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Abstract: Single-valued neutrosophic set (SVNS) is an important contrivance for directing the
decision-making queries with unknown and indeterminant data by employing a degree of “acceptance”,
“indeterminacy”, and “non-acceptance” in quantitative terms. Under this set, the objective of this paper
is to propose some new distance measures to find discrimination between the SVNSs. The basic axioms
of the measures have been highlighted and examined their properties. Furthermore, to examine the
relevance of proposed measures, an extended TOPSIS (“technique for order preference by similarity
to ideal solution”) method is introduced to solve the group decision-making problems. Additionally,
a new clustering technique is proposed based on the stated measures to classify the objects. The
advantages, comparative analysis as well as superiority analysis is given to shows its influence over
existing approaches.
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1. Introduction

MCDM (“Multi-Criteria Decision Making”) plays a vital role in our daily lives. In this competitive
environment, our goal is to determine the best option that must be inspected toward the numerous
criteria. However, in many cases, it is difficult for a person to opt for a suitable one due to the presence
of several kinds of uncertainties in the data, which may occur due to a lack of knowledge or human
error. Thus, the process of MCDM becomes growing these days and generally involves the following
three phases.
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i) Choose a proper scale to evaluate the given objects;

ii) Aggregate the information, using the suitable technique, to obtain the tendency value of each
objects;

iii) Rank the given objects to select the best one(s).

As the decision process becomes complex day-by-day due to a huge number of uncertainties present
in the information. Thus to feel it deeply and concisely, a theory of fuzzy set (FS) gave by [1] plays a
vital role in the decision-making problems (DMPs) by allowing a membership degree (MDs) to each
element. Later on, [2] prolongs the FSs to intuitionistic FSs (IFSs) by adding non-membership degrees
(NMDs) along with MDs such that their sum can’t pass one. In modern life, the complex system
requires the uncertainties in views of indeterminacy and hence the present sets, FS or IFS, are incapable
to deal with the information correctly. To consider it, [3] presented neutrosophic set (NS) by involving
the three independent functions namely “truth”, “indeterminacy” and “falsity” which are the standard
or non-standard real subsets of ]−0, 1+[. However, for software engineering proposals the classical unit
interval [0, 1] is used. Thus, [4] enriches the NS to SVNS in which ranges of the independent degrees
are taken as [0, 1] instead of ]−0, 1+[. Since its appearance and the ability to tackle the indeterminacy
at the initial stage of data, SVNS is one of the hot topics to tackle the DMPs. In the literature, such
theory is widely to solve the DMPs and are classified into two aspects, namely aggregation operators
(AOs) and information measures (IMs), which are presented below:

1) The basic results of SVNS: [5] firstly defined the operational laws for SVNSs. However, to order the
given SVNSs, [6] defined the score function, while [7] presented an improved score function. [8]
presented the subtraction and division operations for interval NSs.

2) AOs based approaches: For example, [5] initiated the idea of weighted averaging (WA) and
weighted geometric (WG) operators. [6] presented the ordered WA and WG operators. [9] define
the operators based on Hamacher norm. [10] developed Frank t-norm based AOs for DMPs. [11]
defined logarithm operational laws based AOs for SVNS. [12] defined some Bonferroni mean
AOs. [13] presented power AOs for SVNS. [14] presented the power aggregation operators for the
linguistic SVNSs. [15] developed the frank prioritized BM operators for solving DMPs. [16]
defined the concept of neutrality operational laws and its based AOs for solving the
decision-making problems. [17] developed the hybrid Heronian mean AOs by considering the
concept of Choquet and frank norm operational laws for SVNSs.

3) IMs based approaches: In the literature, several measures such as distance, similarity, entropy are
reviewed by the scholars. For instance, [18] defined the distance measures for SVNSs. [19] defined
the distance measures between two SVNSs and hence defined the similarity, entropy and index of
the distance measures to solve the clustering and the decision-making problems. [20] defined the
weighted distance measures for SVNSs. [21] defined the biparametric distance measures for SVNSs
to solve the decision-making problems. [22] defined the cross-entropy for SVNSs. [23] defined the
entropy measure of order α for SVNSs. [24, 25] defined the tangential and logarithm measures
to compute the degree of similarity between two or more SVNSs. [26] discussed the multicriteria
model for the selection of the transport service using SVNS features. A concept of divergence
measure for SVNS is proposed by the authors in [27] and utilized it to solve the decision making
problems.

AIMS Mathematics Volume 5, Issue 3, 2671–2693.



2673

The above-mentioned approaches are widely applicable in different fields. However, the
approaches based on IMs are extensively reviewed. Among them, a “Technique for Order Preference
with respect to the Similarity to the Ideal Solution (TOPSIS)” [28] is a well-known approach that is
working on the principle to pick the best one according to its minimum distance from the target set.
For it, the two ideals namely PIS(“positive ideal set”) and NIS (“negative ideal set”) are considered
and the working of the TOPSIS method depends on it. In the TOPSIS method, both the inclinations
such as similarity or dis-similarity are considered together to reach the target set. Based on these
features, several researchers have addressed the problem of TOPSIS to solve the MCDM problem
under the SVNS environment. For example, [29] firstly presented the model of TOPSIS for
SVNS. [30] presented an MCDM method based on TOPSIS and VIKOR (“VIseKriterijumska
Optimizacija I Kompromisno Resenje”) methods. [31] presented an extended TOPSIS method based
on the maximum-deviation method while [32] presented a modified TOPSIS method to solve the
MCDM problems. [27] presented divergence measures based TOPSIS method under the SVNS. [33]
discuss the TOPSIS method for solving the MCDM problems through statistical analysis. Apart from
the above scheme, [34] built up a strategy for arranging perceptions into groups with the end goal that
each cluster is as homogeneous as conceivable in the FS domain. The strategy is known as clustering
which clusters the fuzzy information into the various leveled structure based on the proximity matrix.
Inspired by this idea, [35] introduced the clustering method for the SVNS minimum spanning tree.
Again, [36] presented another clustering algorithm based on the similarity measure which is obtained
from distance measure. Since clustering has applications in various fields like image processing, data
mining, medical diagnosis, machine learning, etc. therefore authors extend these applications of
clustering analysis in the SVNS environment [37–40]. Thus, from the above studies, we conclude that
SVNS is one of the most favorable environment to access the alternatives.

Considering the versatility of SVNS and the quality of the TOPSIS method, the theme of the present
study is to examine the new distance measure to compute the degree of discrimination between the
given sets. Also, we study their relevant axioms and the properties to show its validity. To reach the
target precisely, we extended the given TOPSIS approach for DMPs. Holding all the above tips in
mind, the main objective of the present work is listed as

(i) to define some new distance measures for given numbers under SVNS environment.

