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Abstract

In this work, a new clustering algorithm is proposed based on neutrosophic set

(NS) theory. The main contribution is to use NS to handle boundary and out-

lier points as challenging points of clustering methods. In the first step, a new

definition of data indeterminacy (indeterminacy set) is proposed in NS domain

based on density properties of data. Lower indeterminacy is assigned to data

points in dense regions and vice versa. In the second step, indeterminacy set

is presented for a proposed cost function in NS domain by considering a set

of main clusters and a noisy cluster. In the proposed cost function, two con-

ditions based on distance from cluster centers and value of indeterminacy, are

considered for each data point. In the third step, the proposed cost function

is minimized by gradient descend methods. Data points are clustered based

on their membership degrees. Outlier points are assigned to noise cluster; and

boundary points are assigned to main clusters with almost same membership de-

grees. To show the effectiveness of the proposed method, three types of datasets

including diamond, UCI and image datasets are used. Results demonstrate that

the proposed cost function handles boundary and outlier points with more ac-

curate membership degrees and outperforms existing state of the art clustering

methods in all datasets.
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1. Introduction

Clustering is a division of data into groups. Each group, referred as a clus-

ter, attempts to satisfy two rules: objects are similar (or related) to each other

(minimize the intra-cluster distance) inside same groups and at the same time

different from (or unrelated to) the other groups (maximize the inter-cluster dis-

tance) . Clustering represents and models data by few clusters which achieves

simplification to data analysis. Data clustering is an important field in ma-

chine learning, and has found numerous applications in computer vision, image

processing, taxonomy, medicine, geology, business, and pattern recognition com-

munity [1, 2, 3, 4, 5].

In data analysis, clustering methods can be considered as two popular cat-

egories: hard (crisp) and fuzzy methods [6]. In hard clustering methods, data

points are grouped so that each one belongs to exactly one cluster. Unlike

hard clustering, in fuzzy partitioning, each object may be assigned to all clus-

ters with different degrees of membership [7]. One of the most popular hard

clustering methods is K-means which partitions the data into k clusters auto-

matically attempting to minimize the within-group sum of square distances [8].

The main disadvantage of this algorithm is that it does not ensure a global min-

imum of variance and needs a predefined cluster numbers [9]. K-means++ is an

improvement of clustering analysis on k-means [10]. It improves the k-means

with choosing the initial cluster values (or ”seeds”). It was proposed as an ap-

proximation algorithm for the NP-hard k-means problem. K-medoids is also a

variation of k-means where it calculates the median for each cluster to determine

its centroid. It has the effect of minimizing error over all clusters with respect

to the 1-norm distance metric, which relates directly to the k-means algorithm.

The Euclidean distance between points is considered as a criterion for clustering

and a point designated as the center of that cluster.
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Fuzzy c-means (FCM) clustering is one of the most popular fuzzy methods.

FCM allows one point of data to belong to two or more clusters with different

membership degrees [11]. FCM was developed by Dunn in [12] and improved

by Bezdek [13]. FCM has four major problems: 1. It just attempts to minimize

intra-cluster variance as well, but does not consider the inter-cluster variance,

like k-means algorithm. 2. The result of clustering strongly depends on ini-

tializing. 3. It sensitives to noise and the membership of noise points can be

high. 4. It is also sensitive to the type of distance metric and cannot dis-

tinguish between equally highly likely and equally highly unlikely data points

[14, 15, 16]. To solve the last problem, Gustafson and Kessel considered the

Mahalanobis distance to show the shape effect on distance metric [17]. In [18],

a new method based on possibility named as possibilistic c-means (PCM) was

proposed. However, it is sensitive to cluster center initialization, and needs

tuning additional parameters, and may lead to generate coincident clusters. To

overcome PCM problems, Pal et al. combined PCM and FCM where both the

relative and absolute resemblances are considered for cluster centers [19]. In

[20], fuzzy non-metric model (FNM) was proposed as a clustering approach.

Richards et al. presented a variation of fuzzy and hard clustering named as re-

lational fuzzy c-means (RFCM) [21]. In [22], Dave combined FNM and RFCM

which was robust against noise and outliers. More recent researches for fuzzy

c-means are evidential c-means (ECM) [23] and relational evidential c-means

(RECM) [24]. Recently, many clustering methods have been developed based

on different theories [25, 26, 27, 28, 29].

Neutrosophy theory was firstly proposed by Smarandache in 1995 [30]. It is

a branch of philosophy, and studies the origin, nature and scope of neutralities,

as well as their interactions with different ideational spectra [31]. This theory

was applied for image processing first by Guo et. al [32] and then it has been

successfully used for other image processing domains including image segmenta-

tion [33, 32, 34, 35, 36, 37], image thresholding [38], image edge detection [39],

image retrieval [40, 41], retinal image analysis [42, 43, 44, 45, 46, 47, 48], liver im-

age analysis[49, 50], breast ultrasound image analysis[51], data classification[52]
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and uncertainty handling[53]. Recently, NS has been adapted for our problem

of interest, data and image clustering, as neutrosophic c-means (NCM) [7] and

kernel neutrosophic c-means (KNCM) [54].

