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a b s t r a c t 

In the field of mechanical engineering, steam turbine fault diagnosis is a difficult task 

for mechanical engineers who are confronted with challenges in dealing with copious 

amounts of uncertain information. Different mechanical engineers may have their own 

opinions about the system fault knowledge base that differs slightly from other mechani- 

cal engineers. Thus, to solve the problems presented by uncertain data analysis and group 

decision-making in steam turbine fault diagnosis, we propose a new rough set model that 

combines interval-valued hesitant fuzzy sets with multigranulation rough sets over two 

universes, called an interval-valued hesitant fuzzy multigranulation rough set over two 

universes. In the multigranulation framework, both basic definitions and some important 

properties of the proposed model are presented. Then, we develop a general approach to 

steam turbine fault diagnosis by using the proposed model. Lastly, an illustrative example 

is provided to verify the established approach and demonstrate its validity and applicabil- 

ity. 

© 2016 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Fault diagnosis technology has grown in importance in multiple areas of engineering, and issues with fault diagnosis

technology have attracted much attention from researchers and practitioners. Until now, there are various data-based fault

diagnosis techniques that have been developed, including expert systems [1] , neural networks [2] , and fuzzy approaches

[3–5] . Taking advantages of human expertise and experiential knowledge, the expert system has been successfully utilized

in steam turbine fault diagnosis. However, the limitations of acquiring expert knowledge and maintaining the rules database

for steam turbines are revealed in expert system-based fault diagnosis. An additional potential weakness of this approach

is that the rules database may include conflicting expert knowledge that may vary from case to case. This variation may

preclude a general mathematical formulation that can be utilized for fault diagnosis in different fields. Another typical

fault diagnosis technique, neural networks, addresses the shortcomings of expert systems by direct acquisition of fault

knowledge from a set of training samples and exhibition of highly nonlinear input-output relationships. However, neural

network-based fault diagnosis requires sufficient and compatible training samples to ensure proper training of the model.
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Free from the limitations of these models, the fuzzy approach can be used to sufficiently model the complicated relationship

between faults and their features in steam turbine fault diagnosis. Additionally, many kinds of inherent uncertainties, such

as inaccuracy, incompleteness, and inconsistency, are rampant in expressions of fault information available to engineers.

Based on fuzzy set theory [6] and fuzzy logic [7] , fuzzy approaches have been widely applied to fault diagnosis processes.

The classical fuzzy set is limited by imperfect and uncertain information induced by several sources of vagueness, so

several modifications and extensions have been introduced, including interval-valued fuzzy sets [8] , type-2 fuzzy sets [9] ,

intuitionistic fuzzy sets [10] , and Pythagorean fuzzy sets [11] . These extensions overcome the limitations of classical fuzzy

sets in different ways but are based on similar rationales. 

Recently, considering that decision-makers are usually hesitant and irresolute for one thing or another when establishing

a common membership degree, Torra and Narukawa [12] and Torra [13] introduced the concept of hesitant fuzzy sets,

opening a new door for research on decision-making under hesitant environments. However, for real-life decision-making

problems, the available information may not be sufficient for experts to provide their preferences with crisp values. Thus, a

possible solution is to represent such preferences by interval values. As an extension form of hesitant fuzzy sets, Chen et al.

[14] presented the concept of interval-valued hesitant fuzzy sets, which permits the membership degrees of an element to

a given set are defined by several possible interval values. It is evident that interval-valued hesitant fuzzy sets can reflect

individual’s hesitancy more objectively than other widely developed fuzzy set approaches. Thereafter, many scholars have

studied interval-valued hesitant fuzzy sets from different points of view and obtained many meaningful results [15–19] .

Compared to classical fuzzy sets, since interval-valued hesitant fuzzy sets can better model insufficiency and hesitancy in

available information, this approach can better handle the more uncertain information in fault diagnosis well, and provide

mechanical engineers with an improved way to include their understanding about the system fault knowledge base. 

