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Abstract. In this article we introduce the concept of complex neutrosophic subgroups (normal subgroups).
We define the notion of alpha-cut of complex neutrosophic set, give examples and study some of its related
results. We also define the Cartesian product of complex neutrosophic subgroups. Furthermore, we
introduce the concept of image and preimage of complex neutrosophic set and prove some of its properties.

1. Introduction

[1], In 1965, Zadeh presented the idea of a fuzzy set. [2], Atanassov’s in 1986, initiated the notion of
intuitionistic fuzzy set which is the generalization of a fuzzy set. Neutrosophic set was first proposed by
Smarandache in 1999 [5], which is the generalization of fuzzy set and intuitionistic fuzzy set. Neutrosophic
set is characterized by a truth membership function, an indeterminacy membership function and a falsity
membership function. In 2002, the Ramot et al. [8], generalized the concept of fuzzy set and introduced
the notion of complex fuzzy set. There are many researchers which have worked on complex fuzzy set
for instance, Buckly [6], Nguyen et al. [7] and Zhang et al. [9]. In contrast, Ramot et al. [8] presented an
innovative concept that is totally different from other researchers, in which the author extended the range of
membership function to the unit circle in the complex plane, unlike the others who limited to. Furthermore
to solve enigma they also added an extra term which is called phase term in translating human language
to complex valued functions on physical terms and vice versa. Abd Uazeez et al. in 2012 [10], added the
non-membership term to the idea of complex fuzzy set which is known as complex intuitionistic fuzzy
sets, the range of values are extended to the unit circle in complex plan for both membership and non-
membership functions instead of [0, 1]. In 2016, Mumtaz Ali et al. [12], extended the concept of complex
fuzzy set, complex intuitionistic fuzzy set, and introduced the concept of complex neutrosophic sets which
is a collection of complex-valued truth membership function, complex-valued indeterminacy membership
function and complex-valued falsity membership function. Further in 1971, Rosenfeld [3], applied the
concept of fuzzy set to groups and introduced the concept of fuzzy groups. The author defined fuzzy
subgroups and studied some of its related properties. Vildan and Halis in 2017 [13], extended the concept
of fuzzy subgroups on the base of neutrosophic sets and initiated the notion of neutrosophic subgroups.
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Due to the motivation and inspiration of the above discussion. In this paper we introduce the concept of
a complex neutrosophic subgroups (normal subgroups). We have give examples and study some related
results. We also study the concept of Cartesian product of complex neutrosophic subgroups, image and
preimage of complex neutrosophic set and alpha-cut of complex neutrosophic set with the help of examples
and prove some of its properties.

2. Preliminaries

Here in this part we gathered some basic helping materials.

Definition 2.1. [1] A function f is defined from a universe X to a closed interval [0,1] is called a fuzzy set,i.e., a
mapping:

f:X—1[0,1].
Definition 2.2. [8] A complex fuzzy set (CFS) C over the universe X, is defined an object of the form:

C = (% pe®) : x € X)

where pc(x) = re(x) - €9¢®, here the amplitude term re(x) and phase term wc(x), are real valued functions, for every
x € X, the amplitude term uc(x) : X — [0, 1] and phase term wc(x) lying in the interval [0, 27].

Definition 2.3. [11] Let C; and C, be any two complex Atanassov’s intuitionistic fuzzy sets (CAIFSs) over the
universe X, where

G = {<x re, () €9 ke, (x) - € (X)> tx€ X}
and
€= {(x, re, (1) - "2 ke, (x) - €2 (X)> (X € X}.
Then
1. Containment:
C1 € C; & ¢, (%) < 16, (%), ke, (%) 2 ke, (x) and v, (x) < v, (%), @, (%) 2 @, (x).
2. Equal:
Ci = C; & 1¢,(%) = e, (%), ke, (%) = ke, (x) and v, (x) = v, (%), @, (x) = @, (x).

Definition 2.4. [12] Let X be a universe of discourse, and x € X. A complex neutrosophic set (CNS) C in X is
characterized by a complex truth membership function Cr(x) = pc(x) - €4¢®, a complex indeterminacy membership
function Cy(x) = gc(x) - €¥<® and a complex falsity membership function Cp(x) = rc(x) - €™, The values
Cr(x), Ci(x), Ce(x) may lies all within the unit circle in the complex plane, where pe(x), gc(x), re(x) and uc(x),
ve(x) we(x) are amplitude terms and phase terms, respectively, and where pc(x), qe(x), re(x) € [0,1], such that,
0 < pe(x) + ge(x) + re(x) < 3and uc(x), ve(x) wc(x) € [0,27].

The complex neutrosophic set can be represented in the form as:

] %,Cr(x) = pe(x) - €<, Cy(x) = ge(x) - 7@, \
©- {< Cr(x) = re(x) - elwe(x) xeXy.

