compute relative weight$j of attributeCj by Eq. (22).

Step 4. Compute the weighted matrixT = ( tij)m×n by Eq. (23).

tij =
([

T ′ij
L
, T ′ij

U
]
,
[
I ′ij

L
, I ′ij

U
]
,
[
F ′ij

L
, F ′ij

U
])

= $j r̃ij

=
([

1−
(

1− T̃L
ij

)$j

, 1−
(

1− T̃U
ij

)$j
]
,
[(

ĨL
ij

)$j

,
(
ĨU
ij

)$j
]
,
[(

F̃L
ij

)$j

,
(
F̃U

ij

)$j
])

. (23)

Step 5. Compute the border approximation area (BAA) matrixG = (gj)1×n. The BAA for each attribute is ob-
tained by Eq. (24).

gj =
m∏

i=1

(tij)1/m =

([
m∏

i=1

(
T ′ij

L
)1/m

,
m∏

i=1

(
T ′ij

U
)1/m

]
,

[
1−

m∏

i=1

(
1− I ′ij

L
)1/m

, 1−
m∏

i=1

(
1− I ′ij

U
)1/m

]
,

[
1−

m∏

i=1

(
1− F ′ij

L
)1/m

, 1−
m∏

i=1

(
1− F ′ij

U
)1/m

])
(24)

Step 6. Reckon the distance matrixD = (dij)m×n by Eq. (25).

dij =





dh(tij , gj), if tij > gj ,

0, if tij = gj ,

−dh(tij , gj), if tij < gj ,

(25)

where distance measuredh is defined in Eq. (3).

Especially, alternativeAi will pertain to the BAA (G) if dij = 0, upper approximation area(G+) if
dij > 0, and lower approximation area(G−) if dij < 0. The upper approximation area(G+) is the area
which includes the ideal alternative(A+) while the lower approximation area(G−) is the area which
includes the anti-ideal alternative(A−) (see Fig. 1, [51]). For choosing alternativeAi as the best from the
set, there is need of as many attributes as possible pertaining to the upper approximate area(G+).

Step 7. Rank the alternatives byQi(i = 1, 2, · · · ,m). The most desired alternative is the one with the biggest
value ofQi.

Qi =
n∑

j=1

dij , i = 1, 2, · · · ,m; j = 1, 2, · · · , n. (26)
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FIG. 1: Exhibition of the upper(G+), lower(G−), and border(G) approximation areas

4.3.2 The Interval Neutrosophic MADM Approach Based Similarity Measure

In this section, we present a novel method for solving the MADM problem by the proposed similarity measure
between INSs. The concept of ideal point has been used to help obtain the best alternative in the decision process. Al-
though the ideal alternative does not exist in real problems, it does provide a useful theoretical construct against which
to appraise alternatives. Therefore, we define the ideal alternativeA∗ as the INNa∗j =([(T ∗)L, (T ∗)U ], [(I∗)L, (I∗)U ],
[(F ∗)L, (F ∗)U ]) = ([1, 1], [0, 0], [0, 0]) for ∀j.

Hence, by applying Eq. (17), the proposed similarity measureS∆ between an alternativeAi and the ideal alter-
nativeA∗ represented by the INSs is defined by

S∆(Ai, A
∗) =





1−

n∑

j=1

wjmax
{|TL

ij − (T ∗)L|, |TU
ij − (T ∗)U|} , 1−

n∑

j=1

wjmin
{|TL

ij − (T ∗)L|, |TU
ij − (T ∗)U|}


,




n∑

j=1

wjmin
{| IL

ij − (I∗)L |, | IU
ij − (I∗)U |} ,

n∑

j=1

wjmax
{| IL

ij − (I∗)L |, | IU
ij − (I∗)U |}


,




n∑

j=1

wjmin
{| FL

ij − (F ∗)L |, | FU
ij − (F ∗)U |} ,

n∑

j=1

wjmax
{| FL

ij − (F ∗)L |, | FU
ij − (F ∗)U |}






=







n∑

j=1

wjT
L
ij ,

n∑

j=1

wjT
U
ij


 ,




n∑

j=1

wjI
L
ij ,

n∑

j=1

wjI
U
ij


 ,




n∑

j=1

wjF
L
ij ,

n∑

j=1

wjF
U
ij





 . (27)

Algorithm 2: Similarity measure

Steps 1–3.There are the same as Steps 1–3 in Algorithm 1.