Considering the above facts, as one of the commonly used multi-attribute decision-making methods, rough set theory

[20] is an effective tool to acquire knowledge with its core concepts of lower and upper approximations. Moreover, rough 

set theory has demonstrated advantages in selecting significant attributes and explaining decisions according to attribute

reductions and distinguishable relations. Over the past few years, two kinds of important generalizations of rough set

theory, fuzzy rough sets [21] and multigranulation rough sets over two universes [22] , have been developed in different

application contexts. To effectively solve the problems of interval-valued hesitant fuzzy data analysis in fault diagnosis

technology, we intend to integrate rough set theory with interval-valued hesitant fuzzy data analysis. We next itemize the

necessities of combining those two theories with interval-valued hesitant fuzzy sets in detail. 

(1) Rough sets and fuzzy sets, as two primary theories utilized for handling uncertain information in various information

systems, are commonly viewed as correlative, but distinct and complementary. Determination of the best approach to gener-

alize a rough set model to the fuzzy case is required for the development of rough set theory. In order to deal with various

fuzzy information systems by utilizing rough set theory, Dubois and Prade [21] first constructed the concept of fuzzy rough

sets. This work has been expanded by many recent studies of the fusion of hesitant fuzzy set theory with rough sets [23–26] .

(2) In realistic rough set-based decision-making problems, when considering concept approximations and rules acqui- 

sitions in the background of multi-source information systems, in order to acquire knowledge efficiently, a reasonable way

is to analyze these multi-source information systems directly rather than gathering each information systems as an entire

information system. In this situation, the single-granulation rough set model exposes limitations that the computational

times of knowledge discovery are long. Therefore, it is useful to describe a target concept through multiple binary relations

according to a user’s different requirements. From the perspective of granular computing [27] , Qian et al. [28,29] introduced

multigranulation rough sets in optimistic and pessimistic styles. Based on multigranulation rough sets model, Sun and Ma

[22] further pointed out many kinds of decision-making information, such as the relationship between faults and their

features in steam turbine fault diagnosis, involves two different types of objects, each of which belongs to a different

universe of discourse, and the utilization of two universes and their interrelations may invalidate multigranulation rough

sets model. Thus, by utilizing rough sets over two universes model [30–34] , they proposed multigranulation rough sets

over two universes. In light of the above, multigranulation rough sets over two universes could not only describe the

decision-making information in different universes, but also synthesize multi-group expert preferences to form a final

decision result by aggregating multiple binary relations. Thus, multigranulation rough sets over two universes can be seen

as a relatively superior information fusion strategy under conditions of several different granulation levels. 

On the basis of the above analysis, it is meaningful to utilize multigranulation rough sets over two universes model

for multi-source information systems analysis. However, multigranulation rough sets over two universes can only handle

crisp information systems and have limitations in processing various fuzzy information systems. Considering that interval-

valued hesitant fuzzy sets can model insufficiency and hesitancy in decision-making information effectively, we aim to

develop a new data analysis model in fault diagnosis techniques under the environment of interval-valued hesitant fuzzy

information. Thus, to expand the application domain of multigranulation rough sets over two universes, through combining

interval-valued hesitant fuzzy sets with multigranulation rough sets over two universes, it is necessary to construct an

interval-valued hesitant fuzzy multigranulation rough set over two universes model and further explore its application in

steam turbine fault diagnosis. 

The paper is organized as follows. In Section 2 , we briefly introduce interval-valued hesitant fuzzy sets, interval-valued

hesitant fuzzy rough sets over two universes, and multigranulation rough sets over two universes. In Section 3 , we

present interval-valued hesitant fuzzy multigranulation rough sets over two universes and discuss relevant properties.

Section 4 presents an analysis of the decision-making problems in steam turbine fault diagnosis. In Section 5 , we give the
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application of the developed decision-making approach to a steam turbine fault diagnosis case and make some comparison

analysis. In Section 6 , the paper is concluded and some directions for future work are suggested. 

2. Preliminaries 

Some preliminary concepts are given in this section to explain our proposal, including interval-valued hesitant fuzzy

sets, interval-valued hesitant fuzzy rough sets over two universes, and multigranulation rough sets over two universes.

These will be utilized in the subsequent analysis. 

2.1. Interval-valued hesitant fuzzy sets 

Interval-valued hesitant fuzzy sets (IVHFSs) were originally introduced by Chen et al. [14] . By replacing crisp numbers

with interval numbers in the environment of hesitant fuzzy sets, interval-valued hesitant fuzzy sets can be regarded as a

more powerful structure in reflecting an expert’s hesitance in expressing preferences over objects. Prior to the introduction

of interval-valued hesitant fuzzy sets, we first present the concept of hesitant fuzzy sets. 