The main motivation of this work is to handle boundary and outlier points by

proposing indeterminacy set(I) in NS domain followed by presenting this set for a

new clustering cost function. As it will be discussed in section 4 and 5, challenges

of the previous methods are addressed by encoding all constraints for handling

boundary and outlier points in the cost function. In this paper, we introduce

a new method based on neutrosophic set (NS) theory for data clustering and

image segmentation. It calculates the indeterminacy for each data point in

NS domain followed by a new cost function based on data indeterminacy. In

the proposed cost function two conditions for data point i are considered to

have the highest membership degree to the main cluster k: (a) point i should

have the minimum distance from the cluster center k rather than other clusters,

(b) point i should have a small indeterminacy. Similarly, there are also two

conditions for point i to have the highest membership degree to noisy cluster:

(a) having the maximum sum distance from all main clusters and (b) having a

big indeterminacy. In the third step, the proposed cost function is minimized by

gradient descend methods. Data points are clustered based on their membership

degrees. Outlier points are assigned to noise cluster; and boundary points are

assigned to main clusters with almost same membership degrees. The proposed

cost function is minimized and assigns membership degrees to main and noise

clusters. Here, membership sets T and F in NS domain are considered as the

main and noisy clusters, respectively. The rest of the paper is organized as

follows. FCM algorithm and NS set are reviewed in section 2. In section 3, the

proposed method is presented. Experimental results of the proposed method

in scatter and image datasets are illustrated in Section 4. Section 5 discusses

advantages and disadvantages of the proposed method in comparison with other

methods. Finally, section 6 concludes the paper.
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2. Review on neutrosophic set and fuzzy clustering

The proposed methods in this paper are based on NS and fuzzy clustering.

In this section, these concepts are introduced as follows.

2.1. Neutrosophic set

NS is a powerful framework of neutrosophy in which neutrosophic operations

are defined from a technical point of view. In fact, for each application, neutro-

sophic sets are defined as well as neutrosophic operations corresponding to that

application. Generally, in neutrosophic set A, each member x in A is denoted

by three real subsets true, false and indeterminacy in interval [0, 1] referred as

T , F and I, respectively. Each element is expressed as x(t, i, f) which means

that it is t% true, i% indeterminacy, and f% false. In each application, domain

experts propose the concepts behind true, false and indeterminacy[32].

2.2. Fuzzy clustering

Clustering methods can classify similar samples into the same group. Con-

sider X be a data set, and xi be a sample. The purpose of clustering is to find

partitions C = {C1, C2, ..., Cm}, which satisfies (1):

X =

m∑
i=1

Ci , Ci 6= ∅ for(i = 1, 2, ,m), Ci∩Cj = ∅ for(i, j = 1, 2, ,m); i 6= j (1)

FCM attempts to cluster a limited number of elementsX = {X1, X2, ..., Xn},

into a collection of c fuzzy clusters based on the similar features. Given a finite

set of data, the FCM returns a list of c cluster centers C = {C1, C2, ..., Cc}, and

a partition matrix W = {wi,j |wi,j ∈ [0, 1], i = 1, 2, ..., n, j = 1, 2, ..., c} where

wi,j represents the membership degree of data point xi to cluster cj .

The FCM aims to minimize objective function in (2):

J = argmin

n∑
i=1

c∑
j=1

||Xi − Cj ||2 (2)
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where membership degrees wi,j and cluster centers cj are updated in each iter-

ation by (3)-(4):

wi,j =
1∑c

j=1(
||Xi − Cj ||
||Xi − Cj ||

)2/(m−1)
(3)

ck =

∑
x wk(xm)x∑
x wk(xm)

(4)

The iteration will not stop until max {|w(k+1)
i,j − w(k)

i,j |} 6 ε where ε is a small

quantity and k is the iteration step. This procedure attempts to achieve a

minimum or a saddle point of j. Each data is assigned into all classes with

different membership degrees[55].

3. Proposed method

In this paper, a new clustering approach is proposed to cluster data including

outlier and boundary data points. The proposed method is derived from FCM

and NS concepts. Here, uncertainty is defined for each data point and described

using the indeterminacy set in neutrosophic domain. Indeterminacy value for

each data point i is defined by considering the Euclidean distance of i from its

neighbors by (5)-(7).

I(i) =


1− NP (i)

N/NC
, if NP (i) < NPth

α, otherwise

(5)

temp[j] =

1, if dist[i, j] < Eps, j = 1, 2, ..., N

0, otherwise

(6)

NP (i) =

N∑
j=1

temp[j] (7)

where I is an indeterminacy value, N is the size of dataset, NC is the number

of clusters and NPth is a constant number as a threshold value. For indeter-

minacy assessment, the value of NPi is compared with NPth. If NP is smaller
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than NPth, it means that this point is a noisy point and should have a bigger

indeterminacy. Otherwise, small quantity Eps is considered for indeterminacy.

dist[i, j] is the Euclidean distance between point i and j. It is clear that this

idea assigns indeterminacy near to 1 for noisy pixels and near to 0 for points

inside the main clusters.

In the proposed clustering algorithm, we consider both determinate and inde-

terminate membership degrees for main clusters and noisy cluster, respectively.

A unique set A has been considered as a union of determinate and indeterminate

clusters. Let A = Ci ∪R; i = 1, 2, ..., k; where Ci and R represents determinate

cluster i and indeterminate cluster, respectuvely. ∪ is the union operation. Con-

sidering indeterminacy in clustering, the proposed objective function is defined

in (8):

L(T, F,C) =

n∑
i=1

k∑
j=1

(w1IiTi,j)
m||Xi−Cj ||2+

k∑
j=1

(w2(1−Ii)Fi)
m(k−||Xi−Cj ||2)

(8)

where k is the number of clusters. Ti,j and Fi are the membership degrees

of data point i to main cluster j and noisy cluster, respectively. To consider

constraints in NS theory, membership degrees are enforced to be in interval

0 < Ti,j , Fi < 1. For each data point, the sum of Ti,j and Fi should be equal to

1 which is satisfied as following:

k∑
j=1

Ti,j + Fi = 1 (9)

We consider two conditions for data point i to have the highest membership

degree to cluster k: (a) point i should have the minimum distance from the

cluster center k rather than other clusters, (b) point i should have a small inde-

terminacy. Similarly, there are also two conditions for point i to have the highest

membership degree to noisy cluster: (a) having the maximum sum distance from

all main clusters
∑k

j=1||Xi−Cj ||2 and (b) having a big indeterminacy. The max-

imum difference between any two pixels is 1 since all sets have been normalized

to the interval [0, 1]. Therefore, the maximum quantity for
∑k

j=1||Xi −Cj ||2 is

k.
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For considering this constraint, the Lagrange function is constructed by (10):