Step 4. Calculate the similarity measureS∆(Ai, A
∗)(i = 1, 2, · · · ,m) by Eq. (27).

Step 5. Compute each alternative of the score functionsα,β(S∆(Ai, A
∗)) by Eq. (6).

Step 6. Rank the alternatives bysα,β(S∆(Ai, A
∗))(i = 1, 2, · · · ,m). The most desired alternative is the one

with the biggest value ofsα,β(S∆(Ai, A
∗)).
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4.3.3 The Interval Neutrosophic MADM Approach Based EDAS

Algorithm 3: EDAS

Steps 1–3.These are the same as Steps 1–3 in Algorithm 1.

Step 4. Determine the average solution according to all alternatives, shown as follows:

AV = (AVj)1×n, (28)

where

AVj =
1
m

m⊕

i=1

r̃ij =
1
m

([
1−

m∏

i=1

(
1− T̃L

ij

)
, 1−

m∏

i=1

(
1− T̃U

ij

)]
,

[
m∏

i=1

ĨL
ij ,

m∏

i=1

ĨU
ij

]
,

[
m∏

i=1

F̃L
ij ,

m∏

i=1

F̃U
ij

])

=





1−

(
m∏

i=1

(
1− T̃L

ij

))1/m

, 1−
(

m∏

i=1

(
1− T̃U

ij

))1/m

 ,



(

m∏

i=1

ĨL
ij

)1/m

,

(
m∏

i=1

ĨU
ij

)1/m

 ,




(
m∏

i=1

F̃L
ij

)1/m

,

(
m∏

i=1

F̃U
ij

)1/m




 . (29)

Step 5. Compute the positive distance from average (PDA) with PDA= (Pij)m×n and the negative distance from
average (NDA) with NDA= (Nij)m×n matrixes according to the type of attributes, shown as follows:

Pij =





max{0, sα,β(rij)− sα,β(AVj)}
sα,β(AVj)

, Cj is benefit attribute,

max{0, sα,β(AVj)− sα,β(rij)}
sα,β(AVj)

, Cj is cost attribute,
(30)

Nij =





max{0, sα,β(AVj)− sα,β(r̃ij)}
sα,β(AVj)

, Cj is benefit attribute,

max{0, sα,β(r̃ij)− sα,β(AVj)}
sα,β(AVj)

, Cj is cost attribute,
(31)

wheresα,β(AVj) andsα,β(r̃ij) are the score functions ofAVj andr̃ij , respectively.

Step 6. Determine the weighted sum of PDA and NDA for all alternatives, shown as follows:

SPi =
n∑

j=1

wjPij , (32)

SNi =
n∑

j=1

wjNij . (33)

Step 7. Normalize the values ofSPi andSNi for all alternatives, shown as follows:

NSPi =
SPi

max
i
{SPi} , (34)

NSNi = 1− SNi

max
i
{SNi} . (35)
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Step 8. Calculate the appraisal scoreASi(i = 1, 2, · · · , m) for all alternatives, shown as follows:

ASi =
1
2
(NSPi + NSNi), (36)

where0≤ ASi ≤ 1.
Step 9. Rank the alternatives according to the decreasing values ofASi. The alternative with the biggestASi is

the best alternative.

5. TWO ILLUSTRATIVE EXAMPLES

In this section, we give two illustrative examples to illustrate the implementation process and availability of the
proposed three approaches.

The examples are the investment selection problem and the assessment of C Programming Language teaching
effect that include subjective weight data and incomplete weight determined information.

5.1 Two Illustrative Examples

Example1 ([29]). Consider that an investment company wants to select an excellent project. There are four possible
alternatives in which to invest, expressed as{A1, A2, A3, A4}, whereA1 is a bookshop,A2 is a chemical plant,A3

is a supermarket, andA4 is a food company. The experts evaluate the alternatives in the following three attributes:
C1 is the earning estimate analysis,C2 is the growth analysis, andC3 is the environmental impact analysis for the
alternatives;C1 andC2 are benefit attributes, whileC3 is a cost attribute. The weight vector of the attribute is given
by w = (0.55, 0.25, 0.2). The four possible alternatives are evaluated according to the above three attributes by INSs,
as shown in the following interval neutrosophic decision matrixR = (rij)4×3 = ([TL

ij , T
U
ij ], [IL

ij , I
U
ij ], [F

L
ij , F

U
ij ])4×3.

The assessments for projects arising from questionnaire investigation to the experts are shown in Table 2.