Example 2.5. Let X = {x1, X2, x3} be the universe set and C be a complex neutrosophic set which is given by:

_ <x1, 0.2e%5, 0.3¢06™, 0.4e0'8”i> , <xQ, 0.4¢%67 0.5¢13m, 0.1 eo.em> ,
B <x3, 0.1e067 (.3¢09m, 0'960~7ni> .
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Definition 2.6. [3] Let G be any group with multiplication and F be a fuzzy subset of a group G, then ¥ is called a
fuzzy subgroup (FSG) of G, if the following axioms are hold:

(FSG1): F (x - y) = min{F (x), ¥ (v)}.
(FSG2): F(x ) > F(x),Yx,y € G

Definition 2.7. [13] Let G be any group with multiplication and N be a neutrosophic set on a group G. Then N is
called a neutrosophic subgroup (NSG) of G, if its satisfy the following conditions:

(NSG1): N(x-y) = N(x) A N(y), ie.,

Tn(x-y) 2 Ta) ATa(y), In(x - y) = In(x) Aln(y) and Fa(x - y) < Fa(x) V Fn(y).
(NSG2): N(x 1) > N(x),ie.,

Ta () = Ta(x), In(x71) > In(x) and Fy(x!) < Fu(x), for all x and y in G.

3. Complex Neutrosophic Subgroup

Note: It should be noted that through out in this section we use a capital letter C to denote a complex
neutrosophic set:

C= {(Tc =PpPc- e Ie = qc € Fe = g 'e"“’f>}'

Definition 3.1. A complex neutrosophic set C = {(Tc =pc - e'te,Ic = gc - €, Fe = rc - eiwf>} on a group (G, -) is
known as a complex neutrosophic subgroup (CNSG) of G, if for all elements x,y € G, the following conditions are
satisfied:

(CNSG1): C(xy) = min {C(x), C(y)} i.e.,

(i) pe(xy) - eitc(xy) > min{pe(x) - elbe®) pc(y) - elte®))

(ii) ge(xy) - eive@y) > min{ge(x) - elve®) gc(y) - elre®y

(iii) re(xy) - €90V < max{re(x) - €9¢®, re(y) - e0eW}

(CNSG2): C(x7 1) > C(x) i.e.,

(iv) pe(xt) - eibc@™) > pe(x) - efte®

('U) qC(x_l) . eiVC(xil) 2 qc(x) . eivﬂ:(x)

(0i) re(x1) - 69t < pe(x) - efwet),

Example 3.2. Let G = {1, -1, i, —i} be a group under multiplication, and

<1, 0_760.6ni, 0.660‘5ni, 0‘560.2ni> , <_11 0.660'5ni, 0.560'4771', 0.480.27'& ,
C= <l 0.560.37'(1’ 0'460.2711’ 0.160.2ni> <—l 0.560.3711' 0.460.2711' 0.160.2711'

be a complex neutrosophic set on G. Clearly C is a complex neutrosophic subgroup of G.
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3.1. Cartesian Product of Complex Neutrosophic Subgroups

Definition 3.3. Let C; = (Cir(x), C11(x), Cip(x)) and Cy = {Cor(x), Car(x), Car(x)) be any two complex neutro-
sophic subgroups of the groups G1 and G, respectively. Then the Cartesian product of Ci and Cy, represented by
C; X C, and define as:

((x, 1), (C1 X C2)1(x, y), (C1 X C)1(x, y), (C1 X C2)e(x, v)) }

C“‘Cz:{ NxeGyeGs

where

(C1 X C)r(x, y) = min {Ci7(x), Cor(y)},

(C1 X Cp)1(x, y) = min {Cy1(x), Car(y)},

(C1 X C2)e(x, y) = max {Cip(x), Cor(y)} -
Example 3.4. Let Gy = {1,-1,i,—i} and G> = {1, w, w*} are two groups under multiplication.
Consider,

(1,0.7¢767,0.66%5, 0.5e°27) , (-1, 0.6, 0.5¢%47, 0.4¢027
1= <l, 0.560_3711, 0.460.2711" 0.16042ni> , <_i/ 0.560.3711', 0.460.2711', 0.180.2711'

and

<1, 0.8@0'6”i, 0.660'5ni, 0.360.2ni> , <a)’ 0.760.6ni, 0_580.4711" 0_360.2ni> ,
2 (w?, 0,706, 0.56047, 036727

are two complex neutrosophic subgroups of G and G», respectively.
Now let x = 1 and y = w, then
C1 X C; = (€1 X C)r(1, w), (€1 X C2)i(1, w), (C1 X Co)p(1, ), ..}
= {(min {Cy7(1), Cor(w)}, min {Cy(1), Cor(w)}, max{Cir(1),
Cor(@)h), -}

= {(min{0.7¢°%™, 0.7¢*°™}, min{0.6¢"™, 0.5¢*4™'} , max{0.5¢"%™,
0.3e0~2m‘}) L.
= (076267, 056047, 0.5¢02) ).

Theorem 3.5. If C; and C; are any two complex neutrosophic subgroups of the groups G and G, respectively, then
C; X C; is a complex neutrosophic subgroup of G1 X G».