L(T, F,C) =

n∑
i=1

k∑
j=1

(w1IiTi,j)
m||Xi − Cj ||2+

k∑
j=1

(w2(1− Ii)Fi)
m(k − ||Xi − Cj ||2)

−
n∑

i=1

λi(

k∑
j=1

Ti,j + Fi − 1)

(10)

For cost function minimization, gradient descent approach is used. Therefore:

∂L

∂Tij
= m(w1IiTij)

(m−1)||Xi − Cj ||2−λi (11)

∂L

∂Fi
= m(w2(1− Ii)Fi)

(m−1)(K − ||Xi − Cj ||2)− λi (12)

∂L

∂Cj
= −(w1IiTij)

m(Xi − Cj) + (w2(1− Ii)Fi)
m(Xi − Cj) (13)

By considering
∂L

∂Fi
= 0,

∂L

∂Fi
= 0 and

∂L

∂Cj
= 0 we can obtain the follows:

Tij =
1

w1Ii
(
λi
m

)

1

(m− 1) ||Xij − Cj ||

−2

(m− 1) (14)

Fi =
1

w2(1− Ii)
(
λi
m

)

1

(m− 1) (K − (||Xij − Cj ||)2)

−1

(m− 1) (15)

Cj =
[
∑n

i=1(w1IiTij)
m −

∑n
i=1(w2(1− Ii)Fi)]Xi∑n

i=1(w1IiTij)m −
∑n

i=1(w2(1− Ii)Fi)
(16)

For efficient computation, term (
λi
m

)

1

m− 1 can be assumed as Ktemp and

computed by replacing Tij and Fi in (9):

(
λi
m

)

1

m− 1 = Ktemp (17)

k∑
j=1

Ktemp

w1Ii
||Xij − Cj ||

−2

(m− 1) +
Ktemp

w2(1− Ii)
(K −

k∑
j=1

||Xij − Cj ||)

−1

(m− 1) = 1

(18)
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Ktemp = [
1

w1Ii

k∑
j=1

||Xij−Cj ||

−2

(m− 1) +
1

w2(1− Ii)
(K−(

k∑
j=1

||Xij−Cj ||2))

−1

(m− 1) ]−1

(19)

Tij =
Ktemp

w1Ii
||Xij − Cj ||

−2

(m− 1) (20)

Fi =
Ktemp

w2(1− Ii)
(K − (

k∑
j=1

||Xij − Cj ||2))

−1

(m− 1) (21)

The proposed clustering algorithm is summarized as follows:

Algorithm 1

1: Initialize T and F .

2: Initialize the c, w1, w2, Eps, K and m.

3: Compute I for each data point.

4: Update Tij , Fi and Ci by Eqs (20), (21) and (16), respectively.

5: Check the stop condition, if |T (k) − T (k−1)|< ε then stop, otherwise go to

step 4.

6: Assign each data point into boundary cluster if the first two membership

degrees Tij and Tik are between t and (1− t), otherwise assign it to a cluster

which data point i has the maximum membership degree to it.

7: end.

4. Experimental Results

Performance of the proposed clustering method is evaluated in three types of

datasets including diamond datasets, natural and artificial images datasets and

medical image dataset in sections 4.1, 4.2 and 4.3, respectively. The proposed

method is applied on these datasets and then compared with ASIC [56], FCM-

AWA [57], NCM [7] and methods in [42, 43, 58, 59, 60, 61, 62].

4.1. Parameters Tuning

All parameters in indeterminacy computation section are set to following

quantities based on experiments. Parameter Eps and NPth are considered with
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quantity 4, means that neighbors in the maximum distance of 4 and the maxi-

mum of 4 neighbors are considered for indeterminacy computation. Parameter

α is considered with quantity 0.05. In the proposed cost function, parameter

are configured as ε = 10−6, m = 2, t = 0.4, w1 = 1 and w2 = 2.

4.2. Datasets

In this research, three type of datasets are used to evaluate the performance

of the proposed method. The first type is diamond datasets including a collec-

tions of scatter data including X12, X19 and X24 which are proposed in [7]. We

also proposed X35 which is an extension of datasets in [7]. In these datasets,

boundary points are considered between main clusters as well as outlier points

far from main clusters. It can be visually seen that how clustering methods

are affected by these points among main points in each dataset. The second

dataset type is UCI which include datasets with higher dimension and larger

scale. Here, ”Iris”, ”Wine”, ”Glass”, ”Seeds” and ”Breast-w” are used. Fi-

nally, the proposed method is applied on image data as third dataset type. In

this experiment, these dataset natural, artificial and medical images are used to

evaluate the effectiveness of the proposed method.

4.3. Diamond datasets

Diamond datasets in NCM including: a) X12 : 12 scatter points in 2 clusters

with 1 boundary point and 1 outlier, b) X19 : 19 scatter points in 3 clusters with

2 boundary points and 2 outliers and c) X24 : 24 scatter points in 4 clusters with

3 boundary points and 1 outlier were used in this research. We also designed a

further scatter dataset referred as X35.

4.3.1. X12 dataset

X12 is shown in Fig. 1 in which points 1−5 and 7−11 belong to main clus-

ters, points 6 and 12 are boundary and outlier, respectively. In all experiments,

Tci is the membership degree to ith cluster and F represents the membership

degree to noise cluster. Each data point is assigned to a cluster with the max-

imum membership degree. Fig. 2 illustrates assigned membership degrees of
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each point to two main clusters and noisy cluster by the proposed method with

red, green and blue colors, respectively. Table 1 reports the membership de-

grees assigned by the proposed clustering method and NCM. Although, both

the proposed method and NCM assign correct cluster labels to all points, the

proposed method determines the cluster labels more confidently. For example,

for point 7 which is a point in cluster 2, the proposed method assigns 0.91 mem-

bership degree to this cluster while NCM assigns 0.69. All membership degreess

are also visually depicted in Fig. 3 . Dash (”− .− .− ”) and circle (”o− o− o”)

represent membership degrees computed by NCM and the proposed method,

respectively.

