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Abstract: In this article, we present an adaptive color
similarity function defined in a modified hue-saturation-
intensity color space, which can be used directly as a
metric to obtain pixel-wise segmentation of color images
among other applications. The color information of every
pixel is integrated as a unit by an adaptive similarity
function thus avoiding color information scattering. As a
direct application we present an efficient interactive,
supervised color segmentation method with linear com-
plexity respect to the number of pixels of the input image.
The process has three steps: (1) Manual selection of few
pixels in a sample of the color to be segmented. (2) Auto-
matic generation of the so called color similarity image
(CSI), which is a gray level image with all the gray level
tonalities associated with the selected color. (3) Auto-
matic threshold of the CSI to obtain the final segmenta-
tion. The proposed technique is direct, simple and
computationally inexpensive. The evaluation of the effi-
ciency of the color segmentation method is presented
showing good performance in all cases of study. A com-
parative study is made between the behavior of the pro-
posed method and two comparable segmentation
techniques in color images using (1) the Euclidean metric
of the a* and b* color channels rejecting L* and (2) a
probabilistic approach on a* and b* in the CIE L*a*b*
color space. Our testing system can be used either to
explore the behavior of a similarity function (or metric)

in different color spaces or to explore different metrics
(or similarity functions) in the same color space. It was
obtained from the results that the color parameters a*
and b* are not independent of the luminance parameter
L* as one might initially assume in the CIE L*a*b*
color space. We show that our solution improves the
quality of the proposed color segmentation technique and
its quick result is significant with respect to other solu-
tions found in the literature. The method also gives a
good performance in low chromaticity, gray level and
low contrast images.
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INTRODUCTION

Image segmentation consists of partitioning an entire

image into different regions, which are similar in some

predefined manner.1,2 Segmentation is an important fea-

ture of human visual perception, which manifests itself

spontaneously and naturally. It is an important and diffi-

cult task in image analysis and processing. All subsequent

steps, such as object recognition depend on the quality of

segmentation.1–3

*Correspondence to: E. M. Felipe-River�on (e-mail: edgardo@cic.ipn.mx)

Contract grant sponsor: Universidad Nacional Aut�onoma de M�exico

(UNAM); contract grant numberss: PAPIIT IN112913, PIAPIVC06.

VC 2016 Wiley Periodicals, Inc.

1



Color is an effective and robust visual feature to differ-

entiate objects in an image. It is an important source of

information in the segmentation process and may in many

cases be used as a unique feature to segment objects of

interest.3

At present, a large number of segmentation techniques

are available for color images, but many of them are

monochromatic methods applied on the individual planes

in different color spaces where the results are combined

later in different ways.4 A common problem with this

approach is that when the color components of a particu-

lar pixel are processed separately, the color information is

so scattered in its components that much of the color

information is lost.3–6

In this work, an adaptive color similarity function

defined in a modified hue-saturation-intensity (HSI) color

space is presented, which can be used directly as a metric

to obtain pixel-wise segmentation of color images among

other applications. As a direct application we present a

very efficient interactive, supervised color segmentation

method with linear complexity respect to the number of

pixels of the input image, together with its characteriza-

tion and evaluation. It basically relies on the calculation

of a color similarity function for every pixel in a red-

green-blue (RGB) 24-bit true color image. The color

information of every pixel is integrated as a unit thus

avoiding color information scattering.

The three color components of every pixel in RGB color

model transformed to a modified HSI color model are inte-

grated in two steps: in the definitions of distances in hue,

saturation and intensity planes ½Dh;Ds;Di� and in the con-

struction of an adaptive color similarity function that com-

bines these three distances assuming normal probability

distributions. To obtain a consistent color model for direct

color comparisons, some modifications to the classical HSI

color space were necessary. These modifications eliminated

the discontinuities occurring in the red hue (in 08 and

3608) and the problems associated with them.

One weakness in the classical characterization of the

achromatic region as presented in Plataniotis and Venet-

sanopoulos (2000) is its poor performance in the border

regions of achromatic and chromatic zones, both in low

and high brightness. This is due to the fact that the com-

monly used HSI color model does not take into account

the human visual response at low and high brightness.

Human vision has a nonlinear perceptual response to

luminance.7 We deal with this problem by modifying the

saturation value of every pixel by a factor that reflects the

human exponential response to brightness.

For some time, the development of segmentation algo-

rithms attracted remarkable consideration compared with the

relatively fewer efforts spent on their evaluation and charac-

terization.8–11 Since none of the proposed automatic segmen-

tation algorithms published is generally applicable to all

types of images and different algorithms are not equally suit-

able for particular applications, the performance evaluation

of segmentation algorithms and its characterization are very

important subjects in the study of segmentation.9

For a long time the evaluation was limited to few real

images acquired from a particular application, which has

the advantage that they are closer to reality, although its

intrinsic random nature makes them unsuitable for analyti-

cal evaluation.8,9,12 Many undetermined characteristics of

those images make them practically impossible to be used

to compare different segmentation techniques because

many phenomena are mixed, which makes it difficult to

study each one’s influence individually.9 Another problem

comes from the lack of a ground truth (GT) which has to

be obtained from “experts” whose results have intrinsic

differences. This subjective and imprecise procedure is not

appropriate for quantitative evaluation.8,12

So far segmentation evaluation methods can be divided

into two groups: analytical and empirical. The analytical

methods directly inspect and evaluate the segmentation

algorithms themselves analyzing their principles and

properties. The empirical methods indirectly judge the

efficiency of segmentation algorithms applying them to

test images and measuring the quality of the results.9–11

Several empirical methods have been proposed; the great

majority of them can be classified as one of two types:

goodness methods and discrepancy methods. In the first

category, some desirable properties of segmented images,

are often established according to human intuition, and

measured by “goodness parameters”. The performances of

the segmentation algorithms are judged by the values of

goodness measures. In the second group, the GT that

presents the ideal or expected segmentation result must

first be found. The actual segmentation results obtained by

applying a segmentation algorithm are compared with the

reference to count their differences. The performances of

the segmentation algorithms under investigation are then

estimated according to discrepancy measures.8–11

To evaluate and characterize our system, we generated

synthetic color images with the associated GT. The syn-

thetic images where designed to evaluate the efficiency of

achieved color information from given segmentation algo-

rithms. By the use and analysis of receiver operating

characteristic (ROC)13 curves and graphs, we obtained

some proper characteristics of the segmentation method

under study such as its stability related to the threshold

selection and to the selection of an appropriate number of

pixels required by the color samples.

The rest of the article is organized as follows: Previous

Works section briefly reviews previous works in the field.