Hesitant fuzzy sets (HFSs) were introduced by Torra and Narukawa [12] and Torra [13] . HFSs permit the membership

degree of an element to a reference set expressed by several possible values between 0 and 1. 

Definition 2.1 [13] . Let U be the universe of discourse, and a hesitant fuzzy set F on U is defined as a function h F ( x ) that

returns a subset of [0, 1], which can be expressed as the following mathematical symbol: 

F = { 〈 x, h F (x ) 〉 | x ∈ U } , 
where h F ( x ) is a set of some different finite values in [0, 1], describing the possible membership degrees of the element x

∈ U to the set F . For convenience, h F ( x ) is called a hesitant fuzzy element. The set of all hesitant fuzzy elements is called

HFEs. 

In what follows, we present the definition of interval-valued hesitant fuzzy sets introduced by Chen et al. [14] . 

Definition 2.2 [14] . Let U be the universe of discourse, and D [0, 1] be the set of all closed subintervals of [0, 1], an interval-

valued hesitant fuzzy set A on U can be expressed as the following mathematical symbol: 

A = { 〈 x, h A (x ) 〉 | x ∈ U } , 
where h A ( x ): U → D [0, 1] denotes all possible interval-valued membership degrees of the element x ∈ U to the set A .

For convenience, h A ( x ) is called an interval-valued hesitant fuzzy element, which reads h A (x ) = { γ | γ ∈ h A (x ) } , where γ =
[ γ L , γ U ] is an interval number, and γ L = inf γ and γ U = sup γ denote the lower and upper limits of γ , respectively. An

interval-valued hesitant fuzzy element is the basic unit of an interval-valued hesitant fuzzy set. The set of all interval-valued

hesitant fuzzy elements is called IVHFEs. 

Suppose that U is the universe of discourse, then we denote the set of all interval-valued hesitant fuzzy sets on U as

IVHF ( U ). Therefore, ∀ A ∈ IVHF ( U ). 

In what follows, we introduce some special interval-valued hesitant fuzzy sets. 

(1) A is referred to as an empty interval-valued hesitant fuzzy set [24] if and only if h A (x ) = { [ 0 , 0 ] } for all x in U , the

empty interval-valued hesitant fuzzy set is denoted by ∅ in this paper. 

(2) A is referred to as a full interval-valued hesitant fuzzy set [24] if and only if h A (x ) = { [ 1 , 1 ] } for all x in U , the full

interval-valued hesitant fuzzy set is denoted by U in this paper. 

Example 2.1. Let U = { x 1 , x 2 , x 3 } be a universe set, h A ( x 1 ) = { [ 0 . 1 , 0 . 2 ] , [ 0 . 3 , 0 . 4 ] } , h A ( x 2 ) = { [ 0 . 4 , 0 . 5 ] , [ 0 . 5 , 0 . 6 ] } and

h A ( x 3 ) = { [ 0 . 3 , 0 . 5 ] , [ 0 . 6 , 0 . 7 ] } are three IVHFEs to a set A. Then, the interval-valued hesitant fuzzy set A can be expressed

as follows: 

A = { 〈 x 1 , { [ 0 . 1 , 0 . 2 ] , [ 0 . 3 , 0 . 4 ] } 〉 , 〈 x 2 , { [ 0 . 4 , 0 . 5 ] , [ 0 . 5 , 0 . 6 ] } 〉 , 〈 x 3 , { [ 0 . 3 , 0 . 5 ] , [ 0 . 6 , 0 . 7 ] } 〉 } . 
To compare the magnitude of different interval numbers and IVHFEs, we first present the methods of comparing two

interval numbers introduced by Xu and Da [35] . 

Definition 2.3 [35] . Let a = [ a L , a U ] and b = [ b L , b U ] be two interval numbers with the following: (1) a = b if a L = b L and

a U = b U ; (2) a + b = [ a L + b L , a U + b U ] . Let l a = a U − a L and l b = b U − b L , then the degree of possibility of a ≥ b is defined as 

p( a ≥ b ) = max 

{
1 − max 

(
b U − a L 

l a + l b 
, 0 

)
, 0 

}
. 