Proof: Assume that C; = (Ci7,Cyy, Cip) and €, = (Car, Cyj, Cor) be any two complex neutrosophic sub-
groups of the groups G and G», respectively. Let any arbitrary elements x1,x, € G1 and y1, y» € G», then

(x1, y1)(x2, y2) € G1 X G-

Consider,

(C1 X C)7((x1, Y1), (x2, ¥2)) = (€1 X C)r(x1%2, Y1Y2)
= min{Ci7(x1x2), Cor(y1y2)}
> Ci7(x1) A Ci7(x2) A Cor(y1) A Cor(y2)
= Cir(x1) A Cor(y1) A Cir(x2) A Caor(y2)
= (€1 X Co)1(x1, y1) A (C1 X C2)1(x2, Y2)-
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Similarly,
(C1 X C)r((x1, y1), (x2, ¥2)) = (C1 X C)1(x1, y1) A (C1 X Co)i(x2, Y2),
and
(C1 X C2)p((x1, y1), (x2, y2)) = (C1 X Co)r(x1%2, Y1Y2)
= max{Cir(x1x2), Cor(y112)}
< Cip(x1) V Cip(x2) V Cor(y1) V Car(y2)

= Cir(x1) V Car(y1) V Cip(x2) V Car(y2)
= (C1 X C2)r(x1,y1) V (C1 X C2)r(x2, 12).

Also,
(C1 X Co)r(x1, y1) ™ = (C1 X C)r(x; v
= Cir(x7") A Cor(yy)

> Ci7(x) A Cor(y)
= (C1 xC)r(x, y).

Similarly,

(C1 X C)i(x1, y1) ™' = (C1 x C)i(x, ).
And
(C1 X Co)p(x1, 1) = (C1 X C)r(x7", y7)
= Cir(x;") V Car(yy)

< Cir(x) vV Cor(y)
= (C1 X C)r(x, y).

Hence C; x C; is a complex neutrosophic subgroup of G1 X G»>. O

Theorem 3.6. Let C be a CNSG of a group G. Then the following properties are satisfied:
(a) C(@) - e€© > C(x) - e“¥ V x € G, where ¢ is the unit element of G.

(b) C(x71) - €6 = C(x) - €i€™ for each x € G.

Proof: (1) Let é be the unit element of G and x € G be arbitrary element, then by (CNSG1), (CNSG2) of
Definition 3.1,

pe(@ - <O = pe(x-x7") - et
> pe(x) - e A pe(x) - et
= pe(x) - €M@ A pe(x) - et
= pc(x) - eitc)
pe(@®) - et > pe(x) - e,
Similarly,

ive(x)

g™

qc(é) . i@ > qC(X) .
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And

Tc(é) A eiwc(é) — Tc(x . x—l) . eiwt(x.xfl)

< re(x) - 69O v re(x 1) - et

iwe (x) iwc(x)

=rc(x)-e Vre(x)-e

= re(x) - <

re(@) - 69O < re(x) - e,

Hence C(&) - ¢/“® > C(x) - ¢'®™ is satisfied, for all x € G.
(b) Let x € G. Since C is a complex neutrosophic subgroup of G,
50 C(x71) - €™ > C(x) - €™ is clear from (CNSG2) of Definition 3.1.

Again by applying (CNSG2) of Definition 3.1, and using group structure of G, the other side of the inequality
is proved as follows;

pc(x) . ei‘uC(x) = pc(x_l)_l . e"yf(xil)il > pc(x_l) . el‘[JC(xil)’

ge(x) - €W = ge(x) - " > ge(x ) e,
T’C(X) . eifuc(x) — Fc(x_l)_l .eia)o:(x’l)*l < Tc(x_l) . eiwc(xfl).
Therefore,
C(x) - €@ > C(x71) - £C6T,
Thus,
Cix) - 0 = C(x) - 0,
Hence C(x71) - €6 = C(x) - /€@ s satisfied, forallx € G. O

Theorem 3.7. Let C be a complex neutrosophic set on a group G. Then C is a CNSG of G if and only if C(x - y™1) -
ey > C(x) - €0 A C(y) - €W for each x,y € G.

Proof: Let C be a complex neutrosophic subgroup of G and x, y € G, So, it is clear that,

pc(xy_l) . eilety™) > pe(x) . pte@) A Pc(y_l) . eite™)
> pe(x) - eHe® A pe(y) - e,

Similarly,
qc(xy—l) . eivc(xy‘l) > qc(x) . eivc(x) A qc(y) . eivC(y)_
And

rc(xy_l) . eiwc(xy'l) < rc(X) . ei(uc(x) v rC(y_l) . eia)c(y‘l)

< re(x) - €90 v re(y) - eveW,
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Hence
Cx-y™)- PCey™) = (pcCey™) - elticGy™) ge(ry™) - eively™)
re(xy™) <)
> (pc(x) . pitc@) A pe(y) - eie®, gc(x) . e
A qe(y) - "W, re(x) - e v re(y) - €<)
= (pe(x) - €W, ge(x) - "W, re(x) - €4)
A (pe(y) - eite) ge(y) - e, re(y) - elve®)y
= C(x) - @ A C(y) - V.
Thus,
Clx-y™)- ¢Cev ) > C(x) - €W A C(y) - €W,
Conversely, Suppose the condition
Clx-y™)- ¢ > C(x) - €W A C(y) - eV
is hold.
Let & be the unit of G, since G is a group,
pc(x_l) . ei.UC(x_l) = pc(é . x_l) . ei#‘ﬁ(é'x_l)
> pe(@) - €M@ A pe(x) - eltc®
= pe(x - x71) - e A pe(x) - elte®
> pe(x) - €4 A pe(x) - M A pe(x) - ete®
= Pc(x) . eiyﬁ(x)
pe(x) - et > pe(x) - el
Similarly,
g™ - €0 2 ge(x) - e,
And
re(xhy - et = pe(@ - x7hy - e
< re(@) - €@ V re(x) - eve®
= re(x - x—l) . eia)c(xv(‘l) Vre(x) - eia)c(x)
< re(x) - €9 v re(x) - €M v re(x) - e et
= Vre(x) - e9e®,
So, the condition (CNSG2) of Definition 3.1 is satisfied.
Now let us show the condition (CNSG1) of Definition 3.1,