(ii) to develop an algorithm to determine the MCDM problems based on the extended TOPSIS
approach.

(iii) to test the presented approach with a numerical example.

(iv) to impersonate a new clustering algorithm based on the proposed measures.

The major assets of the presented TOPSIS method over the others as the basic TOPSIS method
aggregate the decision matrices by the aggregation operator and then decide relative coefficients based
on the aggregated matrices. But in our approach, we find the relative coefficient of each decision
matrix individually and then give the final results for each alternative. Then we aggregate the results
of each decision-maker and get new relative coefficients for final ranking results. That is, this
approach gives the individual as well as aggregated ranking results of decision-makers.

The rest of the text is designed as. Section 2 gives brief review on SVNS. Section 3 trades with new
distance measures along with their characteristics. In Section 4, we offer an extended group TOPSIS
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method based on proposed measures to solve the MCDM problem. The applicability of the approach
is discussed through a case study. In Section 5, a new clustering algorithm is presented and explained
with a numerical example. Section 6 gives the advantages of the study. Finally, a concrete conclusion
is given in Section 7.

2. Preliminaries

In it, we discuss some basic terms associated with SVNS in universal set X.

Definition 2.1. [3] A neutrosophic set N is given as

N = {(x, ςN (x), τN (x), υN (x)) | x ∈ X} (2.1)

where ςN (x), τN (x), υN (x) : X →]0−, 1+[ are the degrees of “acceptance”, “indeterminacy” and “non-
acceptance” such that 0− ≤ sup ςN (x) + sup τN (x) + sup υN (x) ≤ 3+.

Definition 2.2. [4] A SVNS N in X is stated as

N =
{
(x, ςN (x), τN (x), υN (x)) | x ∈ X

}
(2.2)

where ςN , τN , υN ∈ [0, 1] and 0 ≤ ςN + τN + υN ≤ 3 for each x ∈ X. We call a pair N = (ςN , τN , υN ),
throughout this article, and known as SVN number (SVNN).

Definition 2.3. [4] For two SVNNs N1 = (ς1, τ1, υ1) and N2 = (ς2, τ2, υ2), some basic operations are
defined as

(i) N1 ⊆ N2 if ς1 ≤ ς2, τ1 ≥ τ2, υ1 ≥ υ2.

(ii) N1 ∩ N2 = (min(ς1, ς2),max(τ1, τ2),max(υ1, υ2)).

(iii) N1 ∪ N2 = (max(ς1, ς2),min(τ1, τ2),min(υ1, υ2)).

(iv) N1 = N2 if and only if N1 ⊆ N2 and N2 ⊆ N1.

(v) Complement: N c
1 = (υ1, τ1, ς1).

Definition 2.4. Let Ψ(X) be the collections of all SVNSs over X. A real-valued functionD : Ψ(X)→
Ψ(X) is termed as distance measures, if for N1,N2,N3 ∈ Ψ(X),D satisfies the following axioms.

(P1) 0 ≤ D(N1,N2) ≤ 1;

(P2) D(N1,N2) = 0⇔ N1 = N2;

(P3) D(N1,N2) = D(N2,N1);

(P4) If N1 ⊆ N2 ⊆ N3 thenD(N1,N2) ≤ D(N1,N3) andD(N2,N3) ≤ D(N1,N3).
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3. Proposed distance measure

This section presents new distance measure for SVNSs and investigating their properties.

Definition 3.1. For two SVNSsN1 = {(ςN1(x j), τN1(x j), υN1(x j)) | x j ∈ X} andN2 = {(ςN2(x j), τN2(x j),
υN2(x j)) | x j ∈ X}, a proposed distance measureD between them is stated as.

Dλ(N1,N2) =

 n∑
j=1

w j

 3∑
r=1

βrηr(x j)

λ


1/λ

(3.1)

where λ > 0, βr ∈ [0, 1],
3∑

r=1
βr = 1 and w j ∈ [0, 1],

n∑
j=1

w j = 1,

η1(x j) =
ψ1(x j) + ψ2(x j) + ψ3(x j)

6
;

ψ1(x j) =

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣(1 − ςN1(x j)) +
| 1 − ςN1(x j) + τN1(x j) + υN1(x j) |

3

∣∣∣∣∣∣
−

∣∣∣∣∣∣(1 − ςN2(x j)) +
| 1 − ςN2(x j) + τN2(x j) + υN2(x j) |

3

∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣ ;

ψ2(x j) =

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣τN1(x j) +
| 1 − ςN1(x j) + τN1(x j) + υN1(x j) |

3

∣∣∣∣∣∣
−

∣∣∣∣∣∣τN2(x j) +
| 1 − ςN2(x j) + τN2(x j) + υN2(x j) |

3

∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣ ;

ψ3(x j) =

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣υN1(x j) +
| 1 − ςN1(x j) + τN1(x j) + υN1(x j) |

3

∣∣∣∣∣∣
−

∣∣∣∣∣∣υN2(x j) +
| 1 − ςN2(x j) + τN2(x j) + υN2(x j) |

3

∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣ ;
η2(x j) = max

(
| ςN1(x j) − ςN2(x j) |, | τN1(x j) − τN2(x j) |, | υN1(x j) − υN2(x j) |

)
;

η3(x j) =

∣∣∣∣∣2 + ςN1(x j) − τN1(x j) − υN1(x j)
3

−
2 + ςN2(x j) − τN2(x j) − υN2(x j)

3

∣∣∣∣∣ .
Theorem 3.1. The above defined measureD satisfies the properties of Definition 2.4.

Proof. (P1) Since for each j, ςN1(x j), τN1(x j), υN1(x j) ∈ [0, 1], therefore, (1 − ςN1(x j)) ∈ [0, 1] and
| (1 − ςN1(x j)) + τN1(x j)+ υN1(x j) | /3 ∈ [0, 1], hence

0 ≤

∣∣∣∣∣∣(1 − ςN1(x j)) +
| (1 − ςN1(x j)) + τN1(x j) + υN1(x j) |

3

∣∣∣∣∣∣ ≤ 2,

and 0 ≤

∣∣∣∣∣∣(1 − ςN2(x j)) +
| (1 − ςN2(x j)) + τN2(x j) + υN2(x j) |

3

∣∣∣∣∣∣ ≤ 2
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Hence,

ψ1(x j) =

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣(1 − ςN1(x j)) +
| (1 − ςN1(x j)) + τN1(x j) + υN1(x j) |

3

∣∣∣∣∣∣
−

∣∣∣∣∣∣(1 − ςN2(x j)) +
| (1 − ςN2(x j)) + τN2(x j) + υN2(x j) |

3

∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣
∈ [0, 2]

Similarly, we get ψ2(x j) ∈ [0, 2], ψ3(x j) ∈ [0, 2]. From this, we have

η1(x j) =
ψ1(x j) + ψ2(x j) + ψ3(x j)

6
∈ [0, 1].