TABLE 2: The evaluation values of four possible alternatives with respect to the three attributes

C1 C2 C3

A1 ([0.4, 0.5], [0.2, 0.3], [0.3, 0.4]) ([0.4, 0.6], [0.1, 0.3], [0.2, 0.4]) ([0.7, 0.9], [0.2, 0.3], [0.4, 0.5])
A2 ([0.6, 0.7], [0.1, 0.2], [0.2, 0.3]) ([0.6, 0.7], [0.1, 0.2], [0.2, 0.3]) ([0.3, 0.6], [0.3, 0.5], [0.8, 0.9])
A3 ([0.3, 0.6], [0.2, 0.3], [0.3, 0.4]) ([0.5, 0.6], [0.2, 0.3], [0.3, 0.4]) ([0.4, 0.5], [0.2, 0.4], [0.7, 0.9])
A4 ([0.7, 0.8], [0.0, 0.1], [0.1, 0.2]) ([0.6, 0.7], [0.1, 0.2], [0.1, 0.3]) ([0.6, 0.7], [0.3, 0.4], [0.8, 0.9])

Algorithm 4: MABAC

Step 1. The interval neutrosophic decision matrixR = (rij)4×3 = ([TL
ij , T

U
ij ], [IL

ij , I
U
ij ], [F

L
ij , F

U
ij ])4×3 which is

shown in Table 2.
Step 2. Normalize the interval neutrosophic decision matrixR = (rij)4×3 into R̃ = (r̃ij)4×3 by Eq. (19), which

is shown in Table 3.
Step 3. Compute relative weight$j of attributeCj by Eq. (22) as follows:

$1 = 0.4288, $2 = 0.1647, $3 = 0.4066.

Step 4. Calculate the weighted matrixT = (tij)4×3 by Eq. (23), which is shown in Table 4.
Step 5. The BAA G = (gj)1×3 is determined according to Eq. (24); we can get

g1 = ([0.2459, 0.3600], [0.3717, 0.5251], [0.5251, 0.6184]),

g2 = ([0.1143, 0.1587], [0.7076, 0.7954], [0.7645, 0.8413]),

g3 = ([0.3597, 0.4846], [0.8152, 0.8918], [0.7650, 0.8729]).
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Step 6. Calculate the distance matrixD = (dij)4×3 by Eq. (25), which is shown in Table 5.
Step 7. Rank the alternatives byQi(i = 1, 2, 3, 4) as follows:

Q1 = −0.211839, Q2 = 0.142991, Q3 = −0.047243, Q4 = 0.269572.

Hence,A4 > A2 > A3 > A1; i.e., the best alternative isA4.

TABLE 3: The normalized interval neutrosophic evaluation values

C1 C2 C3

A1 ([0.4, 0.5], [0.2, 0.3], [0.3, 0.4]) ([0.4, 0.6], [0.1, 0.3], [0.2, 0.4]) ([0.4, 0.5], [0.7, 0.8], [0.7, 0.9])
A2 ([0.6, 0.7], [0.1, 0.2], [0.2, 0.3]) ([0.6, 0.7], [0.1, 0.2], [0.2, 0.3]) ([0.8, 0.9], [0.5, 0.7], [0.3, 0.6])
A3 ([0.3, 0.6], [0.2, 0.3], [0.3, 0.4]) ([0.5, 0.6], [0.2, 0.3], [0.3, 0.4]) ([0.7, 0.9], [0.6, 0.8], [0.4, 0.5])
A4 ([0.7, 0.8], [0.0, 0.1], [0.1, 0.2]) ([0.6, 0.7], [0.1, 0.2], [0.1, 0.3]) ([0.8, 0.9], [0.6, 0.7], [0.6, 0.7])

TABLE 4: The weighed interval neutrosophic matrixT = (tij)4×3

C1

A1 ([0.1967, 0.2571], [0.5015, 0.5968], [0.5968, 0.6751])
A2 ([0.3249, 0.4032], [0.3726, 0.5015], [0.5015, 0.5968])
A3 ([0.1418, 0.3249], [0.5015, 0.5968], [0.5968, 0.6751])
A4 ([0.4032, 0.4985], [0.0000, 0.3726], [0.3726, 0.5015])

C2

A1 ([0.0807, 0.1400], [0.6845, 0.8202], [0.7672, 0.8600])
A2 ([0.1400, 0.1798], [0.6845, 0.7672], [0.7672, 0.8202])
A3 ([0.1079, 0.1400], [0.7672, 0.8202], [0.8202, 0.8600])
A4 ([0.1400, 0.1798], [0.6845, 0.7672], [0.6845, 0.8202])