In Description of the Method section, the proposed

method is described in detail. Some results on real and

low contrast images are presented and discussed in

Results on Real and Low Contrast Images section. In the

next section, the design and generation of synthetic

images for the evaluation and characterization of the seg-

mentation method are explained and discussed. Also

Benchmark Testing section presents a comparative study

between our method and two different implementations in

the CIE L*a*b* color space: (1) Minimum Euclidean Dis-

tance of a* and b* channels discarding L* and (2) A
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probabilistic approach on a* and b* channels. Concluding

remarks are drawn in Conclusions section.

PREVIOUS WORKS

In recent years, considerable effort has been devoted to the

problem of color segmentation in digital images given its

importance and potential. Until recently, the majority of

published approaches for the segmentation of color were

based on monochromatic techniques applied to each color

component of the image in different color spaces (RGB or

other) and in different ways to produce a color composite.

These approaches have an inherent problem of significant

loss of color information during the process.4 Currently

available approaches and techniques in image segmentation

vary widely: those based on mathematical morphology,14

clustering in L*a*b* color space,15 computational topol-

ogy,16 biogeography based optimization,17 neutrosophic

sets,18 multi-scale roughness measures,19 comprehensive

learning particle swarm optimization,20 wavelets,18,21,22 qua-

ternions,23 among others, but it is still an open problem.

Proper selection of the color space for color image

processing is a very important aspect to be taken into

account.5 The representation in the RGB color space has

several known drawbacks5 but it is used in paper23 in a

novel form using quaternions. Several works15,17,18,21 use

CIE L*a*b* or L*u*v* color spaces, which have some

advantages, such as the separation of lightness informa-

tion (L), as well as handling the chromatic color similar-

ity as the Euclidean distance between the independent

channels a*b* (or u*v*). These representations have the

disadvantage that when managing the information of satu-

ration and hue jointly in a*b* (or u*v*) channels, it is

difficult to predict whether the similarity is due to some/

one of these variables. In this article we present an

improved color HSI space that keeps concordance with

human color perception while eliminating known discon-

tinuities of the classic HSI color space.

A comparative study24 between several perceptually uni-

form color spaces (specifically: L*a*b*, L*u*v* and Rlab)

are presented in order to establish which color space is bet-

ter for the segmentation of natural images. To perform the

comparison, an empirical discrepancy method is used. This

method needs a GT as “ideal” model of segmentation and

calculates how the segmentation approaches this “ideal.”

The used ideal segmentation was made by different people

on the Berkeley Segmentation Dataset. Only color infor-

mation was used for comparative testing and excluded

others. In the benchmark, two approaches were used:

(1) supervised classification of pixels and (2) unsupervised

classification using K-means. As a reference the threshold

operator of the intensity image in RGB was used.

As a result they conclude that with the color space

L*u*v*, the best results was obtained in both average dis-

crimination capabilities and speed of processing.

Segmentations assessments made by individuals have

intrinsic differences due to subjective errors to assess the

significance of objects in the scene.25 As for the method of

assessing results, one can see that the results taken as ideal

in the Berkele�ys dataset differ for different evaluators; the

authors do not mention how they integrated the different

segmentations for their ideal model of segmentation.

A semi-automatic segmentation algorithm for natural

images is presented in ref. 26. The user first selects dif-

ferent regions of interest using simple scribbles and apart

from them the whole image is segmented automatically.

To achieve this task, weighted distances from the scrib-

bles are calculated. The weighting is obtained starting

from a number of Gabor filters to locate texture in the

image.

In this method, the minimum geodesic distance were

calculated considering only changes in luminosity as a

weighting factor. The color similarity function proposed

could be integrated in the calculation of the weights and

in this way might improve their results, making the geo-

desic distance sensitive to homogeneity of color and not

only to luminance.

Bai and Sapiro present a semi-automatic algorithm for

natural images and video segmentation.27 Their technique

is based on calculating a weighted geodesic distance from

every pixel to user-generated scribbles. Scribbles given

by the user are much simplified compared to others sys-

tems because the user only needs to draw a line that

crosses the region of interest. Their system can handle

partial occlusions.

Weights for the geodesic distance are calculated

according to changes in the probability that the pixel

belongs to the object of interest. In this work, this proba-

bility is calculated from scribbles made by the user in the

L*u*v* color space. The color model and similarity func-

tion proposed in this article could also be integrated into

this system. The weights could be calculated according to

the gradient of the color similarity function.

Rother et al. present a semi-automatic segmentation

method for objects of interest in complex backgrounds.28

The method integrates information from homogeneous

regions and edges. The segmentation is performed by mini-

mizing an energy function where the information of the

homogeneous regions and the edges are integrated. The

work uses the RGB color space and Gaussian Mixture mod-

els for each pixel. As input from the user, the algorithm only

needs a roughly frame of the object of interest. From this

input, it is inferred that the square is located at the back-

ground and the object is contained in the box. A comparative

study of the state of the art from different commercial semi-

automatic systems is done. It is shown how their method

requires less effort from the user.

Vaitkus and V�arady present an image segmentation

algorithm based on tools from computational algebraic

topology and Morse theory.16 They assign a quantity

called persistence to its topological features, measuring

their lifetime in the construction. In combination with

concepts from Morse theory, they construct and simplify

a watershed type segmentation of the complex. For color

images, they apply a general algorithm on the
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neighborhood graph of the point cloud representing the

image in color space, which is filtered by Gaussian den-

sity estimation.

A biogeography based optimization approach for auto-

matic color segmentation is proposed by Gupta et al.17

Biogeography is the study of the geographical distribution

of biological organisms, which is basically an evolution-

ary process that achieves information sharing by species

migration. They use clusters in the L*a*b* color space

(homogeneous regions) as habitats that are modified over

time by rules of the field of biogeography. The optimiza-

tion algorithm is similar to learning particle swarm opti-

mization with some differences in their rules such as not

to create children.

A novel method of automatic segmentation using neu-

trosophic sets representation and multi-resolution wavelet

transformation analysis18 is presented by Sengur and Gao.

It uses both the color information (in the L*u*v* color

space) and texture segmentation. Wavelet analysis allows

the characterization of texture and a value of entropy to

be obtained, which is used in the characterization of the

color image with neutrosophic sets. Each pixel of the

image is represented as a neutrosophic set, operations

defined in this field being applicable.

Yue et al. present a multi-scale roughness measure

based on simulating human vision.19 They applied theo-

ries of linear scale-space and rough sets to generate the

hierarchical roughness of color distribution on multiple

scales. The segmentation algorithm is based on multi-

scale roughness measure applied to color histograms.

They proposed the roughness entropy for scale selection

based on information variation.

An automatic segmentation method based on fuzzy sets

and comprehensive learning using particle swarm optimi-

zation20 is presented by Puranik et al. Fuzzy sets are

defined on the hue-saturation-luminosity color space. Dur-

ing the search process, a population member tries to max-

imize a fitness criterion at every iteration, which is a high

classification rate and small number of rules. Finally, the

particle with the highest fitness value is selected as the

best set of fuzzy rules for image segmentation.