Figure 1: X12 dataset.

4.3.2. X19 datasets

X19 dataset with three clusters is shown in Fig. 4 . In this dataset, points

1− 5, 7− 11 and 13− 17 represent main clusters, points 6 and 12 are boundary

and points 18 and 19 are noisy points. Membership degrees computed by the

proposed method and NCM are reported in Table 2 . Similar to section 4.2.1,

although the proposed method and NCM assign same cluster labels for all points,
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Figure 2: Membership degrees for X12 dataset computed by the proposed method.

Table 1: Clustering result for X12 dataset.

NCM Proposed method

Tc1 Tc2 I F Tc1 Tc2 F

1 0.8262 0.0294 0.0104 0.1339 0.9515 0.0479 0.0006

2 0.7952 0.0451 0.0196 0.1401 0.9409 0.0588 0.0003

3 0.9996 0.0001 0.0000 0.0003 0.9993 0.0007 0.0000

4 0.792 0.0456 0.0197 0.1426 0.9409 0.0588 0.0003

5 0.695 0.0799 0.0915 0.1336 0.9124 0.0874 0.0002

6 0.0007 0.0007 0.9982 0.0005 0.4998 0.4998 0.0004 boundary

7 0.0835 0.6802 0.0990 0.1373 0.0874 0.9124 0.0002

8 0.0475 0.7854 0.0207 0.1464 0.0588 0.9409 0.0003

9 0.0003 0.9987 0.0001 0.0008 0.0007 0.9993 0.0000

10 0.0444 0.7994 0.0195 0.1367 0.0588 0.9409 0.0003

11 0.0284 0.8334 0.0101 0.128 0.0479 0.9515 0.0006

12 0.0477 0.0938 0.0084 0.8502 0.0765 0.0765 0.847
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Figure 3: Membership degrees computed by NCM and the proposed method in X12.

the proposed method assigns membership degrees for points such as 5, 7, 11,

12 with higher certainties into their corresponding clusters. Point 6 belongs to

boundary cluster and point 3 is a main cluster center. Although, point 5 has a

same distance between main and boundary clusters, it belongs to main cluster.

NCM cannot distinguish boundary and main clusters for point 5. The proposed

method addresses this issue and assigns 0.91 of membership degree to main

cluster while NCM assigns 0.58. Fig. 5 depicts membership degrees visually.

4.3.3. X24 dataset

We also conducted more experiment to compare the proposed method and

NCM using a four class dataset X24 which is represented in Fig. 6 . Data points

6, 12 and 18 are boundary and 24 is an outlier. The results of the proposed

method and NCM are tabulated in Table 3 . The first five data points belong

to the first main cluster because of their higher Tc1 values. Similar observation

can be inferred for the other clusters (C2 and C3 and C4). Data points 6, 12

and 18 are ambiguous because of the two highest T values. Finally, last data

point (24) is deduced as outlier. Fig. 7 depicts membership degrees visually.
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Table 2: Clustering result for X19 dataset.

NCM Proposed method

Tc1 Tc2 Tc3 I F T1 T2 T3 F

1 0.89 0.0236 0.007 0.015 0.0645 0.0169 0.9307 0.0525 0

2 0.7759 0.0578 0.0144 0.0444 0.1076 0.0491 0.7913 0.1596 0

3 0.988 0.003 0.0007 0.0029 0.0053 0.0006 0.9972 0.0022 0

4 0.8393 0.0411 0.0103 0.0332 0.0762 0.0491 0.7913 0.1596 0

5 0.5816 0.0928 0.0161 0.2182 0.0913 0.0131 0.9194 0.0675 0

6 0.0124 0.0149 0.0016 0.9646 0.0065 0.0507 0.5211 0.4282 0 boundary

7 0.0689 0.7032 0.0261 0.1249 0.0769 0.0369 0.1081 0.855 0

8 0.0434 0.792 0.0434 0.0317 0.0894 0.1507 0.1507 0.6985 0

9 0 0.9999 0 0 0 0 0 1 0

10 0.0421 0.7996 0.0421 0.0315 0.0847 0.1507 0.1507 0.6985 0

11 0.0261 0.7032 0.0689 0.1249 0.0769 0.1081 0.0369 0.855 0

12 0.0016 0.0149 0.0124 0.9646 0.0065 0.5211 0.0507 0.4282 0 boundary

13 0.0161 0.0928 0.5816 0.2182 0.0913 0.9194 0.0131 0.0675 0

14 0.0144 0.0578 0.7759 0.0444 0.1076 0.7913 0.0491 0.1596 0

15 0.0007 0.003 0.988 0.0029 0.0053 0.9972 0.0006 0.0022 0

16 0.0103 0.0411 0.8393 0.0332 0.0762 0.7913 0.0491 0.1596 0

17 0.007 0.0236 0.89 0.015 0.0645 0.9307 0.0169 0.0525 0

18 0.037 0.0854 0.3046 0.0324 0.5406 0.0458 0.0327 0.0399 0.8817

19 0.3046 0.0854 0.037 0.0324 0.5406 0.0616 0.0763 0.0718 0.7904
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Table 3: Clustering result for X24 dataset.