X - .eiHC(X'y) - X - -1y-1y | iHC(x'(yil)il)
pe(x-y) pex-(y—) ) e

> pe(x) - 4O A pe(y™) - etet)
> pe(x) - €M A pe(y) - ete®,

100
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Similarly,

ge(x - y) - elve@y) > ge(x) - elve(®) A qc(y) . eive)
and

Fe(x - y) - €909 = pe(x - (1)) - et

< re() - W v eyl - efee )
< re(x) - €90 v re(y) - €W,

Therefore (CNSG1) of Definition 3.1 is also satisfied. Thus C is a complex neutrosophic subgroup of G. O
% Based on Theorem 3.7, we define complex neutrosophic subgroup as follows:
Definition 3.8. Let G be any group with multiplication. A complex neutrosophic set

C= {(TC =pc- e Ie = qgc -é"e Fe =r¢ -ei“’f>}
on group G is known as a complex neutrosophic subgroup (CNSG) of G, if
C(x7ty) = min{C(x), C(y)} i.e.,
(i) pe(xty) - eitic™'y) > min{pe(x) - €@, pe(y) - ete®}
(ii) go(x'y) - e"C7Y > min{ge(x) - €W, ge(y) - e W)
(iii) re(xy) - €90V < max{re(x) - e9c®), re(y) - €9 W),V x, y € G.
Example 3.9. Let G = {1, -1, i, —i} be a group under multiplication, and C = (T¢,Ic, Fc) be complex neutrosophic
set on G, such that

Te(1) = 086%™, Te(=1) = 0.765™, Te(i) = Te(—i) = 0.3¢2™

Ie(1) = 0.76%5™ Je(=1) = 0.6e*4™, I¢(i) = Ie(—i) = 0.2¢"%™

Fe(1) = 0.5¢*4™ Fe(~1) = 0.1%¥™, Fe(i) = Fe(—i) = 0.1e%7™,
Clearly, C is a complex neutrosophic subgroup of G.

Theorem 3.10. If C; and C, are two complex neutrosophic subgroups of a group G, then the intersection C; N C; is
a complex neutrosophic subgroup of G.

Proof: Let x, y € G be any arbitrary elements. By Theorem 3.7, it is enough to show that
(€ NGy ™) 2 (C NC)() A (C1 NC)(Y).

First consider the truth-membership degree of the intersection

pesng, (X -y - ety = pe (x .yl - glte @y
A PCZ(X ’ y_l) : ei“CZ(X'V])
> pe, (x) - €M@ A pe, (y) - e ®
A pe,(x) - €49 A pe,(y) - e ®
= (pe,(¥) - €41 A pe,(x) - el
A (pe, (y) - eFe W A pe, (y) - et W)
= pe,nG, (%) - etene®

A peing, (y) : eiyclﬂtz(y)'
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Similarly,

Geine, (6 y) - et 2 oo, (1) - eeres®
A qeinc, () - evana ),
And
re,uc, (YY) - e = e (x- y1) - eioes ()
Vg, (x- y‘l) . ploc, (Y ™)
<rg (x) . eiwcl(x) Vre, (y) . ¢locy W)
V1, (x) - €909 v re, () - €90
= e, (x) - €99 @ v 1, (x) - e
Vre,(y) - €99 W v re, (y) - ee )
= rcug, (%) - £lvc uc, (¥)
V re,ue, (y) - €9,
Hence C; N C; is a complex neutrosophic subgroup of G. O

Theorem 3.11. If C; and C, are two complex neutrosophic subgroups of a group G, then the union C; U C, is a
complex neutrosophic subgroup of G.

Proof: Let x, y € G be any arbitrary elements. By Theorem 3.7, it is enough to show that
(€1 UC)(x -y h) = min{(C; U C)(x), (C1 U Ca)(y)}-
Consider,
peue, (x -y - ety = pe (x .yl - elte @y
Vpe,(x-yh) - ke, (ey™)
> pe, (x) - eHa® A pe, (y) - eha®
V pe, (x) - Fe® A pe, (y) - efe®)
= (pe, (%) - ity (V) pec,(x) - @it ()
A (pe,(y) - €FaW v pe, () - et )
= min{pc,uc, (¥) - eere®,
peuc, (y) - eterre®),
And
rene, (vt - gvene, @y = re,(x -y - eva @y™
At (x -yl - ety
< 1, (1) - €40 v 1, (1) - e
A re, (%) - €90 ® V1, (y) - eV
= 1, (x) - €99 A 1e, (x) - v
Vre,(y) - e () A re,(y) - 210 ()
= max{re,ng, (x) - €2 ®,
reinc,(y) - evare ).