C3

A1 ([0.1875, 0.2456], [0.8650, 0.9133], [0.8650, 0.9581])
A2 ([0.4802, 0.6079], [0.7544, 0.8650], [0.6129, 0.8125])
A3 ([0.3871, 0.6079], [0.8125, 0.9133], [0.6890, 0.7544])
A4 ([0.4802, 0.6079], [0.8125, 0.8650], [0.8125, 0.8650])

TABLE 5: The interval neutrosophic matrixD = (dij)4×3

C1 C2 C3

A1 −0.080325 −0.020250 −0.111265
A2 0.032001 0.020334 0.090657
A3 −0.078175 −0.030637 0.061570
A4 0.181568 0.033229 0.054775

Algorithm 5: Similarity measure

Steps 1–3.These are the same as Algorithm 4 in Steps 1–3.
Step 4. Calculate the similarity measureS(Ai, A

∗)(i = 1, 2, 3, 4) by Eq. (27).

S(A1, A
∗) = ([0.400000, 0.516466], [0.386826, 0.503292], [0.446168, 0.603292]),

S(A2, A
∗) = ([0.681317, 0.781317], [0.262633, 0.403292], [0.240658, 0.421975]),

S(A3, A
∗) = ([0.495565, 0.721975], [0.362633, 0.503292], [0.340658, 0.440658]),

S(A4, A
∗) = ([0.724193, 0.824193], [0.260416, 0.360416], [0.303292, 0.419757]).
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Step 5. Each alternative of score functions0.5,0.3(S(Ai, A
∗)) is shown as follows:

s0.5,0.3(S(A1, A
∗)) = 0.692755,

s0.5,0.3(S(A2, A
∗)) = 0.821807,

s0.5,0.3(S(A3, A
∗)) = 0.758357,

s0.5,0.3(S(A4, A
∗)) = 0.836836.

Step 6. Rank the alternatives bysα,β(S(Ai, A
∗))(i = 1, 2, 3, 4) as follows:A4 > A2 > A3 > A1; i.e., the best

alternative isA4.

Algorithm 6: EDAS

Steps 1–3.These are the same as Algorithm 4 in Steps 1–3.

Step 4. Determine the average solution according to all attributes by Eq. (29), shown as follows:

AV1 = ([0.5262, 0.6690], [0.0000, 0.2060], [0.2060, 0.3130]),

AV2 = ([0.5319, 0.6536], [0.1189, 0.2449], [0.1861, 0.3464]),

AV3 = ([0.7087, 0.8505], [0.5958, 0.7483], [0.4738, 0.6593]).

Step 5. Calculate the positive distance from average PDA= (Pij)4×3 and the negative distance from average
NDA = (Nij)4×3 matrices by Eqs. (30) and (31), shown as follows:

PDA = (Pij)4×3




0.0000 0.0000 0.0000
0.0129 0.0322 0.0622
0.0000 0.0000 0.0182
0.0858 0.0384 0.0248


 ,

NDA = (Nij)4×3




0.1006 0.0462 0.1929
0.0000 0.0000 0.0000
0.1006 0.0421 0.0000
0.0000 0.0000 0.0000


 .

Step 6. Determine the weighted sum of PDA and NDA for all alternatives by Eqs. (32) and (33), respectively,
shown as follows:

SP1 = 0.0000, SP2 = 0.0361, SP3 = 0.0074, SP4 = 0.0532,

NP1 = 0.1292, NP2 = 0.0000, NP3 = 0.0501, NP4 = 0.0000.

Step 7. Normalize the values ofSPi andSNi for all alternatives by Eqs. (34) and (35), respectively, shown as
follows:

NSP1 = 0.0000, NSP2 = 0.6788, NSP3 = 0.1392, NSP4 = 1.0000,

NSN1 = 0.0000, NSN2 = 1.0000, NSN3 = 0.6125, NSN4 = 1.0000.

Step 8. Calculate the appraisal scoreASi(i = 1, 2, 3, 4) for all alternatives by Eq. (36), shown as follows:

AS1 = 0.0000, AS2 = 0.8394, AS3 = 0.3759, AS4 = 1.0000.

Step 9. Rank the software development projectsxi according to the decreasing values ofASi as follows:

A4 Â A2 Â A3 Â A1.