NCM Proposed method

Tc1 Tc2 Tc3 Tc4 I F Tc1 Tc2 Tc3 Tc4 F

1 0.0248 0.0075 0.8631 0.0035 0.0363 0.0648 0.0459 0.0069 0.9322 0.0143 0.0006

2 0.0464 0.0119 0.77 0.0052 0.0839 0.0825 0.0547 0.0066 0.9238 0.0144 0.0004

3 0.0015 0.0004 0.9925 0.0002 0.0031 0.0024 0.0008 0.0001 0.9989 0.0002 0

4 0.0464 0.0119 0.7703 0.0052 0.0839 0.0824 0.0547 0.0066 0.9238 0.0144 0.0004

5 0.0703 0.0126 0.4752 0.005 0.3709 0.0661 0.0782 0.006 0.901 0.0145 0.0003

6 0.003 0.0003 0.0026 0.0001 0.9928 0.0012 0.4364 0.0181 0.4957 0.0492 0.0007 boundary

7 0.5937 0.023 0.0595 0.0069 0.255 0.0619 0.8495 0.011 0.1043 0.0349 0.0003

8 0.7527 0.0428 0.0414 0.0108 0.0732 0.0791 0.8792 0.0139 0.0546 0.052 0.0003

9 1 0 0 0 0 0 1 0 0 0 0

10 0.7537 0.0427 0.0412 0.0108 0.073 0.0786 0.8792 0.0139 0.0546 0.052 0.0003

11 0.5769 0.0611 0.0218 0.0109 0.2687 0.0606 0.8538 0.0176 0.0349 0.0934 0.0003

12 0.0007 0.0007 0.0001 0.0001 0.9981 0.0003 0.4485 0.0512 0.0512 0.4485 0.0006 boundary

13 0.0663 0.5152 0.0117 0.0215 0.3228 0.0626 0.0934 0.0349 0.0176 0.8538 0.0003

14 0.0449 0.7462 0.0113 0.0392 0.0785 0.0799 0.052 0.0546 0.0139 0.8792 0.0003

15 0.0004 0.9978 0.0001 0.0003 0.0008 0.0006 0 0 0 1 0

16 0.0437 0.7518 0.011 0.0389 0.0768 0.0778 0.052 0.0546 0.0139 0.8792 0.0003

17 0.0224 0.6581 0.0067 0.0522 0.202 0.0587 0.0349 0.1043 0.011 0.8495 0.0003

18 0.0018 0.0174 0.0006 0.0124 0.9611 0.0067 0.0492 0.4957 0.0181 0.4364 0.0007 boundary

19 0.0128 0.0733 0.005 0.3824 0.461 0.0655 0.0145 0.901 0.006 0.0782 0.0003

20 0.0013 0.0053 0.0006 0.9722 0.0122 0.0085 0.0002 0.9989 0.0001 0.0008 0

21 0.011 0.0438 0.0048 0.7807 0.0846 0.075 0.0144 0.9238 0.0066 0.0547 0.0004

22 0.014 0.0553 0.0061 0.7268 0.1028 0.095 0.0144 0.9238 0.0066 0.0547 0.0004

23 0.0058 0.0195 0.0027 0.8928 0.0297 0.0495 0.0143 0.9322 0.0069 0.0459 0.0006

24 0.0353 0.0753 0.02 0.2413 0.0633 0.5649 0.0087 0.0515 0.0051 0.0182 0.9165
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Figure 4: X19 dataset.

Figure 5: Membership degrees computed by the proposed method in X19.

4.3.4. X35 dataset

We also evaluated the proposed method for our diamond dataset with 35

data points which is shown in Fig. 8 . Points 1− 9, 13− 21 and 25− 33 belong

to main clusters, points 10 − 12 and 22 − 24 are ambiguous and points 34 and
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Figure 6: X24 dataset.

Figure 7: Membership degrees computed by the proposed method in X24.
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35 are outliers. In this dataset, we have considered more ambiguous points to

see the effect of boundary points in final clustering results. Table 4 reports

membership degrees computed by the proposed method and NCM. In NCM,

points (3, 6, 9), (13, 16, 19), (15, 18, 21) and (25, 28, 31) are assigned to main

clusters with almost 0.50 membership degree, while in the proposed method,

these points are assigned to main clusters with membership degree between

0.80 to 0.90. In fact, the proposed clustering scheme can solve the clustering

problems in boundary points more efficiently. The membership degrees for each

data point are visually depicted in Fig. 9 .

Figure 8: X35 dataset.
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Table 4: Clustering result for X35 dataset.

