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In this paper, we define a new axiomatic definition of interval neutrosophic similarity measure, which is presented
by interval neutrosophic number (INN). Later, the objective weights of various attributes are determined via Shannon
entropy theory; meanwhile, we develop the combined weights, which can show both subjective information and objective
information. Then, we present three approaches to solve interval neutrosophic decision-making problems by multi-
attributive border approximation area comparison (MABAC), evaluation based on distance from average solution
(EDAS), and similarity measure. Finally, the effectiveness and feasibility of algorithms are conceived by two illustrative
examples.

KEY WORDS: similarity measure, combined weights, interval neutrosophic set, MABAC, EDAS

1. INTRODUCTION

The intuitionistic fuzzy set (IFS), poineered by Atanassov [1], is an extension of the fuzzy set [2] which can deal
with the lack of knowledge of nonmembership degrees. IFS is summarized by a membership degree and a nonmem-
bership degree, so it can describe the fuzzy character of data more constitutionally and minutely. However, IFSs
can deal only with vague information, but not incongruous information which exists in a real environment. For ex-
ample, when an expert gives the opinion about a certain statement, he or she may say that the possibility that the
statement is true is 0.4, the degree of false statement is 0.5, and the possibility that he or she is not sure is 0.3.
For incongruous information, Smarandache [3] initially presented the neutrosophic set from a philosophical point of
view. A neutrosophic set (NS) is summarized by a truth-membership degree, an indeterminacy-membership degree,
and a falsity-membership degree. It generalizes the concept of the classic set, fuzzy set (FS) [2], and tautological
set [3]. Additionally, with regard to the aforementioned example about an expert statement, it can be expressed as
(0.4, 0.5, 0.3) by NSs. Later, Rivieccio [4] pointed out that a NS is a set where each element of the universe has a
truth-membership, an indeterminacy-membership, and a falsity-membership, and if@esir [, the nonstandard

unit interval. From a scientific point of view, the NS and set-theoretic operators should be specified. Otherwise, it will
be hard to apply in real situations. Hence, Wang et al. [5] proposed a single-valued neutrosophic set (SVNS) which is
a variation of a NS, and also introduced the set-theoretic operators. At present, SVNSs have attracted much attention
and obtained some achievements [6-19].

In fact, sometimes the degree of truth, falsity, and indeterminacy of a certain statement cannot be defined exactly
in the real situations but are denoted by several possible interval values. Hence, Wang et al. [20] proposed the seminal
theory of interval neutrosophic sets (INSs) and presented the set-theoretic operators of INSs. Kraipeerapun and Fung
[21] introduced an ensemble network and interval neutrosophic sets approach to the problem of binary classification.
Kraipeerapun et al. [22] described the integration of neural network ensembles and interval neutrosophic sets using the
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bagging technique for predicting regional-scale potential for mineral deposits as well as quantifying uncertainty in the
predictions. Lupifiez [23] studied some relations between the interval neutrosophic set and its topology. Zhang et al.
[24] proposed some operations and a comparison method for interval neutrosophic numbers (INNs), and applied them
to multiple attribute decision-making (MADM). Ye [25] proposed some similarity measures for INSs, and applied
them to MADM. Sahin and Karabacak [26] gave a system of axioms for inclusion measure of INSs and also developed
a simple inclusion measure for ranking the INSs. Tian et al. [27] established two optimization models to determine
the attribute weights in MADM situations where knowledge regarding the weight information is incomplete and the
attribute values are INN. Zhang et al. [28] proposed an improved weighted correlation coefficient based on integrated
weight for INSs. Zhao et al. [29] presented an interval neutrosophic MADM method based on generalized weighted
aggregation operator. Ye [30] introduced an interval neutrosophic MADM method based on the possibility degree
ranking method and ordered weighted aggregation operators of INNs. Liu and Tang [31] introduced some power
generalized aggregation operators based on INSs. Liu and Wang [32] presented a MADM method based on a interval
a neutrosophic prioritized OWA operator. A time-aware approach using INS to select cloud service was proposed by
Ma et al. [33]. Zhang et al. [34] proposed a MADM method based on ELECTRE IV for INSs. Meanwhile, Liu et al.
[35] also proposed a MADM method based on ELECTRE for INSs. Sahin [36] presented a cross-entropy measure on
INSs. By considering credibility on every evaluation value of attributes in interval neutrosophic decision-making, Ye
[37] proposed two credibility-induced interval neutrosophic weighted operators, and investigated their properties in
detail. Yang et al. [38] generalized a linear assignment method to accommodate the interval neutrosophic sets based
on the Choquet integral. Meanwhile, inspired by soft set theory [39], linguistic set theory [40] and hesitant fuzzy
set theory [41], some extensional models such as interval neutrosophic soft set [42], interval neutrosophic linguistic
set [43,44], and interval neutrosophic hesitant fuzzy set [45,46] are shown. Ye [47] also introduced the concept of
simplified neutrosophic sets (SNSs), which can be described by three real numbers in the real unit interval [0, 1],
and proposed a multiple attribute decision-making method using the aggregation operators of SNSs. Furthermore,
We also introduced the concept of a simplified neutrosophic set (SNS), which is a subclass of a neutrosophic set and
includes the concepts of INS and SVNS, and defined some operational laws of SNSs.

In order to compute the similarity measure of two INSs, we propose a new axiomatic definition of the similarity
measure, which takes the form of INN. Comparing with the existing studies [25,28,48], our similarity measure can
retain more original decision information.

Evaluation based on distance from average solution (EDAS), originally proposed by Ghorabaee et al. [49], is a
new MADM method for inventory ABC classification. It is very useful when we have some conflicting parameters.
The desirable alternative has a smaller distance from the ideal solution and a greater distance from the nadir solution
in these MADM methods. Ghorabaee et al. [50] extended the EDAS method to supplier selection.

The multiattributive border approximation area comparison (MABAC) method is a novel method presented in
[51]. It has a systematic process, simple computation procedure, and sound logic. Inspired by Pythagorean fuzzy sets
[52,53], Peng and Yang [54] applied the MABAC to R&D project selection for obtaining the best project.

Considering that different attribute weights will determine the ranking results of alternatives, we study a new
method to determine the attribute weights by combining the subjective factor with the objective factor. This model is
different from the existing methods, which can be divided into two parts: one is the subjective weighting determination
methods and the other is the objective weighting determination methods, which can be calculated by the Shannon
entropy method [55]. The subjective weighting methods focus on the preference information of the decision-maker
[7,24,25,28,29,37], while they ignore the objective information. The objective weighting does not take the preference
of the decision-maker into account; in other words, the similar methods fail to take the risk attitude of the decision-
maker into account [27]. The function of our model can show both the subjective information and the objective
information. Hence, a novel combined model to obtain attribute weights is proposed.

As far as we know, however, the study of the decision-making problem based on proposed similarity measure,
EDAS, and MABAC methods has not been reported in the existing academic literature. Therefore, it is a glamorous
research topic to apply similarity measure, EDAS, and MABAC methods in decision-making to rank and obtain
the best alternative under an interval neutrosophic environment. Meanwhile, through a comparison analysis of the
existing algorithms, their objective information is executed, and the approach which maintains consistency of its
results is determined.
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The remainder of this paper is organized as follows: In Section 2, we review some fundamental concepts of NS,
SVNS, and INS. In Section 3, a new axiomatic definition of interval neutrosophic similarity measure and distance
measure is investigated. In Section 4, three decision approaches based on MABAC, EDAS, and similarity measure
under interval neutrosophic environment are shown. In Section 5, two illustrative examples are proved to state the
proposed methods. In Section 6, we compare the novel proposed approaches with the existing interval neutrosophic
decision-making approaches. The paper makes a conclusion in Section 7.

2. PRELIMINARIES

In this section, we first recall some basic ideas of NS, SVNS, and INS, and their properties.

2.1 Interval Neutrosophic Set

NS is a portion of neutrosophy, which researches the origin and domain of neutralities, as well as their interactions
with diverse ideational scope [3], and is a convincing general formal framework, which extends the presented sets
[1,2] from a philosophical point of view. Smarandache [3] introduced the definition of NS as follows:

Definition 1 ([3]). Let X be a universe of discourse, with a class of element¥ idenoted byz. A NS B in X
is summarized by a truth-membership functibg(z), an indeterminacy-membership functiég(z), and a falsity-
membership functioFz (x). The functionsTz(z), Iz(x), and Fp(z) are real standard or nonstandard subsets of
J0,1F[. Thatis, Tz (z) : X —]0~, 17|, Ip(x) : X —]0~,1"[,andFp(x) : X —]0, 1.

There is restriction on the sum @% (z), I5(z), andFg (), s00~ < supTz(z)+suplp(z)+supFp(z) < 3*.