Obviously, among them,A4 is the best investment project.
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According to Algorithms 4–6, we can conclude that the optimal results are the same; i.e.,A4 is the most desirable
investment project. Hence, the three algorithms proposed above are effective and feasible.

Example2. Consider that a school wants to select an excellent C Programming Language teacher. The teacher experts
give four feasible excellent teachersAi(i = 1, 2, 3, 4). Suppose that three attributesC1 (the environment of teaching
and studying),C2 (the management of teaching information), andC3 (the empathy and the teaching practice), then
the weight vector of the corresponding attributeCj(j = 1, 2, 3) is w = (0.33, 0.34, 0.33)T . Meanwhile, the attributes
are all benefit attributes. Assume that the teacherAi(i = 1, 2, 3, 4) with respect to the attributeCj(j = 1, 2, 3) is
given by the interval neutrosophic matrixR = (rij)4×3 = ([TL

ij , T
U
ij ], [IL

ij , I
U
ij ], [F

L
ij , F

U
ij ])4×3. The assessments for

teachers arising from questionnaire investigation to the teacher experts are shown in Table 6.

TABLE 6: The interval neutrosophic matrix given by experts

C1 C2 C3

A1 ([0.9, 0.9], [0.1, 0.1], [0.1, 0.2]) ([0.1, 0.2], [0.1, 0.2], [0.1, 0.1]) ([0.1, 0.2], [0.1, 0.2], [0.1, 0.2])
A2 ([1.0, 1.0], [0.1, 0.1], [0.1, 0.2]) ([0.1, 0.2], [0.1, 0.2], [0.1, 0.1]) ([0.1, 0.2], [0.1, 0.2], [0.1, 0.2])
A3 ([1.0, 1.0], [0.1, 0.1], [0.1, 0.2]) ([1.0, 1.0], [0.1, 0.2], [0.1, 0.1]) ([0.0, 0.0], [0.1, 0.2], [0.1, 0.2])
A4 ([1.0, 1.0], [0.1, 0.1], [0.1, 0.2]) ([0.1, 0.2], [0.1, 0.2], [0.1, 0.1]) ([0.0, 0.0], [0.1, 0.2], [0.1, 0.2])

Algorithm 7: MABAC

Step 1. The interval neutrosophic decision matrixR = (rij)4×3 = ([TL
ij , T

U
ij ], [IL

ij , I
U
ij ], [F

L
ij , F

U
ij ])4×3 which is

shown in Table 6.
Step 2. There is no need to normalize the decision matrix based on the above condition.
Step 3. Compute relative weight$j of attributeCj by Eq. (22) as follows:

$1 = 0.1693, $2 = 0.6378, $3 = 0.1929.

Step 4. Calculate the weighted matrixT = (tij)4×3 by Eq. (23), which is shown in Table 7.
Step 5. The BAA G = (gj)1×3 is determined according to the Eq. (24), we can get

g1 = ([0.7537, 0.7537], [0.6772, 0.6772], [0.6772, 0.7615]),

TABLE 7: The weighed interval neutrosophic matrixT = (tij)4×3

C1

A1 ([0.3228, 0.3228], [0.6772, 0.6772], [0.6772, 0.7615])
A2 ([1.0000, 1.0000], [0.6772, 0.6772], [0.6772, 0.7615])
A3 ([1.0000, 1.0000], [0.6772, 0.6772], [0.6772, 0.7615])
A4 ([1.0000, 1.0000], [0.6772, 0.6772], [0.6772, 0.7615])

C2

A1 ([0.0650, 0.1327], [0.2303, 0.3583], [0.2303, 0.2303])
A2 ([0.0650, 0.1327], [0.2303, 0.3583], [0.2303, 0.2303])
A3 ([1.0000, 1.0000], [0.2303, 0.3583], [0.2303, 0.2303])
A4 ([0.0650, 0.1327], [0.2303, 0.3583], [0.2303, 0.2303])

C3

A1 ([0.0201, 0.0421], [0.6413, 0.7331], [0.6413, 0.7331])
A2 ([0.0201, 0.0421], [0.6413, 0.7331], [0.6413, 0.7331])
A3 ([0.0000, 0.0000], [0.6413, 0.7331], [0.6413, 0.7331])
A4 ([0.0000, 0.0000], [0.6413, 0.7331], [0.6413, 0.7331])
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g2 = ([0.1287, 0.2198], [0.2303, 0.3583], [0.2303, 0.2303]),

g3 = ([0.0000, 0.0000], [0.6413, 0.7331], [0.6413, 0.7331]).