Huang et al. address the problem of image segmenta-

tion under the paradigm of clustering-then-labeling.5 They

present an improved clustering algorithm, which could

maintain good coherence of data in feature space and is

used to do clustering on the L*a*b* color feature space

of pixels. Rather than calculate the characteristics of each

pixel, they are computed from atomic regions with homo-

geneous color characteristics called super-pixels. Image

segmentation is straightforwardly obtained by setting each

pixel with its corresponding cluster.

In ref. 23 Shi and Funt present a method using quater-

nion representation of color to segment the image into

regions with similar color and texture. The advantage of

using quaternion arithmetic is that a color can be repre-

sented and analyzed as a single entity. Each color compo-

nent RGB input image is matched to each imaginary

basis i, j, k of the quaternion that represents each pixel in

the image. The real component of the quaternion is

related to texture.

Celik and Tjahjadi present an unsupervised color image

segmentation algorithm, which uses multi-scale edge

information and spatial color content.21 The multi-scale

edge information is extracted using the dual-tree complex

wavelet transform. Binary morphological operators are

applied to the edge information to detect seed regions.

The segmentation of homogeneous regions is obtained

using region growing followed by region merging in the

CIE L*a*b* color space.

A database25 containing GT from segmentations pro-

duced manually by a group of people from a wide variety

of color natural scenes is presented by Martin et al. The

authors define two related error measures that quantify

the consistency between segmentations of different granu-

larities. This measure permits comparisons to be made

between segmentations made by people and segmenta-

tions of the same scene made by the computer.

Kim et al. propose a color modeling in HSI color space

considering intensity information by adopting the B-spline

curve fitting to make a mathematical model for statistical

characteristics of a color with respect to intensity.29 The

statistical characteristics contain the mean and standard

deviation of hue and saturation with respect to intensity.

The proposed algorithm was successfully applied to color

images under various illumination conditions.

Harun et al. present a technique for segmenting acute

leukemia images.30 The segmentation technique segments

each leukemia image into two regions: blast and back-

ground. In their approach, the segmentation is based on

both HSI and RGB color spaces. The performance com-

parison between the segmentation algorithms is carried

out to choose a better color image segmentation for blast

detection. Their results show that the segmentation based

on HSI color space has successfully segmented the acute

leukemia images while removing background noise.

A color image segmentation scheme based on unsuper-

vised pixel classification is presented by Macaire et al. in

Ref. 31. When color points of different regions in the

image produce a single cluster in the color space, the

scheme splits this cluster into sub-populations of color-

points defined by color-domains. For this purpose, the

connectedness and the color homogeneity properties of

color-subsets of pixels are analyzed in order to construct

the classes, which correspond to the actual regions in the

image.

The first comprehensive survey9 on evaluation methods

of image segmentation is compiled by Zhang. It brings a

coherent classification of existing methods at that time. Pro-

gress made in the subject during the 5 years after the first

survey is presented in Ref. 10. Another actualization is pre-

sented five years later11 embracing together the principal

methods of segmentation evaluation available up until 2007.

Chabrier et al. present a comparative study of 14 eval-

uation criteria of supervised image segmentation methods

by generating edges.32 The study was done in two parts:

(1) evaluation with synthetic images to characterize the
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general behavior of the algorithm that is complemented

by (2) an assessment over a selection of real color

images. To obtain the GT from different people’s seg-

mentations, the authors mention that their propositions

were merged but do not give details of how they accom-

plished it.

A comprehensive survey on unsupervised methods of

segmentation evaluation is presented in Ref. 8. Zhang

et al. propose a hierarchy of published methods at that

time by summarizing the main branches and locating the

group of unsupervised methods on it. They mention its

advantages, such as no requirement for GT to obtain

quantitative results. They also propose the main lines of

future research for this kind of methods.

A way to design synthetic images and a corresponding

GT for evaluating segmentation algorithms is presented by

Zhang and Garbrands.12 The authors introduce a general

framework and general design considerations. They also

present a system for generating synthetic images in shades

of gray taking into account their design considerations. The

behavior of a segmentation method in gray images using a

threshold operator is studied and some remarks are obtained.

DESCRIPTION OF THE METHOD

The segmentation method proposed in this article relies on

the calculation of a color similarity function for every pixel

in a RGB 24-bit true color image to form what we call a

color similarity image (CSI), which is a gray level image.

A true color image usually contains millions of colors, and

many thousands of them represent the same perceived

color of a single object due to the presence of additive

noise, lack of definition between color borders and regions,

shadows in the scene, the spatial resolution of the human

vision system, and so forth.1–3 The proposed color similar-

ity function allows the clustering of the many thousands of

colors representing the same perceived color in a single

gray output image. The CSI is then automatically thresh-

olded, and the output can be used as a segmentation layer

or template, or it can be modified previously with morpho-

logical operators to introduce geometric enhancements if

they are needed. The generation of a CSI only requires cal-

culating Eq. (1) (below) for every pixel in the RGB input

image. Thus, the complexity is linear with respect to the

number of pixels in the source image and for that reason is

inexpensive computationally.

First, we compute the color centroid and color standard

deviation of a small sample consisting of a few pixels

(less than 15 pixels per color as average) of the desired

color. The computed centroid represents the desired color

to be segmented using the technique we designed for that

purpose. Then, our color similarity function uses the color

standard deviation calculated from the pixel sample to

adapt the level of color scattering in the comparisons.

The result of a particular similarity function calculation

for every pixel and the color centroid (meaning the simi-

larity measure between the pixel and the representative

color value) generates the CSI. The generation of this

image is the basis of our method and preserves the infor-

mation of the color selected from the original color

image. This CSI is a discrete representation in the range

[0–255] of a continuous function whose values are in the

normalized range [0–1]. The CSI can be thresholded with

any automatic threshold method. To obtain the results

presented in this work we used Otsu’s method.33,34

To generate a CSI we need: (1) A color image in RGB

24-bit true color format and (2) A sample of arbitrarily

selected pixels forming a sample of the color desired to

be segmented. From this sample of pixels, we calculate

the statistical indicators according to our modified HSI

color model, which can be consulted in Alvarado (2006).

This information is necessary to adapt the color similarity

function in order to obtain good results. To obtain the

CSI, we calculate for every pixel ði; jÞ in the image the

following color similarity function S [Eq. (1)].