As mentioned above, it is hard to apply the NS to solve some real problems. Hence, Wang et al. [5] presented
SVNS, which is a subclass of the NS and mentioned the definition as follows:

Definition 2 ([5]). Let X be a universe of discourse, with a class of elementX idenoted byz. A SVNS N
in X is summarized by a truth-membership functibg (z), an indeterminacy-membership functidég (x), and a
falsity-membership functio’y (). Then a SVNSV can be denoted as follows:

N = {< &, Ti(x), In(a), Fy () >| = € X}, (1)

whereTn (z), In(x), Fx(z) € [0,1] for Vz € X. Meanwhile, the sum of v (z), In(x), and Fx (z) fulfills the
condition0 < Ty (z) + In(z) + Fn(z) < 3. For a SVNSN in X, the triplet(Tn(x), In(x), Fn(x)) is called the
single-valued neutrosophic number (SVNN). For convenience, we can simply us¢T,, I, F,) to represent a
SVNN as an element in the SVNS.

Definition 3 ([20]). Let X be a universe of discourse, with a class of elementX idenoted byz. An INS A
in X is summarized by a truth-membership functiBa(z), an indeterminacy-membership functidn(x), and a
falsity-membership functio’s (). Then an INSA can be denoted as follows:

A={<z,Ta(x),1a(x), Fa(z) >| x € X}. 2
For each point: i X, Ta(x) = [T4(2). TS ()], 1a(2) = [74(2), I§ (0)]. Fa(e) = [Fk (), F¥ (@)] C [0.1], and
0 < TY(z) + I§(z) + F{(z) < 3. For convenience, we can simply use= ([T1,TY], [IL IY], [FE FU])

represent an INN as an element in the INS

Definition 4 ([3]). An INS N is contained in other IN3/, N C M if and only if T4 (z) < Tk (z), T (x) <
Ty (), Iy (2) = Iy (2), 1§ (x) > Iy (), F(2) > Fy (), Fy () > Fyj (@) for Va.

Definition 5 ([24]). Letzy = (1L, T¢], [IE, 1Y), [P, FY)) anda, = ([TF, T, (1}, I§], [FF, F{]) be two INNS,
andA > 0; then the operations for the INNs are defined as follows:

@ Ay = (1-Q-TH 1= Q=T (IO DM (FDY, (FY)M);
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@) 2} = (TN (TN - Q- I)MN1- Q-1 - Q- FP)N1- (1- F)M);

@) e1@® w2 = (T + Ty - TFT3, T + T — TUTY ] (1T + Iy I+ I ] [P« Fy FY + FY]);

@) e1 Qe = ([T{+Ty T +TY ] [If + 1y — 1L 13 I + I3 = I I ], [FE+ Fy — F{ Fy  F + F = F{ FY));

(6) ot = ([F{ FY) [1 - 1Y, 1 If), [T, TT)).
Theorem 1([24]). Letz; = ([TF, 1Y), [IE, IV), [FL, FU)) andxzy = ([TF, TV, [1£, 1Y), [F£, FY]) be two INNS,
andA, A1, A, > 0, then we have

1) 21Px2 = 2P 215

@ r1Qr2 =22 Q 21,

3) AMz1 P x2) = Ax1 P Axy;

@) (11 Q@) = 2} Q23

(5) Mx1 P Aoy = (A1 + A2)z1;

(6) 27" ®ap* = ap* 7.

Definition 6 ([25]). Letazy = ([TL, TV], [IE, 1], [P, FY)) andz, = ((TF, T, [If, 1Y), [F§, F{']) be two INNSs;
then the Hamming distance betweenandz, can be defined as follows:

1
dn(zy, @) = G(ITF =Ty |+ | T =T |+ [ I = I [+ [ =0 [+ [ = Fy |+ P = F ). (9)

For comparing two INNs, Liu and Tang [31] introduced a cosine similarity measure method for an INN.

Definition 7 ([31]). Letx = ([TF, TY], [IX, IV], [FL, FU]) be an INN; then the cosine similarity measure is defined
as follows:
. TE +TY
cos(z,z*) = . 4)
VT + @0+ [0+ (0 + (PO + (F7))
It measures the cosine similarity measure between ([T1,TY],[IL, IV],[F*, FY]) and the ideal solution

r* = ([1,1],[0,0], [0, 0]) for the comparison of INNs. Suppose that two INNs= ([T'F, TV], [IE, IV], [FE, FY))
andxy = ([TF, TV, [IF, 1Y, [FE, FY); if cos(z1, 2*) < cos(wp, 2*), thenxy < xp.

However, we can find some drawbacksof(z, z*) when we compare two INNs.

(1) For two INNsz; andzy, if z1 = ([0,0],[0,0],[0,0]) andz, = ([0, 0], [0, 0], [0,0]), thencos(z1,z*) and
cos(z2, z*) are undefined or insignificant. In this case, one cannot apply it to comparedz,. In fact, if
z1 = ([0,0], [0,0],[0,0]) andx, = ([0, 0], [0,0], [0,0]), thenzs = z.

(2) Fortwo INNsz; = ([0,0],0,0],[1,1]) andz, = ([0, 0], [1,1], [0, Q]), thencos(z1, x*) = cos(z2, z*) = 0.
In fact, z1 # .
We also can find more unreasonable results whgn= T} and7/ = TV, meanwhile, by obtaining the
special values of (IX)? 4 (IV)? + (FL)? + (FP)? = (I¥)? + (IY)? + (FF)? + (FY)?. For example,
z1 = ([0.4,0.5],[0.6,0.8],[0.6,0.7]) andz, = ([0.4,0.5],[0,1],[0.6,0.7]); based on Liu and Tang [31],
cos(x1, x*) = cos(xg, z*), but in fact,z1 # x.

(3) Fortwo INNszy = ([T, TV, [IE, IV], [FE, FY)) andao = ((k* TE kT, [k* I kx IV, [k * B kx
FUN(0 < k < 1), we can know thatos(z1, %) = cos(x2, z*). Butin fact,z; # x».

From the above discussion, it is unreasonable to apply to MADM. In order to solve these disadvantages, we
propose a score function (improved similarity measure) in the following.
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Definition 8. Letz = ([TX,TV], [I%, IY],[F*, FU]) be an INN; then the proposed score functign(z) is defined

as follows: . . P . v

2 TY+T I“+1 Fr+ F

3" T 6 6 ®)
It measures the Hamming similaritt — dy (z, z*)) betweenr = ([TL, TY], [I*, IV], [F£, FU]) and the ideal

solutionz* = ([1, 1], [0, 0], [0, O]) for the comparison of INNs.

8171({1,‘) =

It also brings us to the problem of cases 2 and 3, so we can add two paramatet$ to adjust the results. In
our intuition, we hope that the smaller of thé', 1V] (more indeterminate or inconsistent information) and the bigger
of the[FX, FU] when[T'*, TV] are equal, so the INN is bigger. Hence, we define a better score function as follows:
i (x)_g+TL+TU_aIL+IU_ FEt 4 FY ©)
CPT 3 6 6 6

where0 < 3 < & < 1,0 < s p(x) < 1. Meanwhile, when the equal conditidhy, g (1) = s« (22)), in fact, it
cannot holdz; # z). We can adjust the parametersind 3 to obtain ideal results. In the following section, we set
ax=05p3=03.

Definition 9 ([24]). Letz;(j = 1,2,--- ,n) be a series of the INNs, and = (wy,wp, - ,w,)” be the weight
vector ofz;(i = 1,2,---,n); then an interval neutrosophic weighted averaging (INWA) operator is a mapping
INWA, X™ — X, where

n

INWA (21, 22, -+ ,2p) = @(wjxj)

n n n n n

= 1- H(l_TjL)wjal_ (1_T]‘U)wj s H(If)wJDH(IJU)w] s H(FjL)wj?H(FjU)wj . (7)
j=1 j=1

Jj=1 Jj=1 Jj=1 Jj=1

However, we can see that the INWA operator has drawbacks in some cases, described as follows.

Letz;(j =1,2,--- ,n)be aseries of INNs. If there issuch that:; = ([1, 1], [0, 0], [0, 0]), then based on Eq. (7),
we can have INWAzy, 22, - -+ ,2,) = ([1,1],]0,0],[0,0]). This result may cause counterintuitive phenomena in
MADM. In other words, it only determines hy; to make a decision and the decision information of others can be
neglected.

Moreover, based on Eq. (7), if there is an INN such that= ([T}, TY],[0,0], [0, 0]), the aggregated value
is INWA (21, 22, - -+, x,) = ([T*,TY],]0,0], [0,0]). In other words, the indeterminacy-membership degree and the
falsity-membership degree of aggregated value must be zero. This result may cause counterintuitive phenomena in
some cases.