Thus, C; U C; is a complex neutrosophic subgroup of G. O
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4. Alpha-Cut of Complex Neutrosophic Set

103

Definition 4.1. Let C = <CT = pce'te,C; = gee''e, Cr = rcei“’f> be a complex neutrosophic set on X and a = - €7,

where p € [0,1],y € [0,2m].

Define the a-level set of C as follows:

C,={xeX|C(x) = a}ie,
(Pc(x) . eiuc(x))a - {x € X | pclx) - e > g eia/},
(qc(x) .ez'm(m)a = {x € X | ge(x) - "™ > g eiy},
(rc(x) 'ei“’C(’“))a = {x € X |re(x)-e@e® <. ei?’}.

It is easy to verify that,

(1)IfC; CCrand a = - €7, where, B € [0,1],y € [0,27], then,
(Pcl (x) - e (x))a C (PCZ (x) - eiycz(X))a
(‘7& (x) - e (x))a c (QCZ (x) - evex (X))a
(Tcl (x) - eve ("))a 2 (7’@2 (x) - ei“"fz("))a .

(2) a1 < a; where, a3 = B1 - €71,y = B, - €72 implies that

(pcl (x) - et (X))a <pC1 (X) - elhe (X))az
(qQ (x) - ea® )m (qﬁ (x) - eive (X))
(e (o e0)

Example 4.2. Let

2
1
2

ar
az

(x1,0.26047, 03057, 0.7e17) , (x5, 076917, 06605, 076047,
C= <X3, 0.66’0'4m, 0'480.5711" 0_160.4ni>

be a complex neutrosophic set of X, and o = 0.4e*4™ . Then the a-level set as: C, = {x3}.

Proposition 4.3. C is a complex neutrosophic subgroup of G if and only if for all a = Be” where, B € [0,1],y €

[0, 27t], a-level sets of C, (pc . ei““?) (qc -elve )a and (rc -l )a are classical subgroups of G.

7
a

Proof: Let C be a CNSG of G, & = fe”” where € [0,1], ¥ € [0,2r] and x,y € (pc -e"F‘C)a (similarly

v,y € (e ec) , (re-ee)).

By the assumption,

pe(x-y)- eilictey™) > pe(x) - €4t A pe(y) - ee®
zaha=a.

Similarly,
qc(x . y_l) . ein,(X'y'l) > .
And

Vc(x . ]/_1) . eiﬂ’c(x'y’l) < Vc(x) . eimc(x) V. rC(y) . ei(uc(y)

<aVa=a.
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Hencex-y ! € (pc 'ei“f—') (qc ~ei"f) (rc . ei“’c)a for each a.

This means that (pc (x) - e"F‘C("))a , (qc (x) - eiv‘f(x))a and (rc (x) - ei“’f("))a is a classical subgroup of G for each a.
Conversely, let (pc - €c) be a classical subgroup of G, for each a = e’ where 8 € [0,1],y € [0, 27].
y, let (pc - efe) group y

Letx, y € G, a = pe(x) - €™ A pe(y) - €W and § = pc(x) - ™. Since (pc - gltic )a and (pc - gliie )b are classical
subgroup of G, x - y € (pc - gltic )a and x7! € (pc . ei““?)é . Thus,

pe(x - y) - €OV > @ = pe(x) - €D A pe(y) - e,
and

pe(xly - et > 5 = pe(x) - elte®,
Similarly,

ge(x - y) - €Y > ge(x) - €7V A ge(y) - ¥V,

qC(x_l) . eiVC(xil) Z qc(x) . eivﬂ:(x).
And

rc(x . y) . eiﬂ)ﬂ:(x'y) < rc(x) . eiwﬂ:(x) \V rc(y) . eiwﬂ:(y),

re(xl) - @9t < re(x) - e,

So, the conditions of Definition 3.1 are satisfied. Hence G is a complex neutrosophic subgroup. O

5. Image and Preimage of Complex Neutrosophic Set

Definition 5.1. Let f : G1 — G» be a function and Cy and Cy be the complex neutrosophic sets of G1 and G,
respectively. Then the image of a complex neutrosophic set Cy is a complex neutrosophic set of G» and it is defined as
follows:

FEC)W) = (prC)H) - O, g, (Cr)(y) - @,
re(C)(y) - ei“’f(ﬁ)(y))
= (Fpe) ) - €7D, fge) () - T,
fre)w) - /@), ¥ y € G,

where,

Flpe,)(y) - )W = { Y ’5@1 (0)-eta®,ifxe f(y)

otherwise

ifvem = | Vaa @€, ifxe f(y)
flae-e - { 0 otherwise

iw ) . —1
ifweyw | Are()-evat,ifxe f(y)
Flre)(y) - @ _{ e () fre s
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And the preimage of a complex neutrosophic set C, is a complex neutrosophic set of G1 and it is defined as follows: for
all x € Gy,

FUC®) = (pra(C)) - e DY, g i (C)(x) - ¥ @,
rpa(C)(x) - e )
- (pcz (F(1)) - et e (f(x)) - el"eaF),
re,(f(x) - e )
= Co(f(x))-

Theorem 5.2. Let G1 and G, be two groups and f : G1 — G» be a group homomorphism. If C is a complex
neutrosophic subgroup of Gi1, then the image of C, f(C) is a complex neutrosophic subgroup of G».