Further, we have

| ςN1(x j) − ςN2(x j) |, | τN1(x j) − τN2(x j) |, | υN1(x j) − υN2(x j) |∈ [0, 1].

Thus,

η2(x j) = max


| ςN1(x j) − ςN2(x j) |,
| τN1(x j) − τN2(x j) |,
| υN1(x j) − υN2(x j) |

 ∈ [0, 1]

Also, by definition of SVNS,

0 ≤
2 + ςN1(x j) − τN1(x j) − υN1(x j)

3
≤ 1

and 0 ≤
2 + ςN2(x j) − τN2(x j) − υN2(x j)

3
≤ 1

Therefore,∣∣∣∣∣2 + ςN1(x j) − τN1(x j) − υN1(x j)
3

−
2 + ςN2(x j) − τN2(x j) − υN2(x j)

3

∣∣∣∣∣ ∈ [0, 1],

which means η3(x j) ∈ [0, 1]. Since, η1(x j), η2(x j), η3(x j), βr(x j) ∈ [0, 1]; (r = 1, 2, 3), therefore,(
3∑

r=1
βrηr(x j)

)λ
∈ [0, 1], for any real λ > 0. Also, for w j ∈ [0, 1], we get

Dλ(N1,N2) =

n∑
j=1

w j

 3∑
r=1

βrηr(x j)

λ ∈ [0, 1].

(P2) For N1 = N2, we have ςN1(x j) = ςN2(x j), τN1(x j) = τN2(x j), υN1(x j) = υN2(x j) for j = 1, 2, .., n,
which implies ψ1(x j) = 0, ψ2(x j) = 0, ψ3(x j) = 0, i.e., η1(x j) = 0. Also, we get, η2(x j) = 0 and
η3(x j) = 0. Hence,Dλ(N1,N2) = 0.

On the other hand, we assume Dλ(N1,N2) = 0, which implies
(

3∑
r=1
βrηr(x j)

)λ
= 0. Since

βrηr(x j) ≥ 0 therefore
3∑

r=1
βrηr(x j) = 0, implies βrηr(x j) = 0,∀r, j. Thus, we have ηr(x j) = 0, ∀r.

From this, we get ςN1(x j) = ςN2(x j), τN1(x j) = τN2(x j), υN1(x j) = υN2(x j). Hence we get,
N1 = N2.
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(P3) Since each ηr(x j); (r = 1, 2, 3), is symmetric thereforeDλ(N1,N2) = Dλ(N2,N1).

(P4) If N1 ⊆ N2 ⊆ N3, then ςN1(x j) ≤ ςN2(x j) ≤ ςN3(x j); τN1(x j) ≥ τN2(x j) ≥ τN3(x j); υN1(x j) ≥
υN2(x j) ≥ υN3(x j) which implies∣∣∣∣∣∣ ∣∣∣∣(1 − ςN1(x j)) +

|1−ςN1 (x j)+τN1 (x j)+υN1 (x j)|
3

∣∣∣∣ − ∣∣∣∣(1 − ςN2(x j)) +
|1−ςN2 (x j)+τN2 (x j)+υN2 (x j)|

3

∣∣∣∣ ∣∣∣∣∣∣
≤

∣∣∣∣∣∣ ∣∣∣∣(1 − ςN1(x j)) +
|1−ςN1 (x j)+τN1 (x j)+υN1 (x j)|

3

∣∣∣∣ − ∣∣∣∣(1 − ςN3(x j)) +
|1−ςN3 (x j)+τN3 (x j)+υN3 (x j)|

3

∣∣∣∣ ∣∣∣∣∣∣,
that is, ψ1(N1,N2)(x j) ≤ ψ1(N1,N3)(x j). Similarly, we get ψ2(N1,N2)(x j) ≤ ψ2(N1,N3)(x j) and
ψ3(N1,N2)(x j) ≤ ψ3(N1,N3)(x j), therefore, we get η1(N1,N2)(x j) ≤ η1(N1,N3)(x j).

Further, we get | ςN1(x j)− ςN2(x j) |≤| ςN1(x j)− ςN3(x j) |, | τN1(x j)− τN2(x j) |≤| τN1(x j)− τN3(x j) |
and | υN1(x j) − υN2(x j) |≤| υN1(x j) − υN3(x j) |. Thus, we get η2(N1,N2)(x j) ≤ η2(N1,N3)(x j).

Also, ∣∣∣∣∣∣2 + ςN1(x j) − τN1(x j) − υN1(x j)
3

−
2 + ςN2(x j) − τN2(x j) − υN2(x j)

3

∣∣∣∣∣∣
≤

∣∣∣∣∣∣2 + ςN1(x j) − τN1(x j) − υN1(x j)
3

−
2 + ςN3(x j) − τN3(x j) − υN3(x j)

3

∣∣∣∣∣∣
Thus, we get, η3(N1,N2)(x j) ≤ η3(N1,N3)(x j). Hence,Dλ(N1,N2) ≤ Dλ(N1,N3).

�

The above defined measure is illustrated with a numerical example as follow.

Example 3.1. Consider two SVNSs N1 = {(x1, 0.7, 0.4, 0.4), (x2, 0.5, 0.2, 0.1)} and
N2 = {(x1, 0.2, 0.5, 0.4), (x2, 0.6, 0.2, 0.2)}, with weight vector (0.7, 0.3)T . By considering
β1 = β2 = β3 = 1/3 and λ = 2, we have

ψ1(x1) =

∣∣∣∣∣0.3 +
0.3 + 0.4 + 0.4

3

∣∣∣∣∣ − ∣∣∣∣∣0.8 +
0.8 + 0.5 + 0.4

3

∣∣∣∣∣ = 0.7

ψ2(x1) =

∣∣∣∣∣0.4 +
0.3 + 0.4 + 0.4

3

∣∣∣∣∣ − ∣∣∣∣∣0.5 +
0.8 + 0.5 + 0.4

3

∣∣∣∣∣ = 0.3

ψ3(x1) =

∣∣∣∣∣0.4 +
0.3 + 0.4 + 0.4

3

∣∣∣∣∣ − ∣∣∣∣∣0.4 +
0.8 + 0.5 + 0.4

3

∣∣∣∣∣ = 0.2

η1(x1) =
0.7 + 0.3 + 0.2

6
= 0.2000

Similarly, we get η1(x2) = 0.0333.