Si;j5e

�
2Dh

2

2rh
2

�
� e

�
2Ds

2

2rs2

�
� e

�
2Di

2

2ri
2

�
(1)

where Dh is the hue distance between hue (i, j) and the

average_hue; Ds is the saturation distance between satura-

tion (i,j) and the average_saturation; Di is the intensity

distance between intensity (i, j) and the average_intensity;

rh is the hue standard deviation of the sample; rs is

the saturation standard deviation of the sample; ri is the

intensity standard deviation of the sample. In Eq. (1), the

color information is integrated giving high importance to

small perceptual changes in hue, as well as giving wide

or narrow tolerance to the intensity and saturation values

depending on the initial sample, which is representative

of the desired color to be segmented.

The statistical values needed in Eq. (1) are calculated

as follows3:

saturation average5Sc5
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i51
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Intensity average5Ic5
1
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i50
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Hue standard deviation5rh5
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i51

D2
hðiÞ

n
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saturation standard deviation5rs5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i51

D2
sðiÞ

n

vuuut
:

intensity standard deviation5ri5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i51

Ds
iðiÞ

n

vuuut
:

where n is the number of pixels in the sample.

The common disadvantages attributed to the HSI color

space such as the irremovable singularities of hue in very

low saturations or the periodical nature of hue,4 which is

lost in its standard representation as an angle 2 ½0�; 36��,
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are overcome in our technique using vector representation

in <2, in the separation of chromatic and achromatic

regions, and in the definition of the Dh;Ds;Di. Distance

details can be consulted in Ref. 3.

Two modifications on standard HSI color space were

necessary in order to create a consistent model to repre-

sent colors and color centroids:

1. Representation of hue. Instead of standard representa-

tion of hue as an angle in the range [08–3608], hue is rep-

resented here as a normalized vector in <2 (with

magnitude 1 or 0). This representation has at least three

advantages compared to an angle in the range [08–3608]:

(a) the existing discontinuity in 3608 and 08 is elimi-

nated; (b) the average hue of a group of pixels can be

understood as the resulting angle of a vector addition of

the color pixels in the chromatic region of the sample,

giving a simple manner to calculate the average hue;

(c) setting magnitude to 0 or 1 works as a flag intended

for distinction between chromatic or achromatic regions.

2. Separation of chromatic and achromatic regions. The

separation of the region as described in Ref. 7 is used to

calculate the average hue and Dh.Once Dh, Ds, and Di

have been calculated this distinction is no longer neces-

sary because in the formulation of Si;j [Eq. (1)] all the

cases of color comparison between zones are accounted

for, and it is a simple matter to maintain consistency.

The use of Gaussians in the definition of Si;j [in Eq. (1)]

reflects our belief that the color model modifications

proposed in this article allow normal distributions of the

color characteristics in this modified HSI color space

according to the visual experience of color similarity.

Pixel Sample Selection

The pixel sample is a representation of the desired col-

or(s) to be segmented from a color image. The selection

of the pixel sample is the only step to be left up to the

user. From this pixel sample, two values are calculated to

feed our segmentation algorithm: the color centroid and a

measure of the dispersion from this centroid, in our case

the standard deviation. These two values are represented

according to our modified HSI model.3

If only one pixel is taken, its color would represent the

color centroid, and would produce dispersion equal to

zero, giving a Dirac delta in the calculation of Eq. (1).

This means that the similarity function would be strictly

discriminative to the pixel color. This is not the general

intention of segmenting color images which usually con-

tain millions of colors, many thousands of them are due

to additive noise. Thus, we used a small value for disper-

sion equal to 0.001 in the case of one pixel per sample.

If another pixel is additionally taken, the centroid of

both and their standard deviation are then obtained to

feed our algorithm. So when an additional pixel is

selected, it must be taken from a region which was not or

was poorly segmented when the first pixel was used. This

means that in order to obtain good results the pixels for

the sample should be taken from the color regions in

such a form that they must constitute a good representa-

tion of the color variations in the region.

We have found that if more and more pixels are added to

the sample, the corresponding centroid of the area to be seg-

mented increases in accuracy. Here, we may enforce having a

relatively small representative sample of the color area to seg-

ment. Beyond a given number of well-selected pixels in the

sample, increasing them does not affect sensibly the segmen-

tation quality because adding more pixels to the sample of

approximately the same perceived color does not affect the

statistical estimators to feed the algorithm in a sensible man-

ner. The pixels of the sample are easily selected by the user

from a (zoomed) square of 21 by 21 image pixels with a click

of the mouse centered on the region whose color the user

desires to segment. Each pixel of this (image) square is

enlarged by 10 in both directions (x and y), that is, it is com-

posed of 100 pixels of the same color.

The Achromatic Zone G

The achromatic zone G is the region in the HSI color

space where no hue is perceived by a human. This means

that color is perceived only as a gray level because the

color saturation is very low or the intensity is either too

low (near to black) or too high (near to white).

Given the three-dimensional HSI color space, the clas-

sical achromatic zone G is defined as the geometric union

of the points inside the cylinder created by the zone Satu-

ration< threshold_1 and the two cones Intensity< thres-

hold_2 and Intensity> threshold_3. Pixels inside this

region are perceived as gray levels (Fig. 1 left). Usually,

threshold_1 and threshold_2 are equal to 10% and thresh-

old_3 is equal to 90%.

In order to model the human visual response better in

the abrupt corner regions near the union zones of the two

cones with the cylinder of the singularity zone G, as pre-

sented in Refs. 2,3, we found that it is convenient to

modify the characterization of the HSI color model for

colors belonging to regions with very low or very high

brightness as shown in Fig. 1 (left). In order to adjust

zone G to a better model nearer to the human response to

brightness, we introduced an exponential function with

three parameters to define the improved singularity of

zone G: saturation threshold (st), inflection point (ip), and

Influence, as shown in Fig. 1 (right).35

Then, the saturation image will be affected now by a

factor calculated from inflection point (ip) and Influence

for every pixel (P) as shown in Eq. (2):

New Saturation ðPÞ5Pos

12Influence � ðe21Þ2�absðip2IntensityðPÞÞ
� �
� SaturationðPÞ

(2)

where Influence is a parameter representing the degree of

affectation of the exponential factor to the saturation attribute

for every pixel; Pos() is a function that returns the input argu-

ment if it is positive and zero otherwise; abs() represents the
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absolute value function and Intensity() is defined as an aver-

age of the RGB channels in Eq. (4) below. After calculating

the New_Saturation values for the source image, it is thresh-

olded with the saturation threshold (st) to obtain the effects of

the improved achromatic zone G.

The inflection point (ip) is used to modify the point

where the affectation of the exponential function begins in

the new saturation calculation. It makes more or less sensi-

tive the low or high levels of illumination. For example, a

level of 0.5 indicates that the influence of the exponential

function is the same in the regions of low and high illumi-

nation. A level of 0.6 indicates that the exponential func-

tion affects the low illumination regions more.

We found good performance with the parameters

empirically determined in the following ranges: st � [0.07,

0.1], ip � [0.5, 0.6], and Influence � [1, 1.5].