Hence, it is unreasonable and unsuitable to apply Eq. (7) to aggregate the information in MADM when meeting
the special cases mentioned above. Meanwhile, for interval neutrosophic Hamacher average operators [24], interval
neutrosophic Einstein average operators [24], interval neutrosophic prioritized average operators [32], and interval

neutrosophic power average operators [31], they have the same drawbacks with interval neutrosophic average opera-
tors.

Definition 10 ([24]). Letz;(j = 1,2,--- ,n) be a series of the INNs, and = (w1, wa, -+ ,w,)’ be the weight
vector ofz;(i = 1,2,---,n); then an interval neutrosophic weighted geometric (INWG) operator is a mapping
INWG: X" — X, where

INWG (21, 22, -, 2) = Q) ;" (8)
j=1

=\ (1@ 11| p-11a - )" -1 - 57| j1-11 - £)" - [T - £
i=t = =

Jj=1 Jj=1 Jj=1 Jj=1 Jj=1
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However, we can see that the INWG operator also has drawbacks in some cases, described as follows.

Letz;(j =1,2,--- ,n)beaseries of INNs. If there isuch that:; = ([0, 0], [1,1], [1, 1]), then based on Eq. (8),
we can have INWGeq, 22, -+ ,z,) = ([0,0],[1,1],[1,1]). This result may cause counterintuitive phenomena in
MADM. In other words, it only determines hy; to make a decision and the decision information of others can be
neglected.

Moreover, based on Eq. (8), if there is an INN such that= ([0,0], [IZ, IV], [FE, FV]), the aggregated value
is INWA (21, 22, - -+ ,2,) = (0,0, [[F, IY],[FE, FY]). In other words, the truth-membership degree of aggregated
value must be zero. This result may cause counterintuitive phenomena in some cases.

Hence, it is unreasonable and unsuitable to apply Eqg. (8) to aggregate the information in MADM when meeting
the special cases mentioned above. Meanwhile, for interval neutrosophic Hamacher geometric operators [24], interval
neutrosophic Einstein geometric operators [24], interval neutrosophic prioritized geometric operators [32], and inter-
val neutrosophic power geometric operators [31], they have the same drawbacks with interval neutrosophic geometric
operators.

For solving the above drawbacks, we propose a revised aggregation operator in the following.

Definition 11. Letz = ([TL, TY], [IL, IY], [FE, FU]) be an INN; then

(aa i =G =31 i G -3 1]). W =1 =0

A _
N 7T ’ 1_77—[ ) F_ivF ) IT:7T ’
T A U L é U L 2 U if L 0 U#O (9)
L TV, (15, 1Y), [FE, FY)), it TL 40,
L U L U L U f L
(i =5 g s fire - S r -3 ) w ==
2 2 2
s (I =g a5 1), rrorzo (10)
Q?I:
(%, 1Y), (1%, 1Y), [F*, F7)), if 1L £0,FL 0,
A Al [A A
L U = = =2 = i 7L _ JU _ pL _ U _
(1 -anz-sp.]33] [531]). £ 1h— 1V = Fr = FU g
([ —IITU—I} [ —%HFU—%\ [A,A]), if FL=FU =0,
A ([ITL I,TU} [IILAI } A, FU]) if FL =0, FU +£0,
Tp = 2 (11)
(vl [IL,IU],[FL,FU]), if FL 40,15 +£0,
A Al [A A
L U = = - = H L _ U _ L _ U _
(UT e -al3 3] 33 1]). f b=V = pL—FY —0

whereA is a positive fuzzy number and far less than any nonzeroTV, 1- 1V, FL FU. Thenz% is called the
A-revised interval neutrosophic geometric numberpf5 andz4 are called theA-revised interval neutrosophic
averaging number aof.

Theorem 2. Letx; = ([TF, TV], [IF, IV],[F}, F/]) be a series of INNs¢?, 27, andz% are still INNs.

Proof.
L L L i ition i initi
(1) WhenT} # 0, I;* # 0, andFj* # O, it meets the condition in Definition 3.

(2) WhenT} =0,T/ #0,0orI = 0,1¥ #0,0r F} = 0, F # 0, it meets the condition in Definition 3.
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(3) WhenT} = 0,77 = 0, the revised INNe7: = ([A AL ]| IF — A/2 || IV —A/2 |[| FF —A)2],
| FY — A/21]). Because) is far less than any nonzeid/, FV, thenA+| IV — A/2 | + | FY — A/2 |=
A+TV - A2+ F) —A/2=T + F/ <3 Similarly, whenl[ = 0,1¥ = 0or F} =0, F/ =0, italso
meets the condition in Definition 3.

Based on above analysis, we can concludethat:+, andz4 are still INNs. O

Definition 12. Letx; = ([T}, T/, [IF, I7], [F}, FY1)(j = 1,2, - ,n) be a series of the INNs, then therevised

interval neutrosophic weighted geometric operator (R-INWG) is defined as follows:

n
RANWG(x1, 2z, -, an) = €D (@)™, (12)
j=1

wherew; is the weight ofz; (i = 1,2,--- ,n),w; € [0,1], andZ?:1 w; =1, :ch is the A-revised INN ofz;.

Theorem 3. Letz;(j = 1,2,--- ,n) be a series of the INNs, and = (w1, ws, -+ ,w,)’ be the weight vector
ofz;(i = 1,2,--- ,n); then a revised interval neutrosophic weighted geometric (R-INWG) operator is a mapping
R-INWG: X" — X, where

R-INWG(21, 22, - -+, a0) = ﬁ ((TJL)A)‘” ﬁ ((TJ,U)A)“” | "
1_f{(1_ (IJ'L)A)% 71_11(1— (IJU)A)wj , 1—11(1_ (FjL)A)wj . f[l(l— (F]_U)A)wj

Theorem 4. Letx; = ([T}, T/, [IF, 1Y), [FF, FP])(j = 1,2,--- ,n) be a series of the INNs;; # ([0, 0], [0, 0],
[0,0))( = 1,2,--- ,n) and the aggregation result by Eq.(13)ds= ([TL,TY], [T, IY],[FL, FY]), thenT* and
TY are monotonically increasing whet is monotonically increasing andl, 1Y, F, F” are monotonically de-

. . . . . 7Ty
creasing wher\ is monotonically increasing.

Proof. Divide the possible value into two cases (case 1 and case Z)Ty%enTjU = 0. Case 1 hag; IVNNs which
has revised by Eq.(9) with € my,. Case 2 has, IVNNs which keep original values with € my,. It is obvious that
k14 ko =n.

Based on Eg. (13), we can have

R-INWG(x1, 22, ,xp) = ﬁ((T]L)A>wJ,ﬁ((TjU)A) g ’ 1_ﬁ<1_ (IL)A)wj ’1_12‘[(1_ (IJU)A)U/J ’
i=1 i=1 i=1 i=1
-1 %) =TT D7) | = (| TTam T aEh™. TLaw 11 ™)
L J=1 Jj=1 JEME, JEME, JEME, JEME,
L A I L\ Wi U A ¢ U\ Wj
1= ] (-5 I - a- IT (- -31) I a-1)" ).
L JEME, JjEME, JEM, JEME,
L A v L\Wi U A I U\ Wj
1- I (1—|Fj —2|> 1-rH",1- ] <1—|Fj —2> IT @-Ff)
L JEME, JjEME, JEME, JEME,

For truth-membership functiofl, and lettingA; < Ay, then
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[T a2 I1 @9 I a3 I1 69" = | I1 ar- I1 a2 ) I @9 <o

JEMK, JEMK, JEMK, JEMK, JEMK, JEMEK, JjEmy,

IT ar IT @)™ - 11 a2 1T @)™ =\ 11 ar - II a7 II @)™ <o

JEM, JEME, JEM, JEMK, JEME, JEM, JEMEK,

Hence, we can conclude tHAt andTV are monotonically increasing whexis monotonically increasing. [

For indeterminacy-membership functidnand lettingA; < Ay, then

1- 1 (1—1}—?)1% I a-H" - |1- ] <1_|1].L_A22>wj 1 (a-15)"

jemkl jEmk,z jEmkl jEmkz
IAw; i I Az wy . Al wy
< T - | T (-1 -50) =TT (1= -5
JEME, | JE€MEky JEmMpy

(A1, Ay are real numbers and far less than any nonZgrioe., I; > A1, I; > Ap)

<TI0 (-0+%) - I (-0+3) | 20

JEME, S JEMR,

1- 1 (1—|I]U—A21>WJ IT @a-1H™ —1- ]I (1—|I]U_A22>wj [T @-1)"

jemkl ijkz ijkl j€mk2
w; Ap \" AL\
< T =) | TT (- =53) - I1 (- - 3)
JEME, | €M, JEME,
< II - I (1—I§]+A22> - 11 (1—IJU+A21> | >0
JEME, | JE€EMEky JjeEmMpy

Hence, we can conclude thE_){t andI]U are monotonically decreasing whénis monotonically increasing.