Step 6. Calculate the distance matrixD = (dij)4×3 by Eq. (25), which is shown in Table 8.
Step 7. Rank the alternatives byQi(i = 1, 2, 3, 4) as follows:

Q1 = −0.158429, Q2 = 0.067320, Q3 = 0.357334, Q4 = 0.056942.

Hence,A3 > A2 > A4 > A1, i.e., the best C Programming Language teacher isA3.

TABLE 8: The interval neutrosophic matrixD = (dij)4×3

C1 C2 C3

A1 −0.143660 −0.025147 0.010378
A2 0.082089 −0.025147 0.010378
A3 0.082089 0.275245 0.000000
A4 0.082089 −0.025147 0.000000

Algorithm 8: Similarity measure

Steps 1–3.These are the same as Algorithm 7 in Steps 1–3.
Step 4. Calculate the similarity measureS(Ai, A

∗)(i = 1, 2, 3, 4) by Eq. (27).

S(A1, A
∗) = ([0.235388, 0.318464], [0.100000, 0.183077], [0.100000, 0.136165]),

S(A2, A
∗) = ([0.252311, 0.335387], [0.100000, 0.183077], [0.100000, 0.136165]),

S(A3, A
∗) = ([0.807587, 0.807587], [0.100000, 0.183077], [0.100000, 0.136165]),

S(A4, A
∗) = ([0.233070, 0.296905], [0.100000, 0.183077], [0.100000, 0.136165]).

Step 5. Each alternative of score functions0.5,0.3(S(Ai, A
∗)) is shown as follows:

s0.5,0.3(S(A1, A
∗)) = 0.723571,

s0.5,0.3(S(A2, A
∗)) = 0.729212,

s0.5,0.3(S(A3, A
∗)) = 0.900458,

s0.5,0.3(S(A4, A
∗)) = 0.719591.

Step 6. Rank the alternatives bysα,β(S(Ai, A
∗))(i = 1, 2, 3, 4) as follows:A3 > A2 > A1 > A4; i.e., the best C

Programming Language teacher isA3.

Algorithm 9: EDAS

Steps 1–3.These arethe same as Algorithm 7 in Steps 1–3.
Step 4. Determine the average solution according to all attributes by Eq. (29), shown as follows:

AV1 = ([1.0000, 1.0000], [0.1000, 0.1000], [0.1000, 0.2000]),

AV2 = ([1.0000, 1.0000], [0.1000, 0.2000], [0.1000, 0.1000]),
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AV3 = ([0.0513, 0.1056], [0.1000, 0.2000], [0.1000, 0.2000]).

Step 5. Calculate the positive distance from average PDA= (Pij)4×3 and the negative distance from average
NDA = (Nij)4×3 matrices by Eqs. (30) and (31), shown as follows:

PDA = (Pij)4×3




0.0000 0.0000 0.0365
0.0000 0.0000 0.0365
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000


 ,

NDA = (Nij)4×3




0.0344 0.2936 0.0000
0.0000 0.2936 0.0000
0.0000 0.0000 0.0401
0.0000 0.2936 0.0401


 .

Step 6. Determine the weighted sum of PDA and NDA for all alternatives by Eqs. (32) and (33), respectively,
shown as follows:

SP1 = 0.0070, SP2 = 0.0070, SP3 = 0.0000, SP4 = 0.0000,

NP1 = 0.1931, NP2 = 0.1873, NP3 = 0.0077, NP4 = 0.1950.

Step 7. Normalize the values ofSPi andSNi for all alternatives by Eqs. (34) and (35), respectively, shown as
follows:

NSP1 = 1.0000, NSP2 = 1.0000, NSP3 = 0.0000, NSP4 = 0.0000,

NSN1 = 0.0098, NSN2 = 0.0396, NSN3 = 0.9604, NSN4 = 0.0000.

Step 8. Calculate the appraisal scoreASi(i = 1, 2, 3, 4) for all alternatives by Eq. (36), shown as follows:

AS1 = 0.5049, AS2 = 0.5198, AS3 = 0.5202, AS4 = 0.0000.

Step 9. Rank the software development projectsxi according to the decreasing values ofASi as follows:

A3 Â A2 Â A1 Â A4.

Obviously, among themA3 is the best C Programming Language teacher.