Calculation of Average Hue

In order to obtain the average of the hue (Hm) of several

pixels from a sample, we took advantage of the vector rep-

resentation in <2. Vectors that represent the hue values of

individual pixels are combined using vector addition. From

the resulting vector, the average hue corresponding to the

angle of this vector with respect to the red axis is obtained.

Thus, Hm is calculated in the following manner:

For every pixel P(x,y) in the sample, the following <3

to <2 transformation is applied:

V1ðpÞ5
12 cos ðp=3Þ2 cos ðp=3Þ

0 sin ðp=3Þ2 sin ðp=3Þ

" #
�

R

G

B

2
664

3
7755x

x

y

" #

if P 62 G

(3)

and

VðPÞ5V1ðPÞ=jV1ðPÞj;
in another case:

VðPÞ5 0

0

� �
if P 2 G

where V(P) is the normalized projection of the RGB coor-

dinates of the pixel P to the perpendicular plane to the

Intensity axis of the RGB cube when the x axis is collin-

ear to the Red axis of the chromatic circle. Conversely, G
(see Section 3) represents the achromatic zone in the HSI

space and [RGB]t is a vector with the color components

of the pixel in the RGB color space. To carry out this,

the following code is executed:

Fig. 1. The classic achromatic zone (left); the new achromatic zone G (right).

Vector.x = 0;
Vector.y = 0; //initialize vectors

For (i = 1; i < = n; i++) //for every pixel in the sample do
{Vector.x = Vector.x + V(i).x; //x-component of the accumulated vector
Vector.y = Vector.y + V(i).y;} //y-component of the accumulated vector

Vs = [Vector.x Vector.y]; //Accumulated vector
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In this code we have a vector in <2, which accumulates

the vector additions as index i increments. Each of the vec-

tors being added correspond to the previous <3-to-<2 trans-

formation for every pixel in the sample made at step 1.

The angle of the accumulated vector (Vs) with respect

to the x axis is the average hue:

Hm5angleðVs;0Þ
where 0 represents the Red axis.

Using the vector representation of Hue obtained by the

<3-to-<2 transformation of RGB space points expressed

in Eq. (2), the hue distance Dh between two color pixels

or color centroids C1 and C2, can be calculated as

follows:

DhðC1;C2Þ5jV12V2j if C1 and C2 62 G

50 if C1 or C2 62 G

where G is the achromatic region; V1 and V2 are the vec-

tors in <2 calculated with the transformation on C1 and

C2 given in Eq. (2).

In our modified HSI color space, to each color tone of

a chromatic pixel a vector in <2 corresponds with ampli-

tude equal to 1 and an angle (to the red axis) equal to the

hue in the conventional HSI color space. In these condi-

tions, when |V1 2 V2 | is very small and the vectors are

not near to the area of discontinuities of the conventional

HSI color space (08 and 3608) then |V1 2 V2| tends to be

equal to the angle (in radians) between the V1 and V2

vectors, that is, the difference in hue in the conventional

HSI color space. Thus, our proposed distance distin-

guishes the different hues at least as well as it does the

angular distance in the conventional HSI color space. We

have done tests on real and synthetic images in different

regions of color and in all of them the distance |V1 2 V2|

appears to be effective in distinguishing colors with dif-

ferent hue throughout the proposed color space.

Saturation Distance and Intensity Distance

The saturation distance and the intensity distance can

be calculated using the standard conversion equations for

saturation and intensity from RGB to HSI space,1,2 nor-

malized in the range [0, 1] [Eq. (4)]:

saturation ðPÞ512
3

R1G1B
min ðR;G;BÞ

� �
:

intensity ðPÞ5 1

3
ðR1G1BÞ

(4)

In Eq. (4), we defined the saturation equal to zero in the

case of black.

The Euclidean distance was used to define the satura-

tion distance Ds and intensity distance Di between two

pixels or color centroids. The saturation distance Ds and

the intensity distance Di between two pixels or color cent-

roids are defined as:

Ds5abs saturation ðC1Þ2saturation ðC2Þ½ �; and

Di5abs intensity ðC1Þ2intensityðC2Þ½ �;
where C1 and C2 are color pixels or color centroids,

respectively, in RGB color space.

RESULTS ON REAL AND LOW CONTRAST IMAGES

In this section, we present the results of the segmentation

method applied to some images difficult to segment.

These experiments consisted of segmenting color regions

according to the following two steps:

1. Selection of the pixel sample. This is the only step to be

left up to the user. In order to have a helpful direction

for this task, the following considerations may be useful

to select the number of pixels for the sample: If the color

of area which the user desires to segment is solid (with-

out additive noise), it is only necessary to have a one

pixel sample from the desired area. However, if one

want to take into account the lack of definition of the

color happening in the borders, it is necessary to take a

sample of the new colors that appear in that area due to

the above condition. The pixels of the samples from the

original images can be selected arbitrarily, that is, in any

order, in any number and located physically adjacent or

not.

2. CSI calculation. This step is automatic; its output is a

gray level image showing the similarity of each pixel of

the RGB true color image to the color centroid formed

with the chosen pixel sample taken from the region of

interest to be segmented, being white for 100% similar-

ity and black for 0%.

The user can now threshold the CSI. This step could

be necessary to obtain a template for a final segmentation

of the desired color from the region of interest; it could

be arranged as an automatic step using, for example, the

non-supervised Otsu’s threshold method.33 This guaran-

tees that the segmented colors are the real ones. During

the thresholding of the CSI, some information may be

lost that could be inconvenient. If the CSI itself is used

as a template, then better segmented areas (without loss

of pixels) are obtained, one for each selected color, but

altered in some measure due to the intrinsically gray lev-

els that conform the CSI.

We will show the good results obtained by the pro-

posed color segmentation method when it is applied to

low contrast color image in the following example. Figure

2 (left) shows a rather complex image of a fossil in a

rock. We took a small pixel sample of the fossil area

from which we obtained its corresponding CSI (Fig. 2,

center). Figure 2 (right) shows the resulting image after

thresholding with the Otsu method.

We show now the results of the segmentation taking

into account the new definition of the achromatic zone G
when it is applied to three classical color images in RGB

24-bit true color format.
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Figure 3 (left) shows a RGB color image (sized 200 by

200 pixels and with 33,753 different colors) of the popu-

lar baboon image; Fig. 3 (right) shows an image of

horses. The images are not shown at true relative scale in

order to save space.

It is possible to separate the achromatic area to obtain

a better segmentation. This achromatic zone can be subdi-

vided later using only intensity as a discriminative char-

acteristic. The improved results of our new definition of

G defined in Eq. (2) with respect to the results obtained

with the common definition of that zone appearing in

Refs. 2,3 are shown in Figs. 4 and 5 and Table I.