Similarly, for falsity-membership functio#’ and lettingA; < Ay, then we can conclude th&t" and I\ are
monotonically decreasing whek is monotonically increasing. In this paper, we get= 0.0001

Definition 13. Letx; = ([T}, T/, [IF, I7], [F}, FY1)(j = 1,2, -- ,n) be a series of the INNs, then therevised

interval neutrosophic weighted averaging (R-INWA) operator is defined as follows:
R-INWA (21,22, -+, 2) = @D wjaf, (14)
j=1

wherew; is the weight ofc; (i = 1,2,--- ,n),w; € [0,1], and}"7_; w; = 1, 25 is the A-revised INN ofz;.

Theorem 5. Letz;(j = 1,2,--- ,n) be a series of the INNs, and = (w1, ws, -+ ,w,)’ be the weight vector
of z;(¢ = 1,2,--- ,n); then a revised interval neutrosophic weighted averaging (R-INWA) operator is a mapping
R-INWA, X™ — X, where
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RINWA 2 ) = | [T (1 00)%) 7 TT (- 0)%) 7 |
[ (0H%) ™ T0(0*)" | T (e*) ™ T | ) 1

Theorem 6. Letx; = ([T}, T/, [IF,1V], [FF, FP])(j = 1,2,--- ,n) be a series of the INNs;; # ([0, 0], [0, 0],

777
[0,0]) (j = 1,2,---,n) and the aggregation result by Eq. (15)ds= ([TX,TY],[I*, 1Y],[FL, FY]); then Tt
and T are monotonically decreasing whekis monotonically increasing anél", I, I/, F’ are monotonically
increasing whemn\ is monotonically increasing.

3. ANEW INTERVAL NEUTROSOPHIC DISTANCE MEASURE AND SIMILARITY MEASURE

Definition 14. Let N1, N,, andN3 be three INSs oiX . A distance measuB? ( Ny, N,) is a mappingD?, INS(X) x
INS(X) — INN, possessing the following properties:

(1) DA(N1, N,) is an INN;

(2) DA(N1, Np) = ([0, 0], [1, 1], [1,1]), if Ny = Np;

(3) DA(Ny, N2) = DA(Na, Ny);

(4) If Ny € N, C N3, thenD? (N1, No) € D?(Ny, N3) and DA (N, N3) € D?(Ny, N3).

Theorem 7. Let N; and N, be two INSs; theiD> (N;, N},) is a distance measure.

n n
DA(Ni,Ni) = | | Y wymin{| T; =T || T — T 1}, wimax{| T) = T5 || T = T¥ [} |
j=1 j=1

1= wymax{| 15— 1fy || 15 = 107 |}, 1= Jwymin{| 15 — 1% || I — I |} |
j=1 j=1

1—ijmax{|Fi§—F,fj || FY — F \},1—ijmin{|F£—Fij LIEY—F2 3 (16)
L j=1 j=1
wherew; is the weight of thgth INN.

Proof. In order for D (N;, N},) to be qualified as a sensible distance measure for INSs, it must satisfy (1)—(4) of
axiomatic requirements.

(1) Since
0< > wmin{| T} - Tk |,| T = TG [} <Y wymax{| T); = T || T - Tf |} < 1,

j=1 j=1

n n
0< 1= Y wymax{| 15 — 1f; |1 15— 1, [} < 1= Y wymin {| 15— 1§y .| 15 1 [} <1
j=1 j=1
0<1-Y wmin{| F} - F || F - Fj |} <1-Y w;max{| F - F5 || FY - F |} < 1,
j=1 j=1

soD?(I;, I;) is an INN.

(2) Necessity:
SinceDA(N;, Ni) = ([0,0], [1,1], [1,1]), we have
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Zw]m|n{|
1- ijmaxﬂ

— I |

~TE |, -1 |} =0, ijmax{|

1] -1 =1, 1—ijmin{\
j=1

Peng & Dai

~TE || T = T5 |} =0,

I = I | I = I 1} = 1

n
1—ijmax{\ FL—FL || FY -FJ |} =1, 1—ijmin{\ FL—FL | FY-FJ |} =1
Jj=1 j=1
Based on the randomicity f;, we can haved’; = T, T)) = T\, I = I, 1T = I, Ffy = FL Bl =
F forvj.
Hence,N; = N,
Sufficiency:
SinceN; = Ny, we havel}; = TS, T = T\, Ih = 1t I} = If, s = K5 F = .
Furthermore,
> wimin{| T - T || T - T |} =0, ijmaxﬂ T~ 1Y |} =0,
=1
! n
1= wymax{| I — 1} || 15 - I} |} = 1, 1—ijmin{\ I =1k 19 -1 |} =1,
Jj=1 j=1

Fig || F

1= wymax{| Ff; -
j=1

Hence,DA(N;, Ny) =
(3) Itis straightforward.

(0,0, [1,1], [1,2]).

~FL =1 1= wmin{| F} -

FELIFY -F 1} =1

j=1

(4) If N1 C Na C N, thenVj, Ti; < T < T, Ty, < Ty, < T4, If; > I35 > Iy, If; > I3 > I, FE >

L L U U U
Fy; > Fg;andFy; > Fy; > Fy;.

Hence,| T — T |<| T — Ty ||| T4) — T3 |<| T4 — T3 || I — Iy |2 I — 13 |, | 1T — 15 >
I, =I5 |, | Ff — Fgp |2 Ff — Fg3 || Ffj — ) |2| F{] - Fyj |.
Furthermore,
> wymin {| T — T35 |, | T) = T35 |} < 3 _wymin{| T = T5; |,| Ty} = T3] |}
j=1 j=1
n n
> wimax{| T = Ty || Tj = T3 |} < > Jwymax{| Tif — T || Ty — T3 |}
j=1 j=1
1= wymax{| I, — Iy |, | If; = 15, |} > 1= wymax{| I}; — I3; |, | I{; — I} |},
j=1 j 1
1-— Zw]mmﬂ[l] |- >1- ijmln{Hl] IEAND A AL
j 1
1—ijmax{\ Fl—Fy || F - F |} > 1—ijmax{| Fh—Fg || F] - FY |},
j=1 =1
JTL Jn
1= wymin{| B — Fj ||| P — F5 [} > 1> w;min{| Ff; — B || F{] — F3] |}
= ~
ConsequentlyD? (N1, No) € D?(Ny, N3).
Slmllarly, DA(NQ,N3) DA(Nl,Ng). O
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Definition 15. Let N1, N,, and N3 be three INSs onX. A similarity measureS® (N, N,) is a mappingS4,
INS(X) x INS(X) — INN, possessing the following properties:

(1) S2(Ny, Ny)is an INN;

(2) SA(Ny, Np) = ([1,1],[0,0],[0,0]), if Ny = N;

(3) SA(Ny1, N2) = SA(No, Ny);

(4) If Ny C N, C N3, thenS2(Ny, N3g) € S2(Ny, N,) andS2 (Ny, N3) € S2(Na, N3).
Theorem 8. Let N; and N, be two INSs; thei$” (V;, Ny,) is a similarity measure.

SANi, N) = | [1=> wymax{| T = T5 |, | T = T |}, 1= wmin{| T =75 || TS - T [},
j=1 j=1

i n n
Y wymin{| I — 1 [ I = 15 1} Y wymax{| I — 1 || 15 — I 1}
j=1 j=1

> wimin{| F; = F5 || B =BG 1} Jwmax{| B —F5 [ | FY - FG 1} ], @)
j=1 j=1

wherew; is the weight of thegth INN.
Especially, for any two INNs; andz,, the similarity measure between = ([T, TV, [IE, IV], [FL, FF))
andz, = ([TF, TV, [I}, 1Y), [F¥, FY]) is defined as follows:
SAWNi, Ni) = ([L=max{| Tf = Ty || T = T35 |}, 1-min{| T — Ty || T¥ T3 |}],
(min{| I{ — 13 |,| I{ = 17" |} ,max{| I{ — Iy |,| I{ = I3 I}],
min{| Ff — Ff |,| FY — F{ |} ,max{| F{ — Fy |,| FY — F{ |}]). (18)
If 21 = x5, thenS? (z1,22) = ([1,1],[0,0], [0, 0]), i.e., the similarity is the biggest; if; = ([1, 1], [0, 0], [0,0]),
T2 = ([Oa O]a [17 1]7 [17 1]) orry = ([Oa O]a [1a 1]7 [17 1])' T2 = ([17 1]7 [05 0]5 [Oa 0])! thenSA(Il,Ig) = ([ 70 ) [ 71}7
[1,1]), i.e., the similarity is the smallest.