Proof: Let C be a CNSG of Gy and y1, 2 € Go. if f71(y1) = ¢ or f71(y2) = ¢, then it is obvious that f(C) is
a CNSG of G». Let us assume that there exist x1,x, € G1 such that f(x;) = y; and f(x2) = y». Since f is a
group homomorphism,

f(pc(yl-y;l)).eif(#c(%‘ygl)): \/ pe() - ete®
1y =f()

— 1 Kol
2 pC(xl . le) . el‘Llc(Xl X, )’

Fflactyr - y3h) - ey = \/ ge(x) - e"e®
vy =f()

-1 ive(xxg!
> qc(xl .x2 )‘EVC( 1%y ),

_ ; -1 .
f(rq:(yl . yzl)) . eflweyryy ) = /\ re(x) - gwe)
vy, =f()

<re(x - xt)- gloctern),
By using the above inequalities let us prove that

O 12" 2 FOW) A FO)(y2).

O -y,h) = (f(Pc:(]h 7)) - eif(un:(yry;l)),f(qc(yl 7)) - ef ey
flre(ys - yyh) - éfectnz)

= [ \/ PC(X) . ei#c(x), \/ QC(X) . eivc(x)l

vy, =f(0) Y1y =f (%)

A e el'wf“’]

yryy =0

_ i ol _ ; a1
> (Pc(xl 1) M) ge(xy gyt e,

— i 1
re(xy - x5t - et ))
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= (Pc(x1) -t A pe(xg) - €M), ge(xy) - et

Age(xa) - €702 re(xy) - €9 v e (xp) - eiwC(XZ))

= (Pc(xl) oM@ e (xy) - €@ re(xp) - Ve
Ape(xz) - €, ge(xy) - €70, e (xy) - ei“’C(xz))

= f(O)(y1) A F(O)(y2).
This is satisfied for each x1,x, € G1 with f(x1) = y; and f(x2) = y», then it is obvious that

f(C)(yryEl)Z[ \/ peln)- e, \/ gean) e,
n=fa) y1=f(x1)

/\ re(xy) - eia)c(Xl)] A [ \/ pe(xn) - eip((xz),

n=fe) y2=f(x2)

\/ qc(x2) . eivc(xz), /\ re(xa) - eimc(xz)]

y2=f(x2) Y2=f(x2)
= (f(Pc(yl)) . ez’f(uc(yl)),f(qc(yl)) . eif(vt(]/l)),f(rc(xl)) . eif((uc(xl)))

A (fpc(2)) - 74w, fge(yn) - 70D, flre(x,)) - efcD)
= f©)y1) A F(O(y2).
Hence the image of a CNSG is also a CNSG. O

Theorem 5.3. Let G1 and G» be the two groups and f : G1 — Ga be a group homomorphism. If C, is a complex
neutrosophic subgroup of Ga, then the preimage of f~1(Cy) is a complex neutrosophic subgroup of Gi.

Proof: Let C; be a complex neutrosophic subgroup of G,, and x1, x, € Gi. Since f is a group homomorphism,
the following inequalities is obtained.

FHCE - 5" = (pe,(f - x5 1)) - et
o, (f(x - x5 h) - e
re,(f(x1 - x;,1)) - € (f(xl-xgln)
= (Peu(fx1) - fla) ™) - ecatftarsear,
4o, (f(x1) - fap) ™) - et fe™),
re,(f) - flxg) ™) - el e
> (pes(F(x1) A f(x2)) - e Uenfe),
4o, (F(x1) A f(xp)) - eV eafenfea),
1o, (f(x1) V f(x2)) - €2 (f(xl)Vf(xz)))
= (Pcz(f(xl)) . ez‘pcz(f(m))’qcz(f(xl) Ve (fen)
re,(f(xn) - e9VED) A (pe, (f(xz)) - et 02D,
g, (f(x2) - eivcz(f(xz))’ re, (f(x2) - i, ( f(xz)))
= FHC)() A FHC)(x2).
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Hence f~}(C,) is a CNSG of G1. O

Theorem 5.4. Let f : Gi —> G be a homomorphism of groups, C is a CNSG of Gy and define C™! : G —
[0,1] - €027 x [0, 1] - 19271 x [0, 1] - €027 gs C~1(x) = C(x7?) for arbitrary x € Gy. Then the following properties
are valid.

(1) C'is a CNSG of Gi.

@) (fE)™ = fC).

Proof: (1) Let C is a complex neutrosophic subgroup of G;.

Since C!: G; — [0,1]- €102 x [0,1] - €027 x [0, 1] - €102,

Let for all x € Gy, this implies that, C™'(x) = (xr,x;, xf) where xr € [0,1] - 1?7, x; € [0,1] - ¢1°*™ and
xr € [0,1] - €027,

So C~! is a complex neutrosophic subgroup of Gi.
(2) Given that C"1(x) = C(x ) V x € G1.

Since f : G1 — G» be a homomorphism. As C is a CNSG of G; this implies that C™! is a CNSG of G; by
part (1), so f(C!) € G» and f(C) € G». Now by (1), (f(C))! € G» as G» is a group homomorphism.