In all the composite images, the XOR logical function

is used to avoid the possibility that one pixel could

belong simultaneously to two different color-segmented

zones or regions. Next, we demonstrate the effectiveness

of the proposed color segmentation method in some rela-

tively complex color images.

In order to evaluate the efficiency of the color segmen-

tation method and due to the difficulty of obtaining a GT

for each complex image to which the method is applied

or to compare the results from different methods, the

evaluation was based in these cases on the number of pix-

els not segmented with respect to the total number of seg-

mented pixels in the corresponding resulting image. This

ratio combines the pixels not belonging to any color clus-

ter and those selected by two or more clusters (obtained

by means of the XOR operation) with respect to the total

pixel number. It gives us a measure of the segmentation

efficiency. The maximum number of selected pixels

related to each color sample is always five or less. In gen-

eral, the number of selected pixels for the samples

depends on the complexity of the image (texture of

objects), on the diversity of colors and on their spatial

distribution in the image. In our experiments we do not

used any preprocessing at all.

Figure 4 (left) shows in green pseudocolor those pixels

which were not segmented (only four colors were selected

in the process). Figure 4 (center) shows the result with

the old definition of G, and Fig. 4 (right) the result with

the new definition of the achromatic region G for appreci-

ation. The improvement in quality is significant. We

obtained 95.5% of pixels segmented properly (See Table

I).

As another example, consider the image of two horses

with shadows shown in Fig. 5 (left). Non-segmented pix-

els are shown in red pseudocolor. Figure 5 shows the seg-

mentation of the achromatic zone with the former (center)

and the new definition (right) of the achromatic zone G.

The improvement in quality is appreciable. We obtained

97.1% of segmented pixels (See Table I).

Table I summarizes the results obtained in the segmen-

tation of three images. The last column of Table I shows

the percentage of segmented pixels obtained in these

images. In all cases, the possibility that one pixel could

belong to two different colors segmented zones or regions

Fig. 2. Leaf fossil in rock (left); CSI of the fossil (center); Thresholding by Otsu (right).

Fig. 3. Baboon (left); Horses (right).
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has been avoided by means of the application of the

XOR logical function (of two or more partial segmenta-

tions). A result with many black pixels indicates that

there has been a coincidence in segmented pixels from

two or more partial segmentations considered in the XOR

operation.

When the results with the new achromatic region G are

compared to those of the former definition, the difference

is remarkable; whereas the new achromatic area seems

segmented correctly the former one has segmented only a

couple of pixels. As can be observed from Table I, the

average accuracy of the color segmentation in three com-

plex images, without an exhaustive selection of colors

and a small number of pixels (4–5 on average) per color

sample, is 95.91%.

We are working on obtaining the edges between seg-

mented colors. They appear among those remaining pixels

that were not segmented after all the colors of the image

were selected.

While the development of segmentation algorithms has

attracted remarkable consideration, relatively fewer efforts

have been spent on their evaluation.8–11 Since none of the

proposed automatic segmentation algorithms published is

generally applicable to all types of images and different

algorithms are not equally suitable for particular applica-

tions, the performance evaluation of segmentation algo-

rithms and its characterization are very important subjects

in the study of segmentation.9

For a long time, the evaluation was limited to a few real

images acquired from a particular application, which has

the advantage that they are closer to reality although the

intrinsic random nature makes them unsuitable for analyti-

cal evaluation.8,9,12 Many undetermined characteristics of

those images make them practically impossible to be used

in the comparison of different segmentation techniques

because many phenomena are mixed which makes it diffi-

cult to study each one’s influence individually.9 Another

problem comes from the lack of a GT which has to be

obtained from “experts” whose results always have intrinsic

differences. This subjective and imprecise procedure is not

appropriate for quantitative evaluations.8,12

In our case, the evaluation and characterization of a

semiautomatic color image segmentation method is based

on synthetic images generated with its associated GT.

The synthetic images where designed to evaluate the effi-

ciency of achieved color information from given segmen-

tation algorithms. The system was applied to our

semiautomatic color segmentation method. By the use

and analysis of ROC curves and graphs, we obtained

some proper characteristics of the segmentation method

under study, such as its stability related to the threshold

selection and to the selection of the appropriate number

of pixels required by the color samples. This evaluation

method may be useful for assessing the quality of the use

of the color information inside the segmentation algo-

rithms in general.

Fig. 4. Composite image of five segmented colors (left), and results obtained with the old (center) and the new achro-
matic zone G (right).

Fig. 5. Composite image of three segmented colors (left) and results obtained with the old (center) and the new achro-
matic zone G (right).
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BENCHMARK TESTING

To evaluate the proposed color segmentation method,

tests were performed between our system and two differ-

ent classification methods implemented in the L*a*b*

color space27,36: (1) Using the minimum Euclidean dis-

tance of a* and b* channels rejecting L* as implemented

by Matlab, Ver. 2014, and (2) Using a probabilistic

approach on a* and b* channels. The manner in which

the tests were implemented is as follows:

In the case of the minimum Euclidean distance of the

a* and b* channels in the L*a*b* color space, the RGB

image and the pixels samples (of object and background)

were previously transformed to the L*a*b* color space

discarding in all cases the luminance L*, in order to cal-

culate the Euclidean distance on the a*b* (color informa-

tion) channels independently of the illumination L*.

Then, the centroids (average of the values a* and b* of

the pixel samples) representing the colors of the figure

and the background in the color space L*a*b* were cal-

culated for each sample. The Euclidean distance between

the centroid of each class and every pixel of the image is

calculated to classify the pixels as object or background

according to the minimum distance. Details can be con-

sulted in URL http://www.mathworks.com/help/images/

examples/color-based-segmentation-using-the-l-a-b-color-

space.html.

In the probabilistic approach, we also transformed the

image and pixels samples (of object and background) to

the L*a*b* color space discarding in all cases the lumi-

nance L*. Then, we calculated the mean and standard

deviation of the values a* and b* from the pixel samples.

From this information, we approximated normal probabil-

ity functions (PDFs) of the probability of every pixel to

belong to the object or background classes using Gaus-

sians for every channel a* and b*. Next we calculated the

likelihood26:

Pi
1=2ðxÞ5

pi
1ðFiÞ

pi
1ðFiÞ1pi

2ðFiÞ
(5)

Equation (5) expresses the likelihood26 for the pixel x to

be in the region 1 (object) with respect to pi
1 (object) and

pi
2 (background) for a given channel Fi which can be a*

or b* in this case; p represents a Gaussian PDF with the

calculated values of mean and standard deviation. Simi-

larly, we calculated Pi
1=2ðxÞ. To integrate the likelihood

information of the two channels a* and b*, the likelihood

function of each channel was multiplied:

P1=2ðxÞ5P1
1=2ðxÞ � P2

1=2ðxÞ (6)

Similarly, we calculated P1=2ðxÞ. Classification comes after

obtaining the maximum between them and assigning accord-

ingly. In our case the following steps were performed:

Samples of both background and object were taken,

from which centroid and standard color dispersion was

calculated.