Based on the above Definitions 14 and 15, and Theorems 7 and 8, a direct argument proves the following propo-
sition.
Proposition 1. Let N; and N, be two INSs; then
(1) S2(Nyi, Ni) = S2(N; N Ny, N; U Ny.);
(2) SA(NZ', N; N Nk) = SA(Nk, N; U Nk),
(3) SA(N;, N; UNy,) = S2(Ny, N; N Ny);
(4) DA(N;, Ni,) = DA(N; N Ni, N; U Ny);
(5) DA(NZ‘, N; N Nk) = DA(Nk, N; U Nk),
(6) D?(N;, N; UNy) = DA(Ng, N; 0 Ny).

4. THREE ALGORITHMS FOR INTERVAL NEUTROSOPHIC DECISION-MAKING
4.1 Problem Description

Let A = {A1, Ay, ..., A, } be a discrete set of alternativ€s = {C1, Cy, ..., C), } be a series of attributes, andV =

{w1, w2, ..., w, } be weight vector assigned for the attributes by the decision-makersuyith [0, 1], %%_;w; = 1.

Assume that the evaluation of the alternativewith respect to attribut€’; is represented by interval neutrosophic

matrix R = (rij)mxn = ([T, TH), (L5, 151 [FL FE D mxn (i = 1,2,--- ;m; j = 1,2,--- ,n). The values united

with the alternatives for MADM problems can be shown in Table 1.
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TABLE 1: The interval neutrosophic MADM matrix

h [ . c,
Ay r11 T12 e T1n
A T21 722 e T2n
Am Tm1 Tm2 e Tmn

4.2 The Method of Computing the Combined Weights
4.2.1 Determining the Objective Weights: Shannon Entropy Method

Shannon entropy [55] evaluates the expected information content of a certain message. The degree of uncertainty
in information can be measured using the entropy concept. The information entropy idea can regulate the decision
making process because it is able to measure existent contrasts between sets of data and thus clarify the intrinsic
information for the decision-maker.

The following procedure should be employed to determine integrated weights through Shannon entropy under
an interval neutrosophic environment.

Step 1. Normalize decision matri®® = (7i;)mxn iN0 B = (73 mxn = (T, TY), T4, 1), [FE, FY])mxn by

137 130 71 w7
Eq. (19):
N ([T, 5, 1, 151, IFE, FHY, C; is benefit attribute
i = L U U L L U i i (19)
([Fi, Fij 11— 15,1 = 3], [T;3,T55]),  Cjis cost attribute

Step 2. Compute the score function, g (7;;) of 7;(i = 1,2,--- ,m;j =1,2,--- ,n) by Eq. (6).
Step 3. Normalize the score functiosy, s (7i;) by Pij = sa,p(Tij) /> imq S, p (Tij)-

Step 4. Calculate the entropy measure of the score function of the normalized decision matrix as follows:
1 m
Ej = _MZ;PL] IHPZ‘]'. (20)

Step 5. Obtain objective weighta; as follows:

1-FE;
== (21)
Zj:l(l - Ej)

(Uj:

4.2.2 Determining the Combined Weights: The Linear Weighted Comprehensive Method

Suppose that the vector of the subjective weight, given by the decision-makers direetly i&ws, wy, - -+ ,wy },

where >~ w; = 1,0 < w; < 1. The vector of the objective weight, computed by Eq. (19) directlyvis=
j:

{wi, wz, -+, wy}, Wherez _Lw;=10<w; <1
Therefore the vector of the combined weight= {w1, w>, - - - , w, } can be defined as follows:
w; = Aw; +(1—7\)wj, (22)

where) is the key degree (based on the real decision cases; in this paperwe §5), Z _,wj=10<w; <1

The objective weight and subjective weight are aggregated by the linear Welghted comprehensive method. Ac-
cording to the addition effect, the larger the value of the subjective weight and the objective weight, the larger the
combined weight is, or vice versa. At the same time, we can obtain that Eq. (22) overcomes the limitation of only
considering either subjective or objective factor influence. The advantage of Eq. (22) is that the attribute weights and
rankings of alternatives can show both subjective information and objective information.
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4.3 Three Interval Neutrosophic Approaches in MADM
4.3.1 The Interval Neutrosophic MADM Approach Based MABAC

The MABAC is a new MADM method presented in [49]. Due to its straightforward computation procedure and the
steadiness (consistency) of solution, the MABAC method is a particularly practical and credible tool for decision-
making. In this subsection, a modified MABAC method within the interval neutrosophic environment is introduced
to help decision-makers.

Algorithm 1: MABAC

Step 1.

Step 2.

Step 3.
Step 4.

Step 5.

Step 6.

Step 7.

Identify the alternatives and attributes, and obtain the interval neutrosophic meateX(r;;)mxn (i =
1,2,---,m;5=1,2,--- ,n)which is shown in Table 1.

Elorr(wgl;ze decision matri®® = (7;;)mxn iNt0 R= (Fij)mxn = ([ng,T[]f] [IZLy,Ig] [Flg,FU])mxn by
q. .

Compute relative weightr; of attributeC; by Eq. (22).
Compute the weighted matriX = ( ¢;;)mx» by EQ. (23).

ti; ({T’LT’U} [I’LI’U} {F'LF’U})zwj?ij

LV LY LY

(= (7)o (- 7) L) 7 (1) 7L (E) T (7)) e
Compute the border approximation area (BAA) matix= (g;)1x». The BAA for each attribute is ob-
tained by Eqg. (24).

g5 = [tt)m = (

i=1

ll—ﬁ(l—F{jL) 1- H(l F'U) D (24)

m m

)" )| iy Tl

i=1 i=1 i=1 i=1

Reckon the distance matri® = (d;;)mxn DY EQ. (25).

dn(tij, 95), if tij > gj,
dij = O, If tij = gj, (25)
—dn(tij,95), 1t tij <gj,

where distance measudg is defined in Eq. (3).

Especially, alternatived; will pertain to the BAA (G) if d;; = 0, upper approximation are@G") if
d;; > 0, and lower approximation are& ) if d;; < 0. The upper approximation ar¢&'") is the area
which includes the ideal alternatied™) while the lower approximation are@ ) is the area which
includes the anti-ideal alternativel ~) (see Fig. 1, [51]). For choosing alternatide as the best from the
set, there is need of as many attributes as possible pertaining to the upper approxim@ie area

Rank the alternatives b@;(i = 1,2,--- ,m). The most desired alternative is the one with the biggest
value of(Q;.
szzd’tj7 22172,,771,]:1,27777/ (26)
j=1
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FIG. 1: Exhibition of the uppe(G™), lower (G~), and borde(G') approximation areas

4.3.2 The Interval Neutrosophic MADM Approach Based Similarity Measure

In this section, we present a novel method for solving the MADM problem by the proposed similarity measure
between INSs. The concept of ideal point has been used to help obtain the best alternative in the decision process. Al-
though the ideal alternative does not exist in real problems, it does provide a useful theoretical construct against which
to appraise alternatives. Therefore, we define the ideal alterndttias the INNa = ([(T)%, (T*)V], [(1*)*, (I*)Y],
[(F*)E, (F*)V]) = (11,1],[0,0],[0,0]) for V.

Hence, by applying Eq. (17), the proposed similarity measiiréoetween an alternativé; and the ideal alter-
native A* represented by the INSs is defined by

SA(4;, A7) = |1- Zw]max{l — ()Y} 1 Zw]mm{l VLT = ()71},
ijmm{l — (I LIS = (I, ngmax{l — (I, I = ()71},

Zwym'n{l —(FO)FLIF, ) 1Y ngmax{l FE L FG = ()Y [}

n
_ 7L U
= E :w] zgaE w; T |, E wJIij’E w;ili5 |, E wj ZJ’E w; F, . (27)
j=1 j=1 j=1 j=1

Algorithm 2: Similarity measure

Steps 1-3.There are the same as Steps 1-3 in Algorithm 1.

Step 4. Calculate the similarity measus (A;, A*)(i = 1,2,--- ,m) by Eq. (27).

Step 5. Compute each alternative of the score functigry (SA(Ai, A*)) by Eq. (6).