NCM Proposed method

Tc1 Tc2 Tc3 I F Tc1 Tc2 Tc3 F

1 0.0069 0.0234 0.8738 0.0346 0.0612 0.0175 0.0541 0.9271 0.0013

2 0.0005 0.0021 0.9894 0.0046 0.0035 0.0007 0.0027 0.9965 0

3 0.0125 0.0714 0.46 0.3888 0.0673 0.0125 0.0643 0.9227 0.0005

4 0.0148 0.0485 0.738 0.0664 0.1323 0.0278 0.0839 0.8862 0.0021

5 0.0121 0.0483 0.7656 0.0878 0.0862 0.0157 0.0569 0.9266 0.0009

6 0.0211 0.1106 0.4555 0.2965 0.1163 0.0288 0.1357 0.8343 0.0011

7 0.0142 0.0469 0.7471 0.0646 0.1272 0.0278 0.0839 0.8862 0.0021

8 0.0114 0.0455 0.7785 0.0839 0.0807 0.0157 0.0569 0.9266 0.0009

9 0.0205 0.1081 0.4566 0.3023 0.1125 0.0288 0.1357 0.8343 0.0011

10 0.0005 0.0044 0.0037 0.9896 0.0018 0.0503 0.4223 0.5261 0.0013 boundary

11 0.0485 0.2536 0.2324 0.2504 0.2151 0.0915 0.4294 0.4764 0.0028 boundary

12 0.0476 0.2543 0.2314 0.2565 0.2101 0.0915 0.4294 0.4764 0.0028 boundary

13 0.0224 0.6022 0.0595 0.2528 0.063 0.0371 0.8528 0.1094 0.0006

14 0 0.9998 0 0.0001 0.0001 0 1 0 0

15 0.0595 0.6023 0.0225 0.2527 0.0631 0.1095 0.8527 0.0372 0.0006

16 0.0381 0.5179 0.0952 0.2375 0.1113 0.0636 0.762 0.1733 0.0012

17 0.043 0.7569 0.043 0.0736 0.0835 0.0575 0.8843 0.0575 0.0007

18 0.0951 0.5181 0.0382 0.2372 0.1114 0.1733 0.7619 0.0636 0.0012

19 0.0367 0.5253 0.0923 0.2386 0.107 0.0636 0.762 0.1733 0.0012

20 0.0398 0.7747 0.0398 0.0689 0.0768 0.0575 0.8843 0.0575 0.0007

21 0.0922 0.5253 0.0368 0.2386 0.1071 0.1733 0.7619 0.0636 0.0012

22 0.0038 0.0045 0.0005 0.9894 0.0019 0.5262 0.4221 0.0503 0.0013 boundary

23 0.232 0.2537 0.0486 0.2503 0.2153 0.4764 0.4293 0.0915 0.0028 boundary

24 0.2313 0.2543 0.0476 0.2567 0.2101 0.4764 0.4293 0.0915 0.0028 boundary

25 0.4585 0.0715 0.0125 0.3902 0.0674 0.9228 0.0642 0.0125 0.0005

26 0.9891 0.0021 0.0005 0.0047 0.0036 0.9965 0.0027 0.0007 0

27 0.8745 0.0233 0.0069 0.0344 0.0609 0.927 0.0541 0.0175 0.0013

28 0.4545 0.1107 0.0212 0.297 0.1165 0.8344 0.1357 0.0288 0.0011

29 0.7648 0.0485 0.0122 0.0881 0.0865 0.9266 0.0569 0.0157 0.0009

30 0.7381 0.0485 0.0148 0.0664 0.1322 0.8862 0.0839 0.0278 0.0021

31 0.4561 0.1081 0.0205 0.3029 0.1125 0.8344 0.1357 0.0288 0.0011

32 0.7788 0.0454 0.0113 0.0838 0.0806 0.9266 0.0569 0.0157 0.0009

33 0.748 0.0467 0.0142 0.0644 0.1268 0.8862 0.0839 0.0278 0.0021

34 0.0447 0.0645 0.0748 0.0361 0.7798 0.0024 0.0033 0.0038 0.9906

35 0.0742 0.0563 0.0375 0.0332 0.7987 0.0023 0.0018 0.0012 0.9947
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Figure 9: Membership degrees computed by the proposed method in X35.

4.4. UCI Datasets

To show the performance of the proposed method on larger scale datasets,

UCI datasets are used. These datasets are considered as standard datasets in

machine learning community. In this research, ”Iris”, ”Wine”, ”Glass”, ”Seeds”

and ”Breast-w” datasets are selected among other datasets in UCI. Table 5

summaries number of features, number of classes, samples in each cluster and

number of objects in each dataset. Accuracy of the proposed method and FCM

[63], PCM [64], PFCM [65] and HPFCM [66] methods are summarized in Table

6. The proposed method outperforms other methods in ”Iris”, ”Wine”, ”Glass”,

”Seeds” and Breast-w datasets with the accuracy of 94.66%, 83.14%, 91.58%

and 91.90% and 91.41%, respectively.
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Table 5: Summary of dataset characteristics:

Dataset No. of feature No. of classes No. each cluster No. object

Iris 4 3 50,50,50 150

Wine 13 3 48,59,71 178

Glass 9 6 9,29,13,70,17,76 214

Seed 7 3 70,70,70 210

Breast-w 9 2 241,458 699

Table 6: Clustering accuracy for FCM, PCM, PFCM, HPFCM and Proposed method with

five datasets: Iris, Wine, Glass, seeds and Breast cancer.

Data sets FCM PCM PFCM HPFCM Proposed method

Iris 89.3 66.7 90 92.9 94.66

Wine 68.5 41.5 70 78.9 83.14

Glass 72.1 55.4 82.3 87.6 91.58

Seeds 78.3 69.8 84.3 86.6 91.90

Breast-w 84.3 61.8 86.3 89.1 91.41

4.5. Natural and artificial images datasets

Pixel clustering can be used for image segmentation in which each cluster is

considered as a segment. Each pixel’s intensity is used as a one dimensional data

for clustering algorithm. This dataset includes natural and artificial images. In

this section, we have applied the proposed method to image segmentation and

compared with the existing image segmentation algorithms such as NCM, ASIC

[56] and FCMAWA [57].

In the proposed method, membership sets T and F should be post processed

so they can be used for pixels clustering [6]. For each pixel, the average of its

neighbors is calculated to descend the influence of undesired factors on the final

determination of membership sets. Therefore, image clustering process is same

with scatter data except final membership of each pixel is calculated by (22)-
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Table 7: Number of misclassied pixels in two artificial images.

ASIC FCM-AWA NCM Proposed Method

Image 1 144 418 70 43

Image 2 47 235 15 9

(23):

T (i, j) =
1

z2

∑
m,n∈S

T (m,n) (22)

F (i, j) =
1

z2

∑
m,n∈S

F (m,n) (23)

where z represents the size of S, which has been set to 3 in this application.

Fig. 10 shows two artificial images in which each row contains the segmentation

result of different methods for one image. The first row in Fig. 10 is a synthe-

sized image with four classes and the corresponding gray values are 50 (upper

left, UL), 100 (upper right, UR), 150 (low left, LL) and 200 (low right, LR),

respectively. Each cluster (sub-image) contains 6464 pixels. The image is de-

graded by the Gaussian noise (µ = 0, σ = 25.5). The second row shows another

synthesized image that contains three regions: two equal-sized rectangular on a

uniform background and corresponding gray values 20 (upper step), 100 (lower

step) and 255 (background). Gaussian noise (µ = 0, σ = 25.5) is also added to

this image.