The 24-bit RGB image (true color) was transformed to

our modified HSI color space.

For each pixel, the similarity function [Eq. (1)] to the

centroids of object and background was calculated creat-

ing two CSI images.

Each pixel of the RGB image was classified by calcu-

lating the maximum value for each pixel position between

the CSI images of the object and that of the background.

The base shape of the synthetic image to be used in

our benchmark testing was created with the following

features:

� Concave and convex sections in order to make it more

representative of real images, such as natural flowers.

� Extreme omnidirectional curvature in the entire image to

hinder obtaining the edges applying mask edge detectors.

� The object was centered in the image.

The resulting flower-shaped object in the image is con-

sidered as the object of interest and the GT in all subse-

quent tests (Fig. 6).

In addition to this object of interest, several features were

imposed in order to hinder its color-based segmentation:

TABLE I. Results of the global segmentation per image.

No. Image
Number of

pixels in image
Number of

colors (levels)

Number of
colors (levels)

selected

Total number
of pixels used

as samples

Number of
non-segmented

pixels
% of segmented

pixels

1 Baboon 40,000 33,753 5 31 1803 95.5
2 Horses 154,401 71,727 3 14 4619 97.1

Fig. 6. Flower-shaped ground truth.
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� Low contrast. The contrast between the object and the

background in all images was very low for an observer,

including some in which at a glance one cannot see the

difference (e.g. Flower_5 in Fig. 7).

The difference between the color characteristics of the

object of interest and the background we call Delta and

it occurs at different directions of the HSI color space. Tests

were performed with saturation 5 0.3 and Intensity 5 0.5.

� Blurred edges. A mean filter of size 3 3 3 pixels was

applied to the whole image to blur the corners and to

make detection of the object more difficult; this was

done before the introduction of Gaussian noise.

� Introduction of Gaussian noise with SNR value 5 1. The

noise was applied to each of the RGB channels individu-

ally, and later we assembled the channels to create the

RGB color image with noise.

Samples of pixels corresponding to the object were

obtained by two squares of 2 3 2 pixels starting at the

pixel (84, 84) and (150, 150). Samples for background

pixels were obtained by two squares of 2 3 2 pixels start-

ing at pixel (15, 15) and (150, 180).

The images were generated in the sectors 08, 608, 1208,

1808, 2408, and 3008. To these test images, we later

applied a faded shadow in increments of 10% in each

step.

A shadow fading was applied to all noisy blurred

images with the light center in the fixed coordinates

(150,150) in images of 256 3 256 pixels. It was applied

gradually with 10% increments at each step. Figure 8

shows in detail the fading for Flower_0.

Results and Discussion

In this section, the results are shown graphically in Fig.

9. The first position means no shadow and position 11

means 100% shadow fading. All the images had the same

post-processing: elimination of areas smaller than 30 pix-

els and a morphological closing with a circular structur-

ing element of radius equal to two pixels.

The results of the application of our proposed solution

for the color image segmentation with a different level of

shadow fading (shown in every third row of each color)

compared to those obtained with the Euclidean metric of

a* and b*(every first row of each color) and the probabil-

istic approach in a* and b* (every second row of each

color) are included in Fig. 8 for each color quadrant (08,

608, 1208, 1808, 2408, and 3008) and at 10% increments

of the shadow fading.

As it can be seen from the resulting segmented images

of the test images (Fig. 9 third row of each color), our

system behaved correctly in all cases always segmenting

the object of interest with a high hit rate of about TP

95% and with a low error rate of around 3% on average.

We cannot say the same in both implementations in the

L*a*b* color space as the Euclidean distance or probabil-

istic approach in that space.

The first row of each color shows the results for classi-

fier using the Euclidean distance of the channels a*b*.

The second line of each color shows the results using the

probabilistic classifier. As it can be seen from Fig. 9, the

probabilistic approach improves in all cases the object

segmentation, allowing in some cases to segment most of

the object of interest in all shade levels applied as in

cases such as Red 08, yellow 608, cyan 1808, and blue

2408, where the Euclidean distance fails. In other cases, it

could not separate the object from background at high

levels of shading, but there is an improvement in quality

of segmenting the object at a specific level of shadow as

in the case of Fig. 9 green 1208 at 50% level of shadow,

where the object of interest is extracted in the case of

probabilistic approach but is not in the results of the min-

imum Euclidean distance in a* and b* (second and first,

respectively, green 1208, Fig. 9).

As shown in the graphs of Fig. 10 and in coincidence

with the visual analysis of the corresponding flower (Fig.

9), the segmentation fails with the Euclidean Distance of

a* and b* (Fig. 10 center) and using the probabilistic

approach in the L*a*b* space (Fig. 10 right) starts at dif-

ferent levels of faded shadow, whereas our system is

practically immune to the faded shadow (Fig. 10 left).

Fig. 7. Testing images with Delta in HUE.

Fig. 8. Example in color quadrants with a faded shadow applied at 08.
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One can see three general trends in the FP behavior in Fig.

10 center: (1) later increase in an angle of approximately 458

in cases of Flower_0 and Flower_3 (with diamond marker);

(2) slowly and progressively increases in cases of Flower_1

and Flower_4 (with square marker); and (3) sharply increases

in cases of Flower_2 and Flower_5 (with circular marker).

The behavior is repeated every 1808 and coincides with the

opponent color positions (yellow-blue for example).

Fig. 9. Results of the color segmentation achieved between the Euclidean metric of a* and b* parameters in the L*a*b*
color space (top rows of each color). The probabilistic approach in a* and b* color channels (middle rows of each color)
and our solution (bottom rows of each color), for each color quadrant (08, 608, 1208, 1808, 2408, and 3008) at 10% incre-
ments of shadow fading in each step.
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From Fig. 10, one can observe two different general

trends in the FP behavior: (1) abrupt increase as in cases

of Flower_2 and Flower_5; (2) slowly increase in all

other cases.

The observed visually improvement in the quality of

segmentation by the probabilistic approach compared to

the Euclidean metric in a* and b* is not correctly

reflected in the final graphs because the final post-

processing is the same as in all tests: elimination of con-

nected pixels lower than 30 pixels followed by a morpho-

logical closing with a circle of radius of 2 pixels as

structuring element. These features can be highlighted

using different post processing.