Step 6. Rank the alternatives by, B(SA(AZ,A*))(Z = 1,2,--- ,m). The most desired alternative is the one
with the biggest value of 5 (52 (A;, A%)).
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4.3.3 The Interval Neutrosophic MADM Approach Based EDAS

Algorithm 3: EDAS

Steps 1-3.These are the same as Steps 1-3 in Algorithm 1.
Step 4. Determine the average solution according to all alternatives, shown as follows:

s )
m 1/m m 1/m m 1/7;:1 ml:l 1/m
()~ )] ) ()]
=1

1= =1 =1

m 1/m m 1/m
(H ﬁL) : (H fﬁ) : (29)
i=1 i=1

Step 5. Compute the positive distance from average (PDA) with PBAP;; ), «» and the negative distance from
average (NDA) with NDA= (NN;;)..x» matrixes according to the type of attributes, shown as follows:

where

m m

i=1 i=1

m m
| [H Hﬂ
=1

i=1

MaX{0, s (rig) = S""B(Avj)}, C; is benefit attribute
P = sa,p(AV)) (30)
ij AV — -
Max(0, 5o.p (AV5) 5“75(7"”)}7 C; is cost attribute
sa,p(AV))
Max{0, sa.p (AV;) — S“’E’(rij)}, C; is benefit attribute
Nii — s (AV5) (31)
’ M0, Socp (T) — 5. (AV))} C; is cost attribut
» Cj e
Sa,p(AV))
wheresy g (AV;) andsy g (7;;) are the score functions ofV; andr;;, respectively.
Step 6. Determine the weighted sum of PDA and NDA for all alternatives, shown as follows:
SPZ' = ZUJ]'PU, (32)
j=1
j=1
Step 7. Normalize the values of P; and.S N; for all alternatives, shown as follows:
SP;
NSP,= ————, 34
S max{SP;} (34)
SN;
NSN; =1— ————'——. 35
s max{ SN, } (35)
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Step 8. Calculate the appraisal scass; (i = 1,2, - - - ,m) for all alternatives, shown as follows:

1

where0 < AS; < 1.

Step 9. Rank the alternatives according to the decreasing valugsSgf The alternative with the biggests; is
the best alternative.

5. TWO ILLUSTRATIVE EXAMPLES

In this section, we give two illustrative examples to illustrate the implementation process and availability of the
proposed three approaches.

The examples are the investment selection problem and the assessment of C Programming Language teaching
effect that include subjective weight data and incomplete weight determined information.

5.1 Two lllustrative Examples

Examplel ([29]). Consider that an investment company wants to select an excellent project. There are four possible
alternatives in which to invest, expressed{als, A,, A3, A4}, whereA; is a bookshopA; is a chemical plantd;

is a supermarket, and, is a food company. The experts evaluate the alternatives in the following three attributes:
C1 is the earning estimate analysis; is the growth analysis, an@s is the environmental impact analysis for the
alternatives{”; andC> are benefit attributes, whil€} is a cost attribute. The weight vector of the attribute is given

by w = (0.55,0.25,0.2). The four possible alternatives are evaluated according to the above three attributes by INSs,
as shown in the following interval neutrosophic decision maltix (ri;)axs = ((T5, T, (I}, 15, [FL, FY])axa.

The assessments for projects arising from questionnaire investigation to the experts are shown in Table 2.

TABLE 2: The evaluation values of four possible alternatives with respect to the three attributes
C, C, Cs

A; | ([0.4,05],[0.2,0.3],0.3,0.4]) | ([0.4,0.6],]0.1,0.3],[0.2,0.4]) | ([0.7,0.9],[0.2,0.3], [0.4,0.5])
A, | ([0.6,0.7],[0.1,0.2],[0.2,0.3)) | ([0.6,0.7],[0.1,0.2],(0.2,0.3]) | ([0.3,0.6],(0.3,0.5],[0.8,0.9])
As | (j0.3,0.6],[0.2,0.3],[0.3,0.4)) | ([0.5,0.6],[0.2,0.3],(0.3,0.4]) | ([0.4,0.5],(0.2,0.4],[0.7,0.9])
A, | ([0.7,0.8],[0.0,0.1],(0.1,0.2]) | ([0.6,0.7],]0.1,0.2],[0.1,0.3]) | ([0.6,0.7],[0.3,0.4], [0.8,0.9])

Algorithm 4: MABAC

Step 1. The interval neutrosophic decision matik = (ri;)sxs = (1%, TS, [0, 15, [FE,
shown in Table 2.

Step 2. Normalize the interval neutrosophic decision maffix= (r;;)axs into R = (735 )ax3 by Eq. (19), which
is shown in Table 3.

Step 3. Compute relative weighty; of attributeC; by Eq. (22) as follows:

w1 = 0.4288 wy = 0.1647, w3 = 0.4066

Step 4. Calculate the weighted matrik = (¢;;)ax3 by Eq. (23), which is shown in Table 4.
Step 5. The BAA G = (g;)1x3 is determined according to Eq. (24); we can get

g1 = ([0.24590.3600, [0.3717,0.5251, [0.5251,0.6184),

g2 = ([0.1143 0.1587, [0.7076 0.7954, [0.7645 0.8413),
gs = ([0.3597,0.4846, [0.8152 0.891§, [0.7650 0.8729).

Fg])4><3 which is

International Journal for Uncertainty Quantification



Algorithms for Interval Neutrosophic Multiple Attribute Decision-Making 411

Step 6. Calculate the distance matriX = (d;;)ax3 by Eq. (25), which is shown in Table 5.
Step 7. Rank the alternatives b@;(i = 1,2, 3,4) as follows:

Q1= —0.211839 Q, = 0.142991 Q3 = —0.047243 Q4 = 0.269572

Hence, A4 > A, > Az > Ay i.e., the best alternative i4,.

TABLE 3: The normalized interval neutrosophic evaluation values

C: C> Cs
A; | ([0.4,0.5],[0.2,0.3],0.3,0.4]) | ([0.4,0.6],]0.1,0.3,[0.2,0.4]) | ([0.4,0.5],[0.7,0.8], [0.7,0.9])
A, | ([0.6,0.7],[0.1,0.2],0.2,0.3]) | ([0.6,0.7],(0.1,0.2],[0.2,0.3]) | ([0.8,0.9],[0.5,0.7],[0.3,0.6])
A; | ([0.3,0.6],[0.2,0.3],0.3,0.4]) | ([0.5,0.6],(0.2,0.3,[0.3,0.4]) | ([0.7,0.9],[0.6,0.8], [0.4,0.5])
A, | (j0.7,0.8],]0.0,0.1],[0.1,0.2)) | ([0.6,0.7],[0.1,0.2],(0.1,0.3]) | ([0.8,0.9],(0.6,0.7],[0.6,0.7))

TABLE 4: The weighed interval neutrosophic matlix= (t;;)ax3
(&1
([0.1967 0.2571},[0.5015 0.5964, [0.5968 0.6751))
([0.3249 0.4034,[0.3726 0.5015, [0.5015 0.5968)
As ([0.1418 0.3249, [0.5015 0.5964, [0.5968 0.6751))
([0.4032 0.4984, [0.0000Q 0.3724, [0.3726 0.5019)
C,

A, | ([0.08070.1400, [0.6845 0.8202, [0.7672 0.860Q)
A, | ([0.14000.1799,]0.6845 0.7672, [0.7672 0.8203)
A; | ([0.10790.140Q, [0.7672 0.8202, [0.8202 0.860Q)
A, | ([0.14000.1799,[0.6845 0.7672, [0.6845 0.8203)

Cs
([0.18750.2456, [0.8650 0.9133, [0.8650 0.9581)
([0.4802 0.6079, [0.7544 0.8650, [0.6129 0.8125)

As | ([0.38710.6079, [0.8125 0.9133, [0.6890 0.7544)
([0.4802 0.6079, [0.8125 0.865(, [0.8125 0.8650)

TABLE 5: The interval neutrosophic matri® = (d;;)axs

(o1 C> Cs
Az —0.080325 —0.020250 —0.111265
Ay 0.032001 0.020334 0.090657
As —0.078175 —0.030637 0.061570
Ag 0.181568 0.033229 0.054775

Algorithm 5: Similarity measure

Steps 1-3.These are the same as Algorithm 4 in Steps 1-3.
Step 4. Calculate the similarity measu{ A;, A*)(i = 1, 2,3, 4) by Eq. (27).

S(Az, A*) = ([0.4000000.516466, [0.386826 0.503292, [0.4461680.603292),
S(A,, A%) = ([0.6813170.781317, [0.2626330.403292, [0.2406580.421975),
S(As, A*) = ([0.4955650.721975, [0.3626330.503292, [0.340658 0.440658),
S(As, A*) = ([0.7241930.824193, [0.2604160.360416, [0.3032920.419757).
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Step 5. Each alternative of score functiep s 0.3(S(4;, A*)) is shown as follows:
505,03(S(A1, A*)) = 0.692755
505,03(5(Az, A¥)) = 0.821807
505.03(5(As, A*)) = 0.758357
( )

50.5,0.3(5(Aa, A¥)) = 0.836836

Step 6. Rank the alternatives by, 5 (S(4;, A*))(i = 1,2,3,4) as follows: A4 > A; > A3z > Aj; i.e., the best
alternative isA,.

Algorithm 6: EDAS

Steps 1-3.These are the same as Algorithm 4 in Steps 1-3.
Step 4. Determine the average solution according to all attributes by Eq. (29), shown as follows:

AV; = (]0.5262 0.6690, [0.000Q 0.206(, [0.206Q 0.3130),
AV, = ([0.5319 0.6536, [0.1189 0.2449, [0.1861, 0.3464),

AV3 = (]0.7087,0.8505, [0.5958 0.7483, [0.4738 0.6593).