By means of the Algorithms 7–9, we can find that the final results are the same; i.e.,A3 is the best C Programming
Language teacher. Hence, the three algorithms discussed above are effective and feasible.

6. COMPARISON OF THE NEWLY PROPOSED APPROACHES WITH THE OTHER APPROACHES TO
INTERVAL NEUTROSOPHIC SET BASED DECISION-MAKING

6.1 Comparison of the Newly Proposed Three Approaches with Their Own Advantages

(1) Comparison of computational complexity

We know that Algorithms 1 and 3 will consume more computational complexity than Algorithm 2, espe-
cially in Step 4 (Algorithm 3) and in Step 5 (Algorithm 1). So if we take the computational complexity into
consideration, Algorithm 2 is given priority to make decisions.
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(2) Comparison of discrimination

Comparing the results in Algorithms 1 and 2 with Algorithm 3, we can find that the results of Algorithm 2
are quite close and vary from 0.6927 to 0.8218 and 0.7196 to 0.9004. These results of decision values cannot
clearly distinguish; in other words, the results obtained from Algorithm 2 are not very convincing (or at
least not applicable). That is to say, the Algorithm 1 has a clear ability to distinguish. So if we take the
discrimination into consideration, the Algorithms 1 and 3 are given priority to make decisions.

6.2 Comparison of the Newly Proposed Three Approaches with Other Approaches

In order to further verify the practicability of the proposed algorithms based on the MABAC, EDAS, and similarity
measure of INSs, a comparison study with some existing algorithms is now bulit. The decision data are adopted from
Tian et al. [27] and Example 2.

6.2.1 A Comparison Analysis from Tian [27]

We take the example adopted from Tian [27], and are the interval neutrosophic decision matrix is shown in Table 9.
The corresponding weight information isW = (0.15, 0.15, 0.375, 0.325).

If the existing methods in Ye [12,25,30,37], Zhang et al. [24,28,34], Chi and Liu [56], Liu and Tang [31], Liu
and Wang [32], Tian et al. [27], and the proposed three methods are applied to solve the MADM problem in Tian et
al. [27], then the results can be achieved and shown in Table 10.

From the above results shown in Table 10, we can know that the ranking order of the four alternatives and optimal
alternative are in agreement with the results of [12,24,25,27,28,30,32,34,37,56]. For Liu and Tang [31], the optimal
alternative may be different whenλ is assigned different values. That is to say, it will not obtain a convincing result
when the experts of the corresponding field make decisions.

6.2.2 A Comparison Analysis from Example 2

If the existing methods in Ye [12,25,30,37], Zhang et al. [24,28,34], Chi and Liu [56], Liu and Wang [32], Tian et al.
[27], and the proposed three methods are applied to solve the MADM problem in Example 2, then the results can be
obtained and are shown in Table 11.

From the above results shown in Table 11, we can know that the final ranking of the four alternatives and
optimal alternative are in agreement with the results of [12,25,27,28,30,32,34,37,56]. For Zhang et al. [24], the final
ranking and the optimal alternative cannot be obtained due to their equal values discussed in Definition 9. The optimal
alternative isA2 in [24], which is different from some existing methods and our three Algorithms. It is unreasonable,
which we have discussed in Definition 10.

TABLE 9: The interval neutrosophic matrix adopted from [27]

C1 C2

A1 ([0.7, 0.8], [0.5, 0.7], [0.1, 0.2]) ([0.6, 0.8], [0.4, 0.5], [0.3, 0.3])
A2 ([0.6, 0.8], [0.4, 0.6], [0.1, 0.3]) ([0.5, 0.7], [0.3, 0.5], [0.1, 0.3])
A3 ([0.4, 0.6], [0.2, 0.2], [0.2, 0.4]) ([0.6, 0.7], [0.4, 0.6], [0.3, 0.4])
A4 ([0.4, 0.5], [0.5, 0.6], [0.4, 0.4]) ([0.5, 0.6], [0.3, 0.4], [0.4, 0.5])
A5 ([0.6, 0.7], [0.4, 0.5], [0.4, 0.5]) ([0.8, 0.9], [0.3, 0.4], [0.1, 0.2])