Figure 11 shows details of the curves related to TP and

FP of our system with the following color code: Flower_0

(blue), Flower_1 (green), Flower_2 (red), Flower_3

(cyan), Flower_4 (purple), and Flower_5 (yellow). Varia-

tions in curves are lower than 1%. Table II shows this

case and all other cases and the level when a notorious

failure occurs in the color segmentation quality.

Efficiency ROC Graphs

To obtain a representative ROC curve illustrating

behavior of our system compared with those implemented

in the L*a*b* color space in all color sectors under study,

we calculated the average TP and FP for all color flowers,

obtaining the results shown in Fig. 12. From the corre-

sponding ROC curves, it can be seen that our system is

maintained in the high efficiency area in all cases (coordi-

nate 0, 1) (Fig. 12 left) while the Euclidean metric of a*

and b* (Fig. 12 center) and the probabilistic approach

(Fig. 12 right) progressively moves away from the high

efficiency zone.

The results of the Euclidean metric of a* and b* and

the probabilistic approach keep stable initially and later

slowly and progressively moved to the upper right area of

the ROC curve that can be thought of as the “liberal”

side (coordinate 1, 1) as they make positive classifica-

tions, and, although there is weak evidence that almost all

positives were classified properly, they have a high rate

of non-convenient false positives (FP).

Fig. 10. Plots of our system (left), the Euclidean distance of a* and b* (center) and the probabilistic approach on a* and
b* (right).

Fig. 11. Details of TP (left) and FP (right) of our system.
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CONCLUSIONS

The results achieved in this article demonstrate that the

adaptive color similarity function and the presented super-

vised color segmentation method presented offers a useful

and efficient alternative for the segmentation of objects

(or regions) with different colors in relatively complex

color images with good performance in the presence of

unavoidable additive noise. The method discriminates

whichever type of different color objects independently

from their shapes and tonalities in a very straightforward

way. The average accuracy of the color segmentation in

three complex images, without an exhaustive selection of

colors and a small number of pixels (4–5 on average) per

color sample, was 95.91%.

Conversely, a quantitative evaluation and characteriza-

tion of the proposed adaptive color similarity function

and a semiautomatic color image segmentation algorithm

directly obtained from the similarity function has been

presented. It was carried out by generating synthetic

images each with its corresponding GT image. The true

positive rate (TP rate) and false positive rate (FP rate) for

every image was calculated to obtain ROC curves of the

results. This system is useful in general for assessing the

quality of the use of the color information inside segmen-

tation algorithms.

Behavior was assessed by varying size, shape and color

contrast, amount of additive noise, threshold, and number

of pixels taken in the sample. After an analysis of the

corresponding ROC curves, the algorithm showed good

performance in most cases with TP rate greater than 95%

and FP rate lower than 0.2%. The ROC curve for color

contrast shows a good performance of the algorithm even

in the cases where the color contrast is rather low mean-

ing that for a normal observer it is difficult to find any

color difference. It is shown that the characterization of

the achromatic region presented in this article improves

the performance in comparison to the published methods

due to the affectation of saturation by an exponential fac-

tor in an effort to model the human visual response better

in the case of very low or very high brightness. The

improvement in quality of its results is significant.

A comparative study between the behavior of the pro-

posed method and two comparable segmentation techni-

ques in color images is presented using (1) the Euclidean

metric of the a* and b* color channels rejecting L* in the

CIE L*a*b* color space and (2) a probabilistic approach

on a* and b*.

Regarding the evaluation of the color segmentation

method in really difficult conditions, it is shown that our

method performed well in all tests and remained close to

the high efficiency zone of the ROC curves (coordinates

0,1) without noticeable changes, while increasing the

level of faded shadow as shown in the corresponding

curves. The segmentation algorithm using the CIE

L*a*b* color space and discarding L* when calculating

the Euclidean distance, suffered from errors in all cases.

It manifested in different degrees and at different levels

of faded shadow (less than 10% to 80%). Three types of

TABLE II. Observations concerning the behavior of the plot curves comparing our system with the other two.

Flower
Line
Color

Euclidean metric
of a* and b*

Probabilistic approach on a*
and b*

Color adaptive
similarity function

0 Blue 60% (position 7) Increases at 458 70% (position 8) Increases slowly Immune
1 Green 30% (position 4) Increases slowly

and progressively
80% (position 9) Increases slowly Immune

2 Red 40% (position 5) Sharply increases 30% (position 4) Sharply increases Immune
3 Cyan 70% (position 8) Increases at 458 80% (position 9) Increases slowly Immune
4 Purple 20% (position 3) Increases slowly and progressively 70% (position 8) Increases slowly Immune
5 Yellow 50% (position 6) Sharply increases 20% (position 3) Sharply increases Immune

Fig. 12. ROC curve of our system (left), of the Euclidean metric of a* and b*for all Flowers (center) and of the probabilis-
tic approach on a* and b* for all Flowers.
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trends can be noticed in sectors with 1208 of difference:

(1) rise of the curve abruptly (Flowers_0, _2 and _4

which corresponds to the R G B color channels) with

high sensibility to the faded shadow (higher than RGB);

(2) slow Rise (Flowers_1 and_5) lower than RGB; and

(3) insensitive increment at near 90% (Flower_3).

The segmentation method using a probabilistic approach

improved in many cases the results using the Euclidean

metric but in some other cases it could not obtain good

results due to corruption of the L*a*b* color space.

As it can be seen from the results, our adaptive color

similarity function in all cases exceeded: (1) The Euclid-

ean distance in color space L*a*b* but discarding L* and

(2) the probabilistic approach on a* and b* channels. The

proposed adaptive color similarity function performed

well in all cases with rates higher than 95% of TP and FP

rate less than 0.2% on average.

It can be noticed that the non-consideration of the

luminance parameter L* in calculating Euclidean distance

(in each pixel of the object or of the background) and in

the probabilistic approach did not made the methods

immune to changes in lighting; so simple shadow can

alter the quality of their results. It can also be noticed

from the results that the parameters a*b* from the color

space L*a*b* are not independent of the L* parameter as

one might suppose.

Our segmentation method can also be used directly in

grayscale images without making any changes, achieving

good results. On the contrary, the other tested methods

that use the L*a*b* color space need to include the lumi-

nance L* to perform the segmentation, since a* and b*

values remain unchanged in the center of a*b* plane. An

additional task is to decide when the luminance L* must

be considered in calculating the Euclidean distance.

Our testing system can be used either to explore the

behavior of a similarity function in different color spaces

or to explore different similarity metrics (or similarity

functions) in the same color space. Instead of exchanging

color spaces in the experiments, it would only be neces-

sary to exchange the metric or the similarity function.

In future work, we would like to evaluate different color

zones of different saturations, grayscale images, and with

Delta saturation among others. Our testing system can be

used either to explore the behavior of a similarity function

(or metric) in different color spaces or to explore different

metrics (or similarity functions) in the same color space.
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