η2(x1) = max(0.5, 0.1, 0) = 0.5; η2(x2) = max(0.1, 0, 0.1) = 0.1

and

η3(x1) =

∣∣∣∣∣2 + 0.7 − 0.4 − 0.4
3

−
2 + 0.2 − 0.5 − 0.4

3

∣∣∣∣∣ = 0.1999
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η3(x2) =

∣∣∣∣∣2 + 0.5 − 0.2 − 0.1
3

−
2 + 0.6 − 0.2 − 0.2

3

∣∣∣∣∣ = 0.0000

and hence, by Eq. (3.1)

D (N1,N2) =

0.7 (
1
3

(0.2 + 0.5 + 0.1999)
)2

+ 0.3
(
1
3

(0.0333 + 0.1 + 0)
)21/2

= 0.2522

Next, we define the degree of similarity based on proposed measure as follows.

Definition 3.2. A real-valued function S is termed as similarity measure between SVNSs N1 and N2

and defined as

Sλ(N1,N2) = 1 −Dλ(N1,N2) (3.2)

Theorem 3.2. The measure defined in Definition 3.2 have the following features:

(S1) 0 ≤ Sλ(N1,N2) ≤ 1;

(S2) S(N1,N2) = 1 if N1 = N2;

(S3) S(N1,N2) = S(N2,N1);

(S4) if N1 ⊆ N2 ⊆ N3 then S(N1,N3) ≤ S(N1,N2) and S(N1,N3) ≤ S(N2,N3);

Proof. For two SVNSs N1 and N2, we have

(S1) Since, 0 ≤ Dλ(N1,N2) ≤ 1, therefore 0 ≤ 1 −Dλ(N1,N2) ≤ 1, i.e. 0 ≤ Sλ(N1,N2) ≤ 1.

(S2) Sλ(N1,N2) = 1⇔ Dλ(N1,N2) = 0 if N1 = N2.

(S3) It follows from definition.

(S4) If N1 ⊆ N2 ⊆ N3, then D(N1,N2) ≤ D(N1,N3) and D(N2,N3) ≤ D(N1,N3), which implies
1 − D(N1,N2) ≥ 1 − D(N1,N3) and 1 − D(N2,N3) ≥ 1 − D(N1,N3), that is, S(N1,N3) ≤
S(N1,N2) and S(N1,N3) ≤ S(N2,N3).

�

4. MCDM method based on extended TOPSIS method

In this section, we offer a novel TOPSIS method based on proposed measures to handle the group
DMPs. Further, a real-life example is given to demonstrate it and the validity test is conducted to
justify it.
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4.1. Proposed approach

Consider a MCGDM (“Multi-Criteria Group Decision Making”) problem with “m” alternatives
V = {V1,V2, . . . ,Vm} assessed under “n” criteria V = {V1,V2, . . . ,Vn} by “l” distinct experts
R(1),R(2), . . . , R(l). Each expert R(z) (z = 1, 2, . . . , l) evaluate Vi (i = 1, 2, . . . ,m) under V j

( j = 1, 2, . . . , n) under SVNS environment and recorded their rating in terms of SVNNs as

α(z)
i j =

(
ς(z)

i j , τ
(z)
i j , υ

(z)
i j

)
. Assume that w(z) =

(
w(z)

1 ,w
(z)
2 , . . . ,w

(z)
n

)T
with w(z)

j > 0 and
n∑

j=1
w(z)

j = 1 be weight

vector of the criteria and ξ = (ξ1, ξ2, . . . , ξl); ξz > 0;
l∑

z=1
ξz = 1 be for experts. The collective values of

all expert R(z) for m alternatives are represented in decision matrix R(z) = (α(z)
i j )m×n given as

R(z) =

V1 V2 . . . Vn


V1 α(z)
11 α(z)

12 . . . α(z)
1n

V2 α(z)
21 α(z)

22 . . . α(z)
2n

...
...

...
. . .

...

Vm α(z)
m1 α(z)

m2 . . . α(z)
mn

To select the finest alternative(s), the procedure steps (whose flowchart is presented in Figure 1) are
summarized as follows:

Step 1: Arrange the SVN decision matrix R
(
α(z)

i j

)
m×n

for each decision maker R.

Step 2: Normalize the information if required, by converting the cost type criteria into the benefit type.

Step 3: Compute PIA (“positive ideal alternative”),V(z)+, and NIA (“negative ideal alternative”)V(z)−,
for each expert R(z), (z = 1, 2, . . . , l), as

V(z)+ =

(
max

j

(
ς(z)

i j

)
,min

j

(
τ(z)

i j

)
,min

j

(
υ(z)

i j

))
1×n

(4.1)

and

V(z)− =

(
min

j

(
ς(z)

i j

)
,max

j

(
τ(z)

i j

)
,max

j
(υ(z)

i j )
)

1×n
(4.2)

Step 4: Calculate (Dλ)
(z)+
i and (Dλ)

(z)−
i from the PIA and NIA, respectively, corresponding to each

decision maker.

Step 5: Compute the closeness degree for experts as:

<
(z)
i =

(Dλ)
(z)−
i

(Dλ)
(z)−
i + (Dλ)

(z)+
i

(4.3)

provided (Dλ)
(z)+
i , 0,<(z)

i ∈ [0, 1].
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Step 6: From Eq. (4.3), we may obtain the different ordering based on the each expert opinion and
hence it is difficult to compromise on a single task. To overcome it, we aggregate the expert
preferences by using weight ξz > 0,

∑l
z=1 ξz = 1 to each expert as

(Dλ)+
i =

l∑
z=1

ξz (Dλ)
(z)+
i (4.4)

and

(Dλ)−i =

l∑
z=1

ξz (Dλ)
(z)−
i (4.5)

Step 7: The overall closeness degree =i of each alternativeVi, (i = 1, 2, . . . ,m) is computed as

=i =
(Dλ)−i

(Dλ)−i + (Dλ)+
i

(4.6)

provided (Dλ)+
i , 0 and rank them accordingly.

4.2. Illustrative example

To illustrate the approach, we consider the following example, which can be read as
A travel agency naming, Marricot Trip mate , has excelled in providing travel related services to

domestic and Inbound tourists . Agency wants to provide more facilities like detailed information,
online booking capabilities, allow to book and sell airline tickets, car rentals, hotels, and other travel
related services etc. to their customers. For this purpose, agency intends to find an appropriate
information technology (IT) software development company that delivers affordable solutions through
software development. To complete this motive, agency forms a set of five companies (alternatives),
namely, Zensar Tech (V1), NIIT Tech (V2), HCL Tech(V3) and Hexaware Tech(V4) and the
selection is held on the basis of the different criteria, namely, Technology Expertise (V1), Service
quality (V2), Project Management (V3), Industry Experience (V4). The agency hires the three experts
R(1),R(2) and R(3) for evaluation of the considered Vi(i = 1, 2, . . . , 5) under V j( j = 1, 2, 3, 4). For
computation, we take λ = 2 and β1 = β2 = β3 = 1/3. Then, the following steps of the stated method
are executed to find the best one(s).