Step 5. Calculate the positive distance from average PBA(P;;)sx3 and the negative distance from average
NDA = (NV;;)ax3 matrices by Egs. (30) and (31), shown as follows:

0.0000 00000 00000
0.0129 00322 00622
0.0000 00000 00182 |’
0.0858 00384 00248

PDA = (P;j)ax3

0.1006 00462 01929
0.0000 00000 00000
0.1006 00421 00000
0.0000 00000 00000

Step 6. Determine the weighted sum of PDA and NDA for all alternatives by Egs. (32) and (33), respectively,
shown as follows:

SP, =0.0000 SP,=0.0361 SP;=0.0074 SP;=0.0532

NDA = (N;;)axs

NP, =0.1292 NP, =0.0000 NP;=0.0501, NP, =0.0000

Step 7. Normalize the values of P; and SN; for all alternatives by Egs. (34) and (35), respectively, shown as
follows:

NSP, =0.0000 NSP,=0.6788 NSP;=0.1392 NSP,=1.000Q
NSN; =0.0000 NSN,=1.0000 NSN3=0.6125 NSN,= 1.0000Q
Step 8. Calculate the appraisal scass; (i = 1, 2, 3, 4) for all alternatives by Eq. (36), shown as follows:
AS; =0.0000 AS, =0.8394 AS;=0.3759 AS,=1.0000
Step 9. Rank the software development projeetsaccording to the decreasing values4s; as follows:
Ay = Ay = Az = As.
Obviously, among theny, is the best investment project.
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According to Algorithms 4—6, we can conclude that the optimal results are the samé; isthe most desirable
investment project. Hence, the three algorithms proposed above are effective and feasible.

Example2. Consider that a school wants to select an excellent C Programming Language teacher. The teacher experts
give four feasible excellent teacheds(i = 1, 2, 3,4). Suppose that three attribut€s (the environment of teaching

and studying)(, (the management of teaching information), ard(the empathy and the teaching practice), then

the weight vector of the corresponding attribGtgj = 1, 2, 3) isw = (0.33,0.34,0.33)7. Meanwhile, the attributes

are all benefit attributes. Assume that the teachgi = 1,2, 3,4) with respect to the attribut€’;(; = 1,2,3) is

given by the interval neutrosophic mattk = (r;;)axs = ([T}, T} 1, [IL, I5], [F, FJ])axs. The assessments for
teachers arising from questionnaire investigation to the teacher experts are shown in Table 6.

TABLE 6: The interval neutrosophic matrix given by experts

C: C> Cs
([0.9,0.9],[0.1,0.1],0.1,0.2]) | ([0.1,0.2],]0.1,0.2],[0.1,0.1]) | (]0.1,0.2],[0.1,0.2], [0.1,0.2])
([1.0,1.0],]0.1,0.1],[0.1,0.2]) | (]0.1,0.2],[0.1,0.2], [0.1,0.1]) | ([0.1,0.2],[0.1,0.2],]0.1,0.2])

A; | ([10,1.0],[0.1,0.1],(0.1,0.2]) | ([1.0,1.0],]0.1,0.2],[0.1,0.1]) | ([0.0,0.0],[0.1,0.2], [0.1,0.2])
([1.0,1.0],0.1,0.1],(0.1,0.2]) | ([0.1,0.2],[0.1,0.2],[0.1,0.1]) | ([0.0,0.0],[0.1,0.2],(0.1,0.2])

Algorithm 7: MABAC

Step 1. The interval neutrosophic decision matik = (r;)sxs = (T, TH), (1, 15, [FL, FY])axs which is
shown in Table 6.

Step 2. There is no need to normalize the decision matrix based on the above condition.
Step 3. Compute relative weightr; of attributeC; by Eq. (22) as follows:

w1 = 0.1693 w, = 0.6378 w3 = 0.1929

Step 4. Calculate the weighted matrik = (¢;;)ax3 by Eq. (23), which is shown in Table 7.
Step 5. The BAA G = (g;)1x3 is determined according to the Eq. (24), we can get

g1 = ([0.7537,0.7537, [0.6772 0.6772, [0.6772 0.7615),

TABLE 7: The weighed interval neutrosophic matilix= (t;;)ax3
C,
([0.3228 0.3228, [0.6772 0.6772,[0.6772 0.7615)
Ay ([1.000Q 1.0004, [0.6772 0.6773,[0.6772 0.7615)
( )
( )

1.0000 1.0000, [0.67720.6772, [0.67720.7615
1.000Q 1.0004, [0.67720.6774, 0.6772 0.7615
(&)
([0.0650Q 0.1327,[0.2303 0.3583, [0.2303 0.2303)
([0.0650 0.1327, [0.2303 0.3583, [0.2303 0.2303)
As | (|1.000Q 1.0000, [0.2303 0.3583, [0.2303 0.2303)
([0.0650 0.1327, [0.2303 0.3583, [0.2303 0.2303)
Cs
([0.0201 0.0421, [0.6413 0.7331, [0.6413 0.7331)
([0.0201,0.0421, [0.6413 0.7331, [0.6413 0.7331)
Az ([0.000Q 0.0004, [0.6413 0.7331, [0.6413 0.7331)
([0.0000 0.0000, [0.6413 0.7331, [0.6413 0.7331)
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g2 = ([0.1287,0.2198, [0.2303 0.3583, [0.2303 0.2303),

g3 = ([0.0000 0.0000, [0.6413 0.7331, [0.6413 0.7331).

Step 6. Calculate the distance matriX = (d;;)ax3 by Eq. (25), which is shown in Table 8.
Step 7. Rank the alternatives b, (i = 1, 2, 3,4) as follows:

Q1 = —0.158429 ()2, =0.067320 ()3 = 0.357334 (4 = 0.056942

Hence, A3 > A, > A4 > Ay, i.e., the best C Programming Language teachdgis

TABLE 8: The interval neutrosophic matri® = (d;;)ax3

C C, Cs
A —0.143660 —0.025147 0.010378
Az 0.082089 —0.025147 0.010378
Az 0.082089 0.275245 0.000000
Ay 0.082089 —0.025147 0.000000

Algorithm 8: Similarity measure

Steps 1-3.These are the same as Algorithm 7 in Steps 1-3.
Step 4. Calculate the similarity measu{ A;, A*)(i = 1, 2,3, 4) by Eq. (27).

S(Ay, A*) = ([0.2353880.318464, [0.1000000.183077, [0.1000000.136165),
S(A,, A*) = ([0.2523110.335387, [0.1000000.183077, [0.1000000.136165),
S(As, A*) = ([0.8075870.807587, [0.1000000.183077, [0.1000000.136165),
S(As, A*) = ([0.2330700.296905, [0.1000000.183077, [0.1000000.136165).

Step 5. Each alternative of score functieg s o.3(S(A4;, A*)) is shown as follows:
505,03(5(A1, A¥)) = 0.723571

505,03(S(A2, A*)) = 0.729212
505,0.3(5(As, A*)) = 0.900458
50,5)0,3(5(144, A*)) = 0.719591

Step 6. Rank the alternatives by, g (S(A;, A*))(i = 1,2,3,4) as follows: Az > Ay > A; > As;ie., thebestC
Programming Language teachers.

Algorithm 9: EDAS

Steps 1-3.These arethe same as Algorithm 7 in Steps 1-3.
Step 4. Determine the average solution according to all attributes by Eq. (29), shown as follows:

AV; = ([1.000Q 1.0000, [0.100Q 0.1004, [0.100Q 0.200Q),
AV, = ([1.000Q 1.0000, [0.100Q 0.200d, [0.100Q 0.1000),
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AV; = ([0.0513 0.1056, [0.100Q 0.2000, [0.100Q 0.2000).

Step 5. Calculate the positive distance from average PBA(P;;)4x3 and the negative distance from average
NDA = (IV;;)ax3 matrices by Egs. (30) and (31), shown as follows:

00000 00000 00365
0.0000 00000 00365

PDA= (Pij)axs | 50000 00000 00000 |
0.0000 00000 00000

00344 02936 00000
0.0000 02936 00000
NDA = (Nij)axs | 00000 00000 00401
00000 02936 00401

Step 6. Determine the weighted sum of PDA and NDA for all alternatives by Egs. (32) and (33), respectively,
shown as follows:

SP; =0.007Q SP =0.0070 SP;=0.0000 SP,=0.000Q

NP, =0.1931 NP, =0.1873 NP =0.0077 NP, =0.1950

Step 7. Normalize the values of P; and SN; for all alternatives by Eqgs. (34) and (35), respectively, shown as
follows:

NSP; =1.0000 NSP,=1000Q NSP;=0.0000 NSP,=0.0000

NSN; =0.0098 NSN,=0.0396 NSN3 =0.9604 NSN,=0.000Q
Step 8. Calculate the appraisal scas; (i = 1,2, 3,4) for all alternatives by Eq. (36), shown as follows:

AS; =0.5049 AS, =05198 AS3;=0.5202 AS, = 0.000Q
Step 9. Rank the software development projegtsaccording to the decreasing values4s; as follows:
Az = Ap = A1 = Ay

Obviously, among themls is the best C Programming Language teacher.