It is visually clear from segmentation results that the proposed method

archives good homogeneity in the segmented regions in comparison with NCM,

ASIC and FCMAWA. In the proposed method, boundaries of the homogenous

regions are smooth and a few number of pixels are misclassied. As it is re-

ported in Table 7 , the proposed method creates (43, 9) misclassied pixels in

the segmentation of the artidicial images (Image1, Image 2) which outperforms

NCM, FCM-AWA and ASIC with (70,15), (418,235) and (144,47) misclassied

pixels, respectively. Note that FCM-AWA has been tested by setting param-

eters: m = 2, α = 50, ε = 10−5, r = 2, k0 = 0.45 and k1 = 0.65. In ASIC

method, the cooling factor α is set to 0.95.
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Figure 10: Segmentation results for two samples of artificial images (each sample in one

row). (a) original image, semented image by (b) FCM-AWA, (c) ASIC, (d) NCM and (e) the

proposed method.

We also compared the proposed method with ASIC, FCM-AWA and NCM

methods in four natural images: rice, eight, Lena and women in the first,

second, third and forth rows in Fig. 11 , respectively. In these cases, all images

are degraded by the Gaussian noise (µ = 0, σ = 2.25). In Fig. 11 , segmentation

results of ASIC, FCM AWA, NCM and the proposed method are depicted in

each column.

We further illustrated the proposed method’s performance in image segmen-

tation quantitatively with F-measure [56] which considers both precision (25)

and recall (26) of the segmentation results and is defined by (24):

F =
P.R

Ψ.P + (1−Ψ).R
(24)

P =
TP

TP + FP
(25)

R =
TP

TP + FN
(26)

where Ψ is a constant number and is considered as as 0.5 in [56]. P is precision,

and R is recall rate. TP is the number of correct results, FP is the number of

false segmented pixels, and FN is the number of the missed pixels in the result.

The F −measure value is in the range of [0, 1], and a larger F −Measure value

indicates a higher segmentation accuracy.
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Table 8: F-measure values for NCM, FCMAWA, ASIC and the proposed method.

ASIC FCMAWA NCM Proposed Method

rice 0.7312 0.7802 0.8166 0.8506

eight 0.7988 0.8307 0.8627 0.8835

Lena 0.7371 0.7882 0.8302 0.8565

woman 0.7345 0.8064 0.8739 0.9347

In Table 8 , the F −measure values of each method applied on four natural

images are reported. The proposed method achieved the highest F-Measure of

0.93 in woman image and 0.85, 0.88 and 0.85 in rice, eight and lena images

respectively, which outperforms other methods. Therefore, experimental results

show that the proposed method yields more reasonable segmentations than the

compared methods quantitatively and qualitatively.

Figure 11: Segmentation results for four samples of natural images (each sample in one row).

(a) original image, semented image by (b) ASCI, (c) FCM-AWA, (d) NCM and (e) the pro-

posed method.

For natural images, FCMAWA is set with parameters: m = 2, α = 50,

ε = 10−3, r = 1, k0 = 0.45 and k1 = 0.65.
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4.6. Medical image dataset

Optical coherence tomography (OCT) is a non-invasive and non-contact

imaging method for eye retina which is extensively used clinically for the di-

agnosis and follow-up of patients with diabetic macular edema (DME) and

age-related macular degeneration (AMD). DME and AMD, manifested by fluid

regions within the retina and retinal thickening, is caused by fluid leakage from

damaged macular blood vessels [43, 67]. In this research, the proposed clus-

tering algorithm is applied to cluster OCT images for fluid segmentation. For

this purpose, optima OCT dataset including 196 images from 4 patients (49

images per subject) is used. It should be noted that fluid segmentation in OCT

images needs pre-processing, post-processing and layer segmentation. For these

steps, we have used the proposed methods in [43] since these steps are out of

the scope of this research. Table 9 and 10 reports average dice coefficients,

precision and sensitivity of the proposed method and methods in [42, 43] and

[58, 59, 60, 61, 62]. The proposed method achieved the best average sensitivity

of 90.59 and 89.10 in comparison with manual expert 1 and manual expert 2,

respectively. For dice coefficient and precision measures, methods in [42] and

[58] achieved the best performance. Four samples of OCT images including

1)intra-retinal and sub-retinal fluid, 2)intra-retinal fluid with detached mem-

berance, 3)intera-retinal fluid with hard exudate and hyper-reflective regions

and 4) intra-retinal fluid, are segmented by the proposed clustering method in

Figs. 12-15, respectively.
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Table 9: Dice coefficients, sensitivity and precision of different method in comparison with

manual expert 1 segmentation results.

Sub GC[58] KGC[59] Method in [60] Method in [61] Method in [62] Method in [42] Method in [43] Prop. Method

Dice Coeff. 1 73.49 80.43 71.4 61 72 82.96 83.4 81.11

2 73.9 55.1 45.49 79 84 78.11 59.5 65.8

3 78.46 75.35 69.54 43 72 82.23 71.3 77.94

4 78.12 71.78 71.15 46 64 80.75 70.75 66.6

Ave. 75.99 70.66 64.39 57.25 73 81.01 70.02 72.8

Sensitivity 1 70.81 82.19 72.49 NA NA 84.43 87.6 88.95

2 96.79 99.04 70.45 NA NA 98.94 97.2 97.42

3 75.72 85.13 47.38 NA NA 85.18 85.4 85.58

4 78.78 80.59 77.79 NA NA 84.49 87.2 90.44

Ave. 80.52 86.73 67.02 NA NA 88.26 89.35 90.59

Precision 1 93 85.06 54.87 NA NA 84.03 84.4 81.02

2 74.36 54.18 51.12 NA NA 78.48 59.5 65.52

3 94.89 79.88 30.93 NA NA 85.45 77.1 82.07

4 96.97 88.62 54.98 NA NA 93.2 71.6 71.1

Ave. 89.8 76.93 47.97 NA NA 85.29 73.15 74.92

Table 10: Dice coefficients, sensitivity and precision of different method in comparison with

manual expert 2 segmentation results..