Step 1: The rating information of each expert is summarized in Table 1.

Step 2: As V j’s are of benefit type, so no need of normalization.

Step 3: The PIA and NIA are computed by Eqs. (4.1) and (4.2), and summarized in Table 2.

Step 4: By applying Eq. (3.1), the positive and negative degrees of the measurement values for each
expert are represented in Table 3. For instance, for expert R(1), the values of (Dλ)

(1)+
1 = 0.1484,

(Dλ)
(1)+
2 = 0.1427, (Dλ)

(1)+
3 = 0.1713 and (Dλ)

(1)+
4 = 0.2194. Similarly, from NIA, we get

(Dλ)
(1)−
1 = 0.1844, (Dλ)

(1)−
2 = 0.2172, (Dλ)

(1)−
3 = 0.1870 and (Dλ)

(1)−
4 = 0.1637. The others

values are tabulated in Table 3.
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Step 1:

Initialisation Phase

Identify 
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Rank the alternatives End

Step 2:
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Step 7:
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Step 3:

Ideal reference set

Steps 4-5:

Computational Phase

Step 6: 

Ranking expert-

wise phase

&

aggregation phase

Figure 1. Flowchart of the proposed approach.

Step 5: By Eq. (4.3), closeness degrees<(z)
i for each expert R(z) are computed and summarized in the

third column of the each expert in Table 3. It is seen that for R(1) expert, the best one is V2
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Table 1. Decision matrix in terms of SVNN.

Expert V1 V2 V3 V4

R(1)

V1 (0.5, 0.1, 0.3) (0.5, 0.1, 0.4) (0.7, 0.1, 0.2) (0.3, 0.2, 0.1)
V2 (0.4, 0.2, 0.3) (0.3, 0.2, 0.4) (0.9, 0.0, 0.1) (0.5, 0.3, 0.2)
V3 (0.4, 0.3, 0.1) (0.5, 0.1, 0.3) (0.5, 0.0, 0.4) (0.6, 0.2, 0.2)
V4 (0.6, 0.1, 0.2) (0.2, 0.2, 0.5) (0.4, 0.3, 0.2) (0.7, 0.2, 0.1)
w(1) 0.30 0.25 0.25 0.20

R(2)

V1 (0.6, 0.1, 0.2) (0.5, 0.3, 0.1) (0.5, 0.1, 0.3) (0.2, 0.3, 0.4)
V2 (0.4, 0.4, 0.1) (0.6, 0.3, 0.1) (0.5, 0.2, 0.2) (0.7, 0.1, 0.2)
V3 (0.2, 0.2, 0.3) (0.6, 0.2, 0.1) (0.4, 0.1, 0.3) (0.4, 0.3, 0.3)
V4 (0.6, 0.1, 0.3) (0.1, 0.2, 0.6) (0.1, 0.3, 0.5) (0.2, 0.3, 0.2)
w(2) 0.40 0.30 0.20 0.10

R(3)

V1 (0.2, 0.1, 0.7) (0.4, 0.1, 0.6) (0.5, 0.2, 0.5) (0.2, 0.1, 0.6)
V2 (0.4, 0.3, 0.6) (0.4, 0.2, 0.5) (0.1, 0.2, 0.8) (0.5, 0.3, 0.5)
V3 (0.2, 0.2, 0.7) (0.2, 0.3, 0.7) (0.3, 0.3, 0.7) (0.2, 0.1, 0.7)
V4 (0.5, 0.5, 0.4) (0.2, 0.3, 0.8) (0.2, 0.1, 0.6) (0.3, 0.3, 0.6)
w(3) 0.25 0.30 0.35 0.10

Table 2. PIA & NIA for each expert.

Expert V1 V2 V3 V4

R(1) PIA (0.6, 0.1, 0.1) (0.5, 0.1, 0.3) (0.9, 0.0, 0.1) (0.7, 0.2, 0.1)
NIA (0.4, 0.3, 0.3) (0.2, 0.2, 0.5) (0.4, 0.3, 0.4) (0.3, 0.3, 0.2)

R(2) PIA (0.6, 0.1, 0.1) (0.6, 0.2, 0.1) (0.5, 0.1, 0.2) (0.7, 0.1, 0.2)
NIA (0.2, 0.4, 0.3) (0.1, 0.3, 0.6) (0.1, 0.3, 0.5) (0.2, 0.3, 0.4)

R(3) PIA (0.4, 0.1, 0.4) (0.4, 0.1, 0.5) (0.5, 0.1, 0.5) (0.5, 0.1, 0.5)
NIA (0.2, 0.5, 0.7) (0.2, 0.3, 0.8) (0.1, 0.3, 0.8) (0.2, 0.3, 0.7)

Table 3. Measurement values from ideal alternatives corresponding to each expert.

R(1) R(2) R(3)

(Dλ)
(1)+
i (Dλ)

(1)−
i <

(1)
i (Dλ)

(2)+
i (Dλ)

(2)−
i <

(2)
i (Dλ)

(3)+
i (Dλ)

(3)−
i <

(3)
i

V1 0.1484 0.1844 0.5541 0.1308 0.3137 0.7057 0.1385 0.2449 0.6388
V2 0.1427 0.2172 0.6034 0.1392 0.2964 0.6805 0.2095 0.1725 0.4515
V3 0.1713 0.1870 0.5161 0.2001 0.2655 0.5702 0.2163 0.1238 0.3640
V4 0.2194 0.1637 0.4272 0.2879 0.1885 0.3957 0.2181 0.1590 0.4216

while V1 for the other experts. As the best and worst alternatives change accordingly to the
experts and hence it is hard to grasp and select the optimal one. To defeat the ambiguity, we
consider the expert importance and aggregate their values.

Step 6: Use ξ = (0.25, 0.40, 0.35) of the experts and Eqs. (4.4) and (4.5), we compute the aggregated
values are (D2)+

1 = 0.1379, (D2)−1 = 0.2573, (D2)+
2 = 0.1647, (D2)−2 = 0.2332, (D2)+

3 =
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0.1986, (D2)−3 = 0.1952, (D2)+
4 = 0.2464 and (D2)−4 = 0.1720.