So f(C!) = (f(C))~! by uniqueness of inverse of an element. O

Corollary 5.5. Let f : G1 — G» be an isomorphism on of groups, C is complex neutrosophic subgroup of G, then
ffe)=c

Corollary 5.6. Let f : G — G be an isomorphism on a group G, C is complex neutrosophic subgroup of G, then
f(C) = Cifand only if f~1(C) = C.
6. Complex Neutrosophic Normal Subgroup

Definition 6.1. Let C be a complex neutrosophic subgroup of a group G is known as a complex neutrosophic normal
subgroup (CNNSG) of G, if

Clxyx™!) > C(y) i.e.,

(i) pe(xyxt) - et ™) > pe(y) - ltic®
(Zl) qc(xyx—l) . eivc(xyx—l) > qc(y) . eiVC(y)
(le) T’C(xyx—l) . eiwc(xyx—l) < rC(}/) . €i(‘)‘13(y), Y Xy e G

Example 6.2. Let G = S3 = {1,a,a%,b,ab,a’b} be a group and C = (T¢, I¢c, Fc) be a complex neutrosophic set of G
such that,

Tc(1) = 0.8¢%™, Te(a) = Te(a?) = 0.6¢"°™
Te(b) = Te(ab) = Te(a?b) = 0.5¢%4™

Ic(1) = 0.765™  Ic(a) = Ic(a®) = 0.6e%°™
Ie(b) = Ic(ab) = Ie(a’b) = 0.4¢"™

Fe(1) = 0.5¢*™, Fe(a) = Fe(a?) = 0.3¢%%™
F¢(b) = Fe(ab) = FC(,JZb) = 0.3¢027

Then clearly C is a complex neutrosophic normal subgroup of G.
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Theorem 6.3. If C; and C, are any two complex neutrosophic normal subgroups of the groups G1 and G, respectively,
then Cy X C, is also a complex neutrosophic normal subgroup of G1 X Go.

Proof: Similarly to the proof of Theorem 3.5. O

Theorem 6.4. Let G be a group, and Cy and C, be two CNNSGs of G, then C1 N C, is also a complex neutrosophic
normal subgroup of G.

Proof: Since C; and C, are CNNSGs of G, then
pe (g3 b 3 e () b,
and
pes(xy a7 HEETTD > pe, () - ),
So, by the definition of the intersection,
pclncz(x . y . x_l) . eiﬂflﬂCz(x'y'x_l) — pCl (x . y . x_l) . ei‘uﬂil (x‘y'x_l)
A pcz(x . y . x_l) . eiﬂcz(x'y'f])
> pcl (y) . eiH‘Cl (]/) A pCZ (y) . ei["‘CZ (y)
= pcine, (]/) . eiﬁlclmcz(y).

By the similar way,

geinG, (- y - x71) - a2V > ge (1) - e area),
And
reuc, (- y - x) - eUase YYD = e (xy xT) - f00 69D
Vrg,(x-y-xt) - e, (eyx)
<rc,(y)- PRV re,(y) - 2o, (v)
= 1o (y) - €0 ),
Hence the intersection of two CNNSGs is also a CNNSG. O
Theorem 6.5. If C; and C, be two CNNSGs of G, then Cy U C, is a complex neutrosophic normal subgroup of G.
Proof: Similarly to the proof of Theorem 3.11. O

Proposition 6.6. Let C be a complex neutrosophic subgroup of a group G. Then the following are correspondent:

(1) Cis a CNNSG of G.
QCHx-y-xH=Cy),¥Yxyeg.
B Cx-y=Cy-x),Yxyeg.

Proof: (1) = (2) : Let C be a complex neutrosophic normal subgroup of G. Take x, y € G, then by Definition
6.1,

pc(x . y . x_l) . eiflf(x'y'xil) > pc(y) . eiﬂt(y),
qC(x Y- x—l) . eivc(x-y-x*l) > qc(y) . eivc(y),

Tc(x - x—l) . eimc(xy'x’]) < 7,C(]/) . eiwc(y)'
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Thus taking arbitrary element x, the following is got for the truth membership of C,
pe(r -y x) - @HeETYN = perl Ly ()L ey )T
> pe(y) - €<,
Therefore,
pc(y) - eitey) = pc(x_l (xey- ) pitic @ (ya))
> pe(x -y - x7h) - ety
Thus, pe(x-y-x1) - etc@ya™) = pe(y) - elte®),
Similarly, ge(x - y - x71) - ey = ge(y) - eive®),
For falsity membership,
re(r g x) - @@ = ety ()L ey e
<rc(y)- e,
Therefore,
re(y) . elwe) = rc(x‘l (x-y- x—l) L) - poc (ryat)x)
<re(x-y- x—l) . plocteyxl).
This implies that
re(x-y- x - plwcleyx™) — re(y) - elocy)

Hence C(x-y-x1) =C(y) forallx,y € G.

(2) = (3) : Substituting y = y - x in (2), the condition (3) is shown easily.
(3) = (1) : According to C(y - x) = C(x - y), the equality

Clx-y-x)=Cy-x-x7") =Cy) 2 Cy)

is satisfied. Hence Cisa CNNSGof G. O

109

Theorem 6.7. Let C is a complex neutrosophic subgroup of a group G. Then C is a complex neutrosophic normal
subgroup of G if and only if for arbitrary a = Be” where B € [0,1],y € [0,2n], if a-level sets of C are non-empty,

then (pc - gl )a , (qc -elve )a and (rc - glve )a are classical subgroups of G.