Similarly, the degree of possibility of a ≤ b is defined as 

p ( a ≤ b ) = max 

{
1 − max 

(
a U − b L 

l a + l b 
, 0 

)
, 0 

}
. 
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The above definition is proposed to compare and rank different interval numbers. In what follows, we further present

the score function for IVHFEs. 

Definition 2.4 [14] . For an IVHFE h A ( x ), s ( h A (x ) ) = 

1 
l( h A (x ) ) 

∑ 

γ ∈ h A (x ) γ , where l ( h A ( x )) is the number of interval values in an

IVHFE h A ( x ) and s ( h A ( x )) is an interval value belonging to [0, 1]. For two IVHFEs, h A ( x ) and h B ( x ), if s ( h A ( x )) ≥ s ( h B ( x )), then

h A ( x ) ≥ h B ( x ). 

It is clear that different IVHFEs have different number of interval values, and the interval values might be out of order.

Thus, Chen et al. [14] introduced the following assumptions. 

(1) All elements in each IVHFE h A ( x ) are arranged in increasing order by Definition 2.3 . Suppose that h σ (k ) 
A 

(x ) is the

kth largest interval number in the IVHFE h A ( x ). Then, h σ (k ) 
A 

(x ) is expressed as h σ (k ) 
A 

(x ) = [ h σ (k ) L 
A 

(x ) , h σ (k ) U 
A 

(x ) ] , where

h σ (k ) L 
A 

(x ) = inf h σ (k ) 
A 

(x ) and h σ (k ) U 
A 

(x ) = sup h σ (k ) 
A 

(x ) denote the lower and upper limits of h σ (k ) 
A 

(x ) , respectively. 

(2) If for two IVHFEs h A ( x ) and h B ( x ), l ( h A ( x )) � = l ( h B ( x )), then the two IVHFEs h A ( x ) and h B ( x ) should be of the same length

l = max { l ( h A (x ) ) , l ( h B (x ) ) } . If the number of elements in h A ( x ) is less than in h B ( x ), we should extend h A ( x ) by adding

the maximum element until h A ( x ) and h B ( x ) are the same length. 

Based on the above assumptions, Zhang et al. [24] defined some operational laws for interval-valued hesitant fuzzy sets.

Definition 2.5 [24] . Let U be the universe of discourse, ∀ A, B ∈ IVHF ( U ), then 

(1) The complement of A is denoted by A 

c such that ∀ x ∈ U , h A c (x ) = ∼ h A (x ) =
{ [ 1 − h σ (k ) U 

A 
(x ) , 1 − h σ (k ) L 

A 
(x ) ] | k = 1 , 2 , . . . l } . 

(2) The intersection of A and B is denoted by A ∩ B such that ∀ x ∈ U , h A ∩ B (x ) = h A (x ) ∧ h B (x ) =
{ [ h σ (k ) L 

A 
(x ) ∧ h σ (k ) L 

B 
(x ) , h σ (k ) U 

A 
(x ) ∧ h σ (k ) U 

B 
(x ) ] | k = 1 , 2 , . . . l } . 

(3) The union of A and B is denoted by A ∪ B such that ∀ x ∈ U , h A ∪ B (x ) = h A (x ) ∨ h B (x ) =
{ [ h σ (k ) L 

A 
(x ) ∨ h σ (k ) L 

B 
(x ) , h σ (k ) U 

A 
(x ) ∨ h σ (k ) U 

B 
(x ) ] | k = 1 , 2 , . . . l } . 

In the above definition, the operations c , ∩ and ∪ are defined on interval-valued hesitant fuzzy sets, respectively.

Conversely, the operations ∼, ∧ and ∨ are defined on corresponding interval-valued hesitant fuzzy elements, respectively.

We next present the properties of the above operations. 

Theorem 2.1 [24] . Let U be the universe of discourse, and suppose that A, B and C are three interval-valued hesitant fuzzy sets.