Step 7: Compute =i by Eq. (4.6) and get =1 = 0.6511, =2 = 0.5861, =3 = 0.4957 and =4 = 0.4111.
Since =1 > =2 > =3 > =4 and hence ordering of the alternatives is V1 � V2 � V3 � V4.
Therefore,V1 is the best choice.

Further, to reach the power of the parameter λ on to the process, we modify the parameter λ and
achieve the proposed TOPSIS method on the estimated data. The final optimal ranking of the given
numbers is taken and results are recorded in Table 4. It is obviously seen that the ranking order for all
values of λ is not alike. For instance, when λ = 1, 2 then the optimal alternative has been received as
V1 while the worst one isV4. On the other hand, for other values of λ’s such as λ = 5, 10, . . ., we get
V2 as the best one. Hence, a person can examine the impact of λ during the process and pick the best
one accordingly. This analysis will help the decision-maker to follow the given DMP more profoundly
and encourage him/her to select the parameter according to the requirement of the process. Also, this
parameter makes the approach more manageable as compared to others regarding the selection of the
final decision.

Table 4. Effect of λ on the ranking process.

λ Values of =’s for Ordering
V1 V2 V3 V4

1 0.6876 0.5965 0.5101 0.3804 V1 � V2 � V3 � V4

2 0.6511 0.5861 0.4957 0.4111 V1 � V2 � V3 � V4

5 0.5803 0.5842 0.4972 0.4305 V2 � V1 � V3 � V4

10 0.5512 0.5849 0.5007 0.4371 V2 � V1 � V3 � V4

50 0.5330 0.5874 0.5030 0.4395 V2 � V1 � V3 � V4

100 0.5312 0.5879 0.5033 0.4392 V2 � V1 � V3 � V4

4.3. Validity test

To verify the completion of the stated method, we inquire about their validity through the
following three testing criteria, as established by [41].
Test criteria 1: “An effective decision-making method should not change the indication of the best
alternative on replacing a non-optimal alternative by another worse alternative without changing the
relative importance of each decision criteria”.
Test criteria 2: “An effective decision-making method should follow transitive property”.
Test criteria 3: “When an decision-making problem is decomposed into smaller problems and the
same decision-making method is applied to smaller problems to rank the alternatives, a combined
ranking of the alternatives should be identical to the original ranking of un-decomposed problem”.

4.3.1. Under criterion 1

For the given problem, the best alternative obtained asV1 andV4 as non-optimal. So, to test under
“criteria 1”, we update the rating values of V3 with the arbitrary new values for each expert, and
tabulated in Table 5. Then, by implementing the proposed TOPSIS method on it, we compute the
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final closeness degree =i for each alternative and get =1 = 0.6653, =2 = 0.5938, =3 = 0.4022 and
=4 = 0.4503. Based on it, we easily obtain that V1 � V2 � V4 � V3 and suggest us that V1 is still
best alternative. Therefore, the stated algorithm is valid “under test criteria 1”.

Table 5. Updated rating values ofV3 to each expert.

V1 V2 V3 V4

R(1) (0.2, 0.1, 0.2) (0.4, 0.2, 0.1) (0.3, 0.0, 0.1) (0.5, 0.2, 0.2)
R(2) (0.1, 0.2, 0.4) (0.5, 0.3, 0.1) (0.4, 0.2, 0.4) (0.4, 0.3, 0.3)
R(3) (0.2, 0.4, 0.7) (0.4, 0.3, 0.8) (0.2, 0.4, 0.7) (0.2, 0.3, 0.7)

4.3.2. Testing for criteria 2 and 3

Under it, we split the given problem into three subproblems with consists {V1,V2,V3},
{V2,V3,V4}, and {V3,V4,V1} as an alternative. Now, applying stated algorithm on individual
subproblem and hence obtain their respective ranking as V1 � V2 � V3, V2 � V4 � V3, and
V1 � V4 � V3. By merging all, we get V1 � V2 � V3 � V4, and it states the validity of suggested
method “under test criteria 2”.

4.4. Comparative study

For the comparison view, an examination has been arranged with the existing studies [25,29] under
SVNS and interpreted as follows.

4.4.1. Comparison with approach given by [25]

[25] performed the logarithm similarity-based MCGDM approach to solve the DMPs. We
implement their approach to the considered data and their procedure steps are organized as follows.

Step 1: The information about the alternatives are listed in Table 1.

Step 2: Aggregated the experts preferences by taking average of their numbers and the resultant values
(called as “central decision matrix”) are listed in Table 6.

Table 6. Aggregated values by weighted average.
V1 V2 V3 V4

V1 (0.4333, 0.1000, 0.4000) (0.4667, 0.1667, 0.3667) (0.5667, 0.1333, 0.3333) (0.2000, 0.2000, 0.3667)
V2 (0.4000, 0.3000, 0.3333) (0.4333, 0.2333, 0.3333) (0.5000, 0.1333, 0.3667) (0.5667, 0.2333, 0.3000)
V3 (0.2667, 0.2333, 0.3667) (0.4333, 0.2000, 0.3667) (0.4000, 0.1333, 0.4667) (0.4000, 0.2000, 0.4000)
V4 (0.5667, 0.2333, 0.3000) (0.1667, 0.2333, 0.6333) (0.2333, 0.2333, 0.4333) (0.4000, 0.2337, 0.3000)

Step 3: From the values of Table 6, we compute the ideal alternativeV∗ as

V∗ =

(0.5667, 0.1000, 0.3000), (0.4667, 0.1667, 0.3000),
(0.5667, 0.1333, 0.3000), (0.5667, 0.2000, 0.3000)


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Step 4: Compute the attribute weights ωi by

ωi =
1 − E j

n −
n∑

j=1
E j

where E j = 1 − 1
n

m∑
i=1

[(
ςi j + υi j

)
log2

(
2 − τ2

i j

)]
and hence we get ω = (0.2283, 0.2406, 0.3311,

0.2000)T .

Step 5: With information ω, we compute the logarithm similarity (LS ) values

LS (Vi,V
∗) =

1
n


1
2

m∑
i=1

ωi log4
(
4− | ςVi − ςV∗ | − | τVi − τV∗ | −υVi − υV∗ |

)
+

1
2

2∑
i=1

ωi log2
(
2 −max

(
| ςVi − ςV∗ |, | τVi − τV∗ |, υVi − υV∗ |

))


of each alternative from V∗ and get LS (V1,V
∗) = 0.9461, LS (V2,V

∗) = 0.9517,
LS (V3,V

∗) = 0.9095 and LS (V4,V
∗) = 0.8643 respectively.

Step 6: Based on these values, we obtain V2 � V1 � V3 � V4 as ranking and hence V2 is best
choice.