Proof: Similarly to the proof of Proposition 4.3. O

Theorem 6.8. Let C is a complex neutrosophic normal subgroup of a group G. Let Gec = {x € G | C(x)e

C(2)e'“®}, where ¢ is the unit of G. Then the classical subset G¢ of G is a normal subgroup of G.

iCkx) _

Proof: Let C be a CNNSG of G. First it is necessary to show that the classical subset G¢ is a subgroup of G.

Let us take x, vy € G¢, then by Theorem 3.7,
Clx -y HECEY) > Cx)eC™ A C(y)e SV
= ()™ A C(2)e O
= C(8)e'®
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and always C(£)e'®@ > C(x - y~1)elCey ™),
Hence x -y~ € G¢, i.e., Gc is a subgroup of G.

Now we will be shown that G is normal. Take arbitrary x € G¢c and y € G. Therefore, C(x)e’C® = C(2)e'C®.
Since C eCNNSG(G), the following is obtained,

C(y e X - yil)eic(y'x'yil) - C(y71 . y . x)eic(yil'y'x)
= C(x)e' M = C(2)e™.

Hence, y - x -y~ € G¢, So Ge is a normal subgroup of G.

Theorem 6.9. Let f : G — G» be a group homomorphism and Cy is a CNNSG of G,. Then the preimage f~1(C,)
isa CNNSG of G1.

Proof: From the Theorem 5.3, it is known that f1(C,) is a complex neutrosophic subgroup of G;. Hence it
is sufficient to show that normality property of f ~1(C,). For arbitrary x1,x, € G1, by homomorphism of f
and by the normality of Cy,

fﬁl(Cz)(xl 'xz)eif_l(CZ)(xMZ) = Cz(f(X1 ~X2))eicz(f(x1-xz))
= Co(f(x1) - f(xz))eiCZ(f(xl)'f(xz))
= Cz(f(XZ) : f(xl))eiCZ(f(xz)'f(xl))
= Co(f(xa x1))e G2t (2 x1)
= f‘l(Cz)(Xz 'X1)eif_l(C2)(x2'xl)_
Hence, from the Proposition 6.6, f1(C;) isa CNNSG of G1. O

Theorem 6.10. Let f : Gi — G be a surjective homomorphism of groups G1 and G,. if C is a CNNSG of G1, then
f(C) is a CNNSG of G».

Proof: Since f(C) is a complex neutrosophic subgroup of G, is clear from the Theorem 5.2, it is sufficient only
to show that the normality condition by using Proposition 6.6 (3). Take y1,y, € G» such that f L) # o,
1) # pand fH(y1 - y,') # ¢. So it is inferred that

Fpc(yr - yo - yph))eif ety = \/ pe(le'te?d
lef~Y(yry2y;")

and

Fpely)e <t = \/ pepett.
lef~Y(y2)

For all x; € f(y2), x1 € f~'(y1) and x7" € f7'(y;"), since C is normal,
pexr - xp - a7l > pe(xp)eitet),

—1y ,ive(xg-xpx! ive(x
qc(X1 XX )e c(x1x2°x] ") > QC(Xz)é’ c( 2)’
re(xy - xp - X7 OCE2IT) < ()it
c(X1-x2- X <rclx2
are obtained.

Since f is a homomorphism , it follows that

flor-xa-x7h) = f(x) - fx) - fe) ™ =y ve - yp
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So, x1 - x2- X7t € f7N(y1 - y2 - y;'). Hence

pe(ete® > \/ pelx - xp - a7 t)eelrz)
lefY(y1y2y;h) x1€f 1y x2ef "1 (ya)

> \/ PC (xz)ei.’*lC(XZ).

0€f 1 (y2)

This means that,

Foc(yr - va - yl—l))eifwc(yl-yz-y;l)) > f(p C(yz))eif(yc(yz))‘

On the other hand, the following inequalities are obtained in a similar observation.
flaey - ya - yp N > f(ge(ya))e e,

Fre(ys - ya - y7 ) @Wi) > £y (yy))elf @),

So the desired inequality,

fOW1-y2- yl—l)eif(C)(yl-yz'yIl) = (f(pc(y1 Y- yl—l))eif(yc(yl.yz,y;l)),
ey - ya - yh))elftern),
flrety - v2 -yt (f“c(yryz'y;l)))
> (f(pe(y2)e e, fge(ya)etees,
flre(ya)el @)
= (Pf(C)(yz)ei” 1002), g 40y (y2)e™ oW,
o) (y2)e o)
= f(C)(ya)e' MO,

is satisfied. O

7. Conclusion

111

In this paper we presented the concept of complex neutrosophic subgroups (normal subgroups) and
alpha-cut of complex neutrosophic set, and studied some of its motivating results. We have also defined the
Cartesian product of complex neutrosophic subgroups and discussed some its related results. Furthermore,
we have also defined the concept of image and preimage of complex neutrosophic set and studied some of
its properties. In future, we will generalized the study to soft set theory and will initiate the concept of soft

complex neutrosophic subgroups (normal subgroups).
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