Then, the following properties are true: 

(1) Double negation law: ∼ ( ∼ h A (x ) ) = h A (x ) ; 

(2) De Morgan’s laws: ∼ ( h A (x ) ∨ h B (x ) ) = ( ∼ h A (x ) ) ∧ ( ∼ h B ( x ) ) and ∼ ( h A (x ) ∧ h B (x ) ) = ( ∼ h A (x ) ) ∨ ( ∼ h B ( x ) ) ; 

(3) Commutativity: h A (x ) ∨ h B (x ) = h B (x ) ∨ h A (x ) and h A (x ) ∧ h B (x ) = h B (x ) ∧ h A (x ) ; 

(4) Associativity: h A (x ) ∨ ( h B (x ) ∨ h C (x ) ) = ( h A (x ) ∨ h B (x ) ) ∨ h C (x ) and h A (x ) ∧ ( h B (x ) ∧ h C (x ) ) = ( h A (x ) ∧ h B (x ) ) ∧ h C (x ) ; 

(5) Distributivity: h A (x ) ∧ ( h B (x ) ∨ h C (x ) ) = ( h A (x ) ∧ h B (x ) ) ∨ ( h A (x ) ∧ h C (x ) ) and h A (x ) ∨ ( h B (x ) ∧ h C (x ) ) =
( h A (x ) ∨ h B (x ) ) ∧ ( h A (x ) ∨ h C (x ) ) . 

Example 2.2. Suppose that A and B are two interval-valued hesitant fuzzy sets. Let h A (x ) = { [ 0 . 1 , 0 . 2 ] , [ 0 . 3 , 0 . 4 ] } and h B (x ) =
{ [ 0 . 4 , 0 . 5 ] , [ 0 . 5 , 0 . 6 ] } be two IVHFEs. Then, we obtain the complement, intersection and union as follows: 

(1) ∼ h A (x ) = { [ 1 − 0 . 2 , 1 − 0 . 1 ] , [ 1 − 0 . 4 , 1 − 0 . 3 ] } = { [ 0 . 6 , 0 . 7 ] , [ 0 . 8 , 0 . 9 ] } ; similarly, ∼ h B (x ) = { [ 0 . 4 , 0 . 5 ] , [ 0 . 5 , 0 . 6 ] } ; 
(2) h A (x ) ∧ h B (x ) = { [ 0 . 1 ∧ 0 . 4 , 0 . 2 ∧ 0 . 5 ] , [ 0 . 3 ∧ 0 . 5 , 0 . 4 ∧ 0 . 6 ] } = { [ 0 . 1 , 0 . 2 ] , [ 0 . 3 , 0 . 4 ] } ; 
(3) h A (x ) ∨ h B (x ) = { [ 0 . 1 ∨ 0 . 4 , 0 . 2 ∨ 0 . 5 ] , [ 0 . 3 ∨ 0 . 5 , 0 . 4 ∨ 0 . 6 ] } = { [ 0 . 4 , 0 . 5 ] , [ 0 . 5 , 0 . 6 ] } . 

Definition 2.6 [24] . Let U be the universe of discourse, ∀ A, B ∈ IVHF ( U ), if h A ( x ) ≺ h B ( x ) holds for each x ∈ U such that

h A (x ) ≺ h B (x ) ⇔ h σ (k ) L 
A 

(x ) ≤ h σ (k ) L 
B 

(x ) , h σ (k ) U 
A 

(x ) ≤ h σ (k ) U 
B 

(x ) , k = 1 , 2 , . . . l, then A is referred to as an interval-valued hesitant

fuzzy subset of B , and is denoted by A ⊆ B . Note that ⊆ is reflexive, transitive and antisymmetric on IVHF ( U ). 

2.2. Interval-valued hesitant fuzzy rough sets over two universes 

In this subsection, we first present interval-valued hesitant fuzzy (IVHF) relations over two universes. 

Definition 2.7 [24] . Let U, V be two universes of discourse. An interval-valued hesitant fuzzy relation R from U to V is

defined by: 

R = { 〈 ( x, y ) , h R ( x, y ) 〉 | ( x, y ) ∈ U × V } , 
where h R ( x, y ): U × V → D [0, 1] is a set of interval values in D [0, 1]. The family of all IVHF relations on U × V is denoted

by IVHFR ( U × V ). 