By means of the Algorithms 7-9, we can find that the final results are the samgsii®the best C Programming
Language teacher. Hence, the three algorithms discussed above are effective and feasible.

6. COMPARISON OF THE NEWLY PROPOSED APPROACHES WITH THE OTHER APPROACHES TO
INTERVAL NEUTROSOPHIC SET BASED DECISION-MAKING

6.1 Comparison of the Newly Proposed Three Approaches with Their Own Advantages
(1) Comparison of computational complexity

We know that Algorithms 1 and 3 will consume more computational complexity than Algorithm 2, espe-
cially in Step 4 (Algorithm 3) and in Step 5 (Algorithm 1). So if we take the computational complexity into
consideration, Algorithm 2 is given priority to make decisions.
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(2) Comparison of discrimination

Comparing the results in Algorithms 1 and 2 with Algorithm 3, we can find that the results of Algorithm 2
are quite close and vary from 0.6927 to 0.8218 and 0.7196 to 0.9004. These results of decision values cannot
clearly distinguish; in other words, the results obtained from Algorithm 2 are not very convincing (or at
least not applicable). That is to say, the Algorithm 1 has a clear ability to distinguish. So if we take the
discrimination into consideration, the Algorithms 1 and 3 are given priority to make decisions.

6.2 Comparison of the Newly Proposed Three Approaches with Other Approaches

In order to further verify the practicability of the proposed algorithms based on the MABAC, EDAS, and similarity
measure of INSs, a comparison study with some existing algorithms is now bulit. The decision data are adopted from
Tian et al. [27] and Example 2.

6.2.1 A Comparison Analysis from Tian [27]

We take the example adopted from Tian [27], and are the interval neutrosophic decision matrix is shown in Table 9.
The corresponding weight information#® = (0.15,0.15,0.375 0.325).

If the existing methods in Ye [12,25,30,37], Zhang et al. [24,28,34], Chi and Liu [56], Liu and Tang [31], Liu
and Wang [32], Tian et al. [27], and the proposed three methods are applied to solve the MADM problem in Tian et
al. [27], then the results can be achieved and shown in Table 10.

From the above results shown in Table 10, we can know that the ranking order of the four alternatives and optimal
alternative are in agreement with the results of [12,24,25,27,28,30,32,34,37,56]. For Liu and Tang [31], the optimal
alternative may be different whenis assigned different values. That is to say, it will not obtain a convincing result
when the experts of the corresponding field make decisions.

6.2.2 A Comparison Analysis from Example 2

If the existing methods in Ye [12,25,30,37], Zhang et al. [24,28,34], Chi and Liu [56], Liu and Wang [32], Tian et al.
[27], and the proposed three methods are applied to solve the MADM problem in Example 2, then the results can be
obtained and are shown in Table 11.

From the above results shown in Table 11, we can know that the final ranking of the four alternatives and
optimal alternative are in agreement with the results of [12,25,27,28,30,32,34,37,56]. For Zhang et al. [24], the final
ranking and the optimal alternative cannot be obtained due to their equal values discussed in Definition 9. The optimal
alternative isA; in [24], which is different from some existing methods and our three Algorithms. It is unreasonable,
which we have discussed in Definition 10.

TABLE 9: The interval neutrosophic matrix adopted from [27]

Cl CZ

Ay | ([0.7,0.8],]0.5,0.7],[0.1,0.2]) | ([0.6,0.8],[0.4,0.5],[0.3,0.3])

A, | (]0.6,0.8],]0.4,0.6],[0.1,0.3]) | ([0.5,0.7],[0.3,0.5],[0.1,0.3])

As | ([0.4,0.6],[0.2,0.2],[0.2,0.4]) | ([0.6,0.7],[0.4,0.6],[0.3,0.4])
( ) | ( )
( ) | ( )

A, | ([0.4,0.5],[0.5,0.6], (0.4, 0.4 0.5,0.6],(0.3,0.4],0.4,0.5
As | ([0.6,0.7],[0.4,0.5],(0.4,0.5]) | ([0.8,0.9],(0.3,0.4],[0.1,0.2]
C; C,

A; | (j0.8,0.8],]0.4,0.6],[0.1,0.2]) | ([0.7,0.9],[0.3,0.4],[0.2,0.2])
A, | (j0.6,0.6],[0.2,0.3],[0.4,0.5)) | ([0.6,0.8],[0.4,0.4],[0.2,0.4])
As | (j0.7,0.8],[0.6,0.7],[0.1,0.2)) | ([0.5,0.6],[0.5,0.6],(0.2,0.3])
A, | ([0.6,0.7],]0.7,0.8],[0.2,0.3)) | ([0.8,0.9],[0.3,0.4],(0.1,0.2])
As | (j0.7,0.8],[0.5,0.6],[0.1,0.2)) | ([0.5,0.7],[0.5,0.5],[0.2,0.3])
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TABLE 10: A comparison study with some existing methods

Method Final ranking Optimal alternative
Ye [30] A1 = As = Ao = Az = Ay A
Liu and Tang [31]
A=0.1 Ag = Ay = Ao = Ay = Aj Asg
A=32 A1 = As = Ao = Ay = Az Az
Liu and Wang [32] Ay = Ag = Ay = Az = Ay Aq
Ye [12] Al - A5 = Ay >~ A3 = Ay A
Ye [37] A1 = Ag = Ao = Ay = Aj Az
Zhang et al. [28] Ay = Ag = Ay = Az = Ay Aq
Zhang et al.f = 0.2 andq = 0.1) [34] Ay = Ay > {Az, Ay, As} A;
Zhang et al. [24]
Method based on the INWA operator A1 = As = Ao = Ay = Aj Az
Method based on the INWG operator A1 = As = Ao = Az = Ay Az
Ye [25]
Similarity measure based on the Hamming distancé; = As = A, = As > As Aq
Similarity measure based on the Euclidean distanck, = As = A, = Az > Ay Aq
Chi and Liu [56] Al - A5 = Ay = Ay - A3 A
Tian et al. [27] A1 = As = Ao = Az = Ay Aq
Algorithm 1 A1 = As = Ao = Az > Ay Aq
Algorithm 2 A1 = As = Ap = Az = Ay A
Algorithm 3 A1 = As = Ao = Az = Ay Aq

TABLE 11: A comparison study with some existing methods in Example 2

Method Final ranking Optimal alternative
Ye [30] Az = Ay = Ay = Ay As
Liu and Wang [32] Az = Ay = Ay = Ay As
Ye [12] Az = Ay = A1 = Ay Az
Ye [37] Az = Ay = Ay = Ay As
Zhang et al. [28] Az = Ay = Ay = Ay As
Zhang et al.f = 0.2andq = 0.1) [34] Az = Ay = A > Ay As
Zhang et al. [24]
Method based on the INWA operator {Ay, Az, As} = Az *
Method based on the INWG operator Ay = Az - {As, Ag} A,
Ye [25]
Similarity measure based on the Hamming distancés; = A, = A; > Ay As
Similarity measure based on the Euclidean distancé; = A, = A1 >~ Ay As
Chiand Liu [56] Az = Ay = Ay = Ay Az
Tian et al. [27] Az = Ay = A1 = Ay Az
Algorithm 1 Az = Ay = Ay = A As
Algorithm 2 Az = Ay = A1 = Ay Az
Algorithm 3 Az = Ay = A1 = Ay Az

“x" presents no sure result.

7. CONCLUSIONS

This paper introduces three new approaches for MADM under an interval neutrosophic environment. First, we define
a new axiomatic definition of interval neutrosophic distance measure and similarity measure. Comparing with the
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existing literature [10,12,18,22], our distance measure or similarity measure can keep more original decision infor-
mation. Later, a novel score function is proposed. Comparing with the existing score functions [31], we can overcome
their drawbacks. Meanwhile, the combined weight model is proposed to solve the weight information which is too
objective [27] or subjective [7,24,25,28,29,37]. Then, three approaches (EDAS, MABAC, similarity measure) are pro-
posed to deal with the real MADM problems. Finally, the effectiveness and feasibility of approaches are demonstrated
by two examples. Meanwhile, a comparison analysis is presented in Tables 10 and 11.

In the future, we shall apply the similarity measure of INSs to other sets [57-73].
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