Sub GC[58] KGC[59] Method in [60] Method in [61] Method in [62] Method in [42] Method in [43] Prop. Method

Dice Coeff. 1 72.96 79.1 68.17 56 76 82.9 81.86 80.03

2 71.68 55.11 45.81 76 84 79.09 57.46 63.55

3 82.33 79.34 65.01 42 75 80.36 79.09 81.09

4 77.91 71.56 72.55 45 67 80.87 65.59 70.52

Ave. 76.22 71.27 62.88 54.75 75.5 80.8 71 73.79

Sensitivity 1 69.95 78.56 66.75 NA NA 80.94 83.03 84.45

2 92.25 94.54 64.71 NA NA 94.45 92.56 92.76

3 81.49 90.95 54.84 NA NA 90.75 91.57 90

4 78.54 80.22 77.56 NA NA 83.7 86.24 89.21

Ave. 80.55 86.06 65.96 NA NA 87.46 88.35 89.1

Precision 1 95.71 86.55 59.61 NA NA 87.53 87.3 83.37

2 74.45 54.14 51.34 NA NA 78.58 59.61 65.54

3 96.1 79.96 37.99 NA NA 85.48 77.21 82.79

4 97.24 88.99 59.5 NA NA 93.58 72.36 71.79

Ave. 90.87 77.41 52.11 NA NA 86.29 74.62 75.87
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Figure 12: Segmented fluid regions by the proposed clustering method in OCT image with

intra-retinal and sub-retinal fluid regions.
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Figure 13: Segmented fluid regions by the proposed clustering method in OCT image with

intra-retinal and detached memberance.
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Figure 14: Segmented fluid regions by the proposed clustering method in OCT image with

intra-retinal fluid and hard exudate and hyper-reflection regions.
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Figure 15: Segmented fluid regions by the proposed clustering method in OCT image with

intra-retinal fluid.

5. Discussion

In this section, advantages and disadvantages of the proposed method are

discussed. Considering boundary cluster to handle boundary points in methods

such as NCM has two side effects which are highly correlated to each other.

First, there are points between boundary cluster and a main cluster such as

points 5 and 7 in X12; 5, 7, 11 and 13 in X19; 5, 7, 11, 13, 17 and 19 in X24;

3, 6, 9, 25, 28 and 31 in X35. These points are not assigned to a main cluster

with a high certainty. The reason is that such points are located in the same

distance from the center of the main cluster and the center of boundary cluster.

Second, such points displace center of the main clusters.
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Consider cluster 1 in X35. Points 23, 5 and 22 in X35 have the almost same

distance from the main cluster center (point 3) and boundary cluster center

(point 6). Therefore, assigned membership degree of such points to the main

cluster and boundary cluster is around 0.50. Points 21, 1 and 20 have the higher

membership degrees(Ti,j) to the main cluster in comparison with points 23, 5

and 22. In NCM, cluster center is in a direct correlation with Ti,j :

cj ≈
N∑
i=1

(w1Ti,j)
mxi (27)

Therefore, cluster center around point 3 is forced to move toward points 21,

1 and 20. This condition is same for other clusters in X35.

When cluster centers are far away from their correct positions (see Fig.

16(a)), in the next iteration, since points 21, 1 and 20 are closer to cluster

center in comparison with points 23, 5 and 22, their memberships to the main

cluster will be stronger. Therefore, these issues are affected by each other in the

next iterations of cost function minimization.

In the proposed method, these issues are addressed by proposing a cost func-

tion and ignoring boundary cluster. As it is depicted in Fig. 16, the proposed

method is robust and main cluster centers are not forced to be far away from

boundary points. Reported results demonstrate how the proposed method han-

dles boundary points and points between boundary points and main cluster

centers.

As it is shown in Fig. 17, boundary points have a same distance from main

cluster centers. In clustering algorithms, when cluster centers are converged;

without significant changes in subsequent iterations; for data point xi, term

||xi − cj || has the same quantity for all cluster centers (j = 1, 2, ...,K). It leads

membership degree xi to cluster center j (Ti,j) to be almost same for all clusters.

We have used this property to distinguish boundary points.

The main problem in clustering is determining the number of main clusters

(K). This issue is domain-specific and should be determined under expert su-

pervision. Here, in each experiment K is determined from a context knowledge.

It should be noted that inappropriate K affects clustering results significantly.
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Figure 16: Cluster centers computed by: (a): NCM and (b): the proposed method.

Figure 17: Boundary points.

Also, although benefits of NS theory and some aspects of data clustering such

as indeterminacy is considered in the proposed cost function, cost function min-

imization suffers from local optimum points. Finally, although the proposed in-

determinacy definition in neutrosophic domain is appropriate for density-based
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and center-based clustering, it is not working well on non-density cases such as

contiguous-based and nonlinear-shape clusters.

6. Conclusion

In this research, an effective clustering method was proposed in NS domain.

For this task, data indeterminacy was proposed based on density properties of

data in NS domain to control outlier and boundary points followed by proposing

a cost function in NS domain. Two types of clusters including main clusters and

noisy cluster are considered in the proposed cost function. Experiments on dif-

ferent datasets including diamond datasets; UCI datasets, artificial and natural

images; and medical images showed that the proposed method not only han-

dle outlier and boundary points but also outperforms existing methods in both

scatter data clustering and image segmentation. Future efforts will be directed

towards introducing indeterminacy in NS domain to supervised methods such as

deep convolutional neural networks. Future efforts will be also directed towards

proposing methods in neutrosophic domain for handling contiguous-based and

nonlinear-shape clusters.
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