4.4.2. Comparison with approach given by [29]

By implementing the TOPSIS approach as given by [29] on to the considered data, we initially take
all the experts and criteria at the same level. Then, to execute their approach, we aggregate the different
expert preferences by using WA operator as suggested by [5]. Based on their obtained values, PIA
(V+) and NIA (V−) are obtained asV+ = {(V1, 0.5691, 0.1000, 0.2621), (V2, 0.4687, 0.1442, 0.2714),
(V3, 0.6443, 0.0000, 0.2520), (V4, 0.5783, 0.1817, 0.2289)} and V− = {(V1, 0.2732, 0.2289, 0.3476),
(V2, 0.1680, 0.2289, 0.6214), (V3, 0.2440, 0.2080, 0.4380), (V4, 0.2348, 0.2621, 0.3476)}, respectively.
Now, by utilizing Euclidean distance betweenVi and PIA/NIA, we compute the closeness degrees Ci’s
as C1 = 0.6152, C2 = 0.7381, C3 = 0.5402 and C4 = 0.3727. Thus, ordering areV2 � V1 � V3 � V4

and the best alternative isV2.
From the above-computed decisions, it is analyzed that, the best alternative, as well as the ordering

position of other alternatives obtained by using current approaches, is not alike to the proposed
approach. However, these changes are evident as in both existing approaches all decision matrices are
collaborated into a single matrix by some idea and then final results are decided. But the proposed
approach offers the decision based on each decision-maker and then search the final decision by
considering the decisions of all the experts. Moreover, in our approach, each decision-maker has
his/her weight vector for criteria but in the existing approaches, this can never be accessible. Thus, we
can say that the proposed approach is somehow superior to the existing approaches.

5. Proposed clustering method

In this section, we present a novel SVN cluster method based on the proposed similarity measure
S to cluster the heterogenous object in the homogenous way. The description of the analysis is given
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hereafter.

Definition 5.1. [36] For a collection of SVNNs Vi, a matrix N̄ = (sik)m×m, where sik = Sλ(Vi,Vk),
(i, k = 1, 2, . . . ,m) is called as Similarity matrix between the SVNNs. Also, the matrix N̄ has the
following properties:

(i) 0 ≤ sik ≤ 1;

(ii) sii = 1;

(iii) sik = ski; where i, k = 1, 2, . . . ,m.

Definition 5.2. [42] A matrix N̄2 = N̄ ◦ N̄ = (s̃i j)m×m where s̃ik = max
v
{min(siv, svk)}m×m is called

similarity composition matrix.

Definition 5.3. [42] If N̄2 ⊆ N̄ i.e. max
u

(
min(siu, suk)

)
≤ sik ∀ i, k, then N̄2 is termed as “equivalent

similarity matrix (ESM)”.

Definition 5.4. [42] For similarity matrix N̄ = (sik)m×m, and in the compositions N̄ → N̄2 → N̄4 →

. . .→ N̄2z
→ . . ., ∃ z ∈ Z+ such that N̄2z

= N̄2z+1
and then N̄2z

is also an ESM.

Definition 5.5. [42] For an ESM N̄ = (sik)m×m, the matrix N̄α = (s̃αik)m×m is termed α−cutting matrix
of N̄, where

s̃αi j =

{
0 ; s̃ik ≤ α

1 ; s̃ik ≥ α

where α ∈ [0, 1] is the confidence level.

Next, we present a clustering algorithm based on proposed measure Sλ whose description are as
follows.

Assume m alternatives {Q1,Q2, . . . ,Qm} which are described by n criteria {B1,B2, . . . ,Bn}. These
choices are assessed by an expert in terms of SVNNs. The target of this task is to classify the given
Qi’s into their equivalence classes. For it, a method has been suggested which are summarized in the
following steps:

Step 1: Construct the similarity matrix N̄ = (sik)m×m, sik = Sλ(Vi,Vk), (i, k = 1, 2, . . . ,m). Here Sλ is
computed by Eq. (3.2).

Step 2: Obtain the ESM N̄2p
, N̄ = (s̃ik)m×m by making use of composition of matrices as given in

Definition 5.2.

Step 3: Construct the α− cut matrix N̄α = (s̃αik)m×m by Definition 5.5.

Step 4: Classify the identical Qi and Qk into the same class. .

The above mentioned algorithm is demonstrated through an example as
Consider five brands of mobile phones, say, Q1,Q2,Q3,Q4,Q5, which are selected under the six

criteria, namely price of mobile phone (B1), appearance (B2), memory (B3), operating system (B4),
performance (B5) and processor (B6). The aim is to classify the phones with these criteria. An expert
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Table 7. Rating values of each object.
V1 V2 V3 V4 V5 V6

Q1 (0.3, 0.2, 0.5) (0.6, 0.3, 0.1) (0.4, 0.3, 0.3) (0.8, 0.1, 0.1) (0.1, 0.3, 0.6) (0.5, 0.2, 0.4)
Q2 (0.6, 0.3, 0.3) (0.5, 0.4, 0.2) (0.6, 0.2, 0.1) (0.7, 0.2, 0.1) (0.3, 0.1, 0.6) (0.4, 0.3, 0.3)
Q3 (0.4, 0.2, 0.4) (0.8, 0.2, 0.1) (0.5, 0.3, 0.1) (0.6, 0.1, 0.2) (0.4, 0.1, 0.5) (0.3, 0.2, 0.2)
Q4 (0.2, 0.4, 0.4) (0.4, 0.5, 0.1) (0.9, 0.2, 0.0) (0.8, 0.2, 0.1) (0.2, 0.3, 0.5) (0.7, 0.3, 0.1)
Q5 (0.5, 0.3, 0.2) (0.3, 0.2, 0.6) (0.6, 0.1, 0.3) (0.7, 0.1, 0.1) (0.6, 0.2, 0.2) (0.5, 0.2, 0.3)

gives the rating of each phone over B j’s in terms of SVNNs. The complete summary of their ratings
are listed in Table 7. To implemented the stated algorithm, we choose λ = 2 and β1 = β2 = β3 = 1/3.

Now, we utilize the proposed measure S to assemble the phones Qi, which involves the subsequent
steps:

Step 1: By using Eq. (3.2), calculate the degrees of similarity between the phones cars i.e., S(Qi,Qk)
(i,k=1,2, . . . , 5). Thus, a similarity matrix N̄ is obtained as:

N̄ =




1.0000 0.8637 0.8576 0.8100 0.7687
0.8637 1.0000 0.8791 0.8309 0.8450
0.8576 0.8791 1.0000 0.7896 0.8055
0.8100 0.8309 0.7896 1.0000 0.7836
0.7687 0.8450 0.8055 0.7836 1.0000

Step 2: Compute the matrix N̄2, using Definition 5.2, given as:

N̄2 = N̄ ◦ N̄ =




1.0000 0.8637 0.8637 0.8309 0.8450
0.8637 1.0000 0.8791 0.8309 0.8450
0.8637 0.8791 1.0000 0.8309 0.8450
0.8309 0.8309 0.8309 1.0000 0.8309
0.8450 0.8450 0.8450 0.8309 1.0000

Since N̄2 , N̄, therefore we compute N̄4.