C3 C4

A1 ([0.8, 0.8], [0.4, 0.6], [0.1, 0.2]) ([0.7, 0.9], [0.3, 0.4], [0.2, 0.2])
A2 ([0.6, 0.6], [0.2, 0.3], [0.4, 0.5]) ([0.6, 0.8], [0.4, 0.4], [0.2, 0.4])
A3 ([0.7, 0.8], [0.6, 0.7], [0.1, 0.2]) ([0.5, 0.6], [0.5, 0.6], [0.2, 0.3])
A4 ([0.6, 0.7], [0.7, 0.8], [0.2, 0.3]) ([0.8, 0.9], [0.3, 0.4], [0.1, 0.2])
A5 ([0.7, 0.8], [0.5, 0.6], [0.1, 0.2]) ([0.5, 0.7], [0.5, 0.5], [0.2, 0.3])
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TABLE 10: A comparison study with some existing methods

Method Final ranking Optimal alternative
Ye [30] A1 Â A5 Â A2 Â A3 Â A4 A1

Liu and Tang [31]
λ = 0.1 A5 Â A1 Â A2 Â A4 Â A3 A5

λ = 3.2 A1 Â A5 Â A2 Â A4 Â A3 A1

Liu and Wang [32] A1 Â A5 Â A2 Â A3 Â A4 A1

Ye [12] A1 Â A5 Â A2 Â A3 Â A4 A1

Ye [37] A1 Â A5 Â A2 Â A4 Â A3 A1

Zhang et al. [28] A1 Â A5 Â A2 Â A3 Â A4 A1

Zhang et al. (p = 0.2 andq = 0.1) [34] A1 Â A2 Â {A3, A4, A5} A1

Zhang et al. [24]
Method based on the INWA operator A1 Â A5 Â A2 Â A4 Â A3 A1

Method based on the INWG operator A1 Â A5 Â A2 Â A3 Â A4 A1

Ye [25]
Similarity measure based on the Hamming distanceA1 Â A5 Â A2 Â A4 Â A3 A1

Similarity measure based on the Euclidean distanceA1 Â A5 Â A2 Â A3 Â A4 A1

Chi and Liu [56] A1 Â A5 Â A2 Â A4 Â A3 A1

Tian et al. [27] A1 Â A5 Â A2 Â A3 Â A4 A1

Algorithm 1 A1 Â A5 Â A2 Â A3 Â A4 A1

Algorithm 2 A1 Â A5 Â A2 Â A3 Â A4 A1

Algorithm 3 A1 Â A5 Â A2 Â A3 Â A4 A1

TABLE 11: A comparison study with some existing methods in Example 2

Method Final ranking Optimal alternative
Ye [30] A3 Â A2 Â A1 Â A4 A3

Liu and Wang [32] A3 Â A2 Â A1 Â A4 A3

Ye [12] A3 Â A2 Â A1 Â A4 A3

Ye [37] A3 Â A2 Â A1 Â A4 A3

Zhang et al. [28] A3 Â A2 Â A1 Â A4 A3

Zhang et al. (p = 0.2 andq = 0.1) [34] A3 Â A2 Â A1 Â A4 A3

Zhang et al. [24]
Method based on the INWA operator {A2, A3, A4} Â A1 ∗
Method based on the INWG operator A2 Â A1 Â {A3, A4} A2

Ye [25]
Similarity measure based on the Hamming distanceA3 Â A2 Â A1 Â A4 A3

Similarity measure based on the Euclidean distanceA3 Â A2 Â A1 Â A4 A3

Chi and Liu [56] A3 Â A2 Â A4 Â A1 A3

Tian et al. [27] A3 Â A2 Â A1 Â A4 A3

Algorithm 1 A3 Â A2 Â A4 Â A1 A3

Algorithm 2 A3 Â A2 Â A1 Â A4 A3

Algorithm 3 A3 Â A2 Â A1 Â A4 A3

“∗” presents no sure result.

7. CONCLUSIONS

This paper introduces three new approaches for MADM under an interval neutrosophic environment. First, we define
a new axiomatic definition of interval neutrosophic distance measure and similarity measure. Comparing with the
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existing literature [10,12,18,22], our distance measure or similarity measure can keep more original decision infor-
mation. Later, a novel score function is proposed. Comparing with the existing score functions [31], we can overcome
their drawbacks. Meanwhile, the combined weight model is proposed to solve the weight information which is too
objective [27] or subjective [7,24,25,28,29,37]. Then, three approaches (EDAS, MABAC, similarity measure) are pro-
posed to deal with the real MADM problems. Finally, the effectiveness and feasibility of approaches are demonstrated
by two examples. Meanwhile, a comparison analysis is presented in Tables 10 and 11.

In the future, we shall apply the similarity measure of INSs to other sets [57–73].
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