N̄4 = N̄2 ◦ N̄2 =




1.0000 0.8637 0.8637 0.8309 0.8450
0.8637 1.0000 0.8791 0.8309 0.8450
0.8637 0.8791 1.0000 0.8309 0.8450
0.8309 0.8309 0.8309 1.0000 0.8309
0.8450 0.8450 0.8450 0.8309 1.0000

Since, N̄4 = N̄2, therefore, N̄2 is an ESM.
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Step 3: Assume α = 0.8637 and by Definition 5.5, N̄α becomes

N̄α =




1 1 1 0 0
1 1 1 0 0
1 1 1 0 0
0 0 0 1 0
0 0 0 0 1

(5.1)

Step 4: From Eq. (5.1), we divide Qi into three classes as

{Q1,Q2,Q3}, {Q4} and {Q5}

This means the phones Q1,Q2 and Q3 are more similar to each other than that of the alternative
in other clusters.

Further, by examining the various α− cuts, we get the different classes. Thus, a comprehensive analysis
based on the α− cut is placed in Table 8. From this Table 8, we recognize that the decision-maker has
only one way to partition the set of alternatives in a particular number of classes. The above review
unfolds the importance of different values of confidence level α on the clustering process and also
investigates the role of α in the flexibility of the algorithm.

Table 8. Different clustering classes for different confidence levels.

Class Confidence level Clustering results
1 0.0000 ≤ α ≤ 0.8309 {Q1,Q2,Q3,Q4,Q5}

2 0.8309 < α ≤ 0.8450 {Q1,Q2,Q3,Q5}, {Q4}

3 0.8450 ≤ α ≤ 0.8637 {Q1,Q2,Q3}, {Q4}, {Q5}

4 0.8637 ≤ α ≤ 0.8791 {Q1},{Q2,Q3}, {Q4} , {Q5}

5 0.8791 ≤ α ≤ 1.0000 {Q1},{Q2},{Q3}, {Q4}, {Q5}

However, the value of confidence level α is chosen by a decision-maker from 0(smallest) to
1(biggest). Based on their values, we summarize the clustering results and their corresponding α-level
matrices whose description are given as

1) If 0 ≤ α ≤ 0.8309,

N̄α =




1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
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2) If 0.8390 < α ≤ 0.8450,

N̄α =




1 1 1 0 1
1 1 1 0 1
1 1 1 0 1
0 0 0 1 0
1 1 1 0 1

3) If 0.8450 < α ≤ 0.8637,

N̄α =




1 1 1 0 0
1 1 1 0 0
1 1 1 0 0
0 0 0 1 0
0 0 0 0 1

4) If 0.8637 < α ≤ 0.8791,

N̄α =




1 0 0 0 0
0 1 1 0 0
0 1 1 0 0
0 0 0 1 0
0 0 0 0 1

5) If 0.8791 < α ≤ 1,

N̄α =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

From above α− cutting matrices, it can easily noticed that when 0 ≤ α ≤ 0.8309, 0.8309 < α < 0.8450,
0.8450 < α ≤ 0.8637, 0.8637 < α ≤ 0.8791 and 0.8791 < α ≤ 1, the alternatives are classified into
1,2,3,4 and 5 classes respectively. This reflects that as given alternatives are more differentiated with
increase of α value.

6. Advantages of the proposed work

The major benefits from the proposed approach over the existing approaches are listed as below.

1) This paper highlights the significance of taking the idea of agreeness, falsity, and disagrees in one
envelop in form of SVNSs. As in real DM problems, the degree of membership and
nonmembership may work independently, so this generalization of IFSs is more superior and
innovative in the evaluation of the information.

AIMS Mathematics Volume 5, Issue 3, 2671–2693.



2690

2) The proposed methodology is extremely flexible due to the presence of the parameter λ in the
formulation of both proposed measures. Due to the presence of the parameter, the decision-maker
has the opportunity to give his/her decision by taking different semantics in his mind. This makes
the proposed work more friendly and impressionable for the decision-maker who is working on
different kinds of DM processes.

3) The proposed method practices the notion of TOPSIS for making the final decision. In this
approach, the raking results are finding not by aggregating all the decision matrices but evaluated
firstly based on the individual decision-maker and then get a final decision by considering the
results given by each decision-maker. In this manner, this approach displays the individual as well
as the aggregated decision on the final choice by considering the reference points.

4) Moreover, the proposed similarity measure can be used to cluster the heterogeneous data which is
used in various concepts like data mining, image processing, DM problems, medical imaging and
so on.

7. Conclusion

The key contribution of the work can be summarized below.

1) The examined study employs the three independent degrees namely MD, NMD and degree of
indeterminacy to check the vagueness in the data.

2) This paper offers new distance measures for estimating the degree of discrimination between the
two or more SVNSs. Traditionally, all the measurements are computed by using either Hamming
or Euclidean distance measures [18–20], which may not furnish the proper choice to the expert. To
succeed it, revised distance measures are injected in this work which supplies an alternative way to
trade with the SVNN information.

3) An extended TOPSIS method has been introduced with the stated distance measures and by
consideration the multi-experts. The advantages of the stated method are that it not only taken into
the account the degree of discrimination but also takes the degree of similarity between the
observation, to avoid the decision only based on the small distances. Also, the ideal alternatives
i.e., PIA (V+) and NIA (V−) are considered as constant rather it is dependent on the given
observation. Finally, the presented TOPSIS method is based on the additional parameter λ which
will make a decision maker flexible to choose their alternatives based on their preferences or goals.

4) The MCGDM algorithm based on the recommended TOPSIS is explained, which is more
generalized and flexible with the parameter λ to the decision-maker. The significance of the
parameter λ is shown in detail (Table 4). To sustain their performance, a validity test is examined
which ensures their reliableness and preciseness.

5) A new clustering algorithm is presented based on the proposed similarity measures under the
different confidence levels of the expert. The main objective of this algorithm is to classify the
heterogenous objects into the homogenous classes. The applicability of this algorithm is explained
with a numerical example and classify the objects with different levels of preferences of the expert.
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In the future, we shall lengthen the application of the proposed measures to the diverse fuzzy
environment as well as different fields of application such as supply chain management, emerging
decision problems, brain hemorrhage, risk evaluation, etc [43–47].
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