According to the IVHF relation over two universes, we present the definition of interval-valued hesitant fuzzy rough sets

over two universes as follows. 
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Definition 2.8 [24] . Let U, V be two universes of discourse, and R ∈ IVHFR ( U × V ), the pair ( U, V, R ) is called an interval-

valued hesitant fuzzy approximation space over two universes. For any A ∈ IVHF ( V ), the lower and upper approximations of

A are defined by: 

R (A ) = 

{〈
x, h R (A ) (x ) 

〉| x ∈ U 

}
;

R (A ) = 

{〈
x, h R (A ) (x ) 

〉| x ∈ U 

}
, 

where h R (A ) (x ) = ∧ y ∈ V { h R c ( x, y ) ∨ h A (y ) } ; h R (A ) (x ) = ∨ y ∈ V { h R ( x, y ) ∧ h A (y ) } . The pair ( R (A ) , R (A ) ) is referred to as an interval-

valued hesitant fuzzy rough set over two universes of A with respect to ( U, V, R ), both R ( A ) and R (A ) are interval-valued

hesitant fuzzy sets, R and R are lower and upper IVHF rough approximation operators, respectively. 

2.3. Multigranulation rough sets over two universes 

According to two different approximation strategies, Sun and Ma [22] established two different multigranulation rough

sets over two universes including optimistic and pessimistic ones. 

Definition 2.9 [30] . Let U, V be two universes of discourse. R is a family of binary compatibility relations from U to V in

terms of a binary mapping family F i , where F i : U → 2 V , u �→ { v ∈ V |( u, v ) ∈ R i .}, R i ∈ R , i = 1 , 2 , . . . , m . Then, we call the

ordered triple set ( U, V, R ) the multigranulation approximation space over two universes. 

By Definition 2.9 , the following definition gives the formal representation of optimistic and pessimistic multigranulation

rough sets over two universes. 

Definition 2.10 [22] . Let F and G be two binary mappings from universe U to V . For any X ⊆ V , the optimistic and pessimistic

lower and upper multigranulation approximations with respect to ( U, V, R ) are defined by: 

apr O 
F + G (X ) = { x ∈ U | F (x ) ⊆ X ∨ G (x ) ⊆ X } ;

apr 
O 
F + G (X ) = apr O 

F + G ( X 

c ) c ;
apr P 

F + G (X ) = { x ∈ U | F (x ) ⊆ X ∧ G (x ) ⊆ X } ;
apr 

P 
F + G (X ) = apr P 

F + G ( X 

c ) c . 

The pair ( apr O 
F + G (X ) , apr O F + G (X ) ) is referred to as an optimistic multigranulation rough set over two universes. Similarly, we

call the pair ( apr P 
F + G (X ) , apr P F + G (X ) ) a pessimistic multigranulation rough set over two universes. 

In the above definition, the word “optimistic” means that in multiple independent granular structures, at least one

granular structure must satisfy the inclusion condition between an equivalence class and a target concept. Conversely, the

word “pessimistic” means that all granular structures must satisfy the inclusion condition between an equivalence class and

a target concept. 

3. IVHF multigranulation rough sets over two universes 

In this section, based on constructive approach to interval-valued hesitant fuzzy rough sets over two universes, we

extend interval-valued hesitant fuzzy relations over two universes into the background of multigranulation rough sets. 

3.1. Optimistic IVHF multigranulation rough sets over two universes 

Definition 3.1. Let U, V be two universes of discourse and R i ∈ IV HF R ( U × V )( i = 1 , 2 , . . . , m ) be m interval-valued hesitant

fuzzy relations over U × V , the pair ( U, V, R i ) is called an interval-valued hesitant fuzzy multigranulation approximation

space over two universes. For any A ∈ IVHF ( V ), the optimistic IVHF multigranulation lower and upper approximations over

two universes of A are defined by: 

∑ m 

i =1 R i 
O 
(A ) = 

{ 〈 
x, h 

∑ m 
i =1 R i 

O 
(A ) 

(x ) 
〉 
| x ∈ U 

} 

;
∑ m 

i =1 R i 

O 
(A ) = 

{ 〈 
x, h ∑ m 

i =1 R i 
O 
(A ) 

(x ) 
〉 
| x ∈ U 

} 

, 

where h ∑ m 
i =1 R i 

O 
(A ) 

(x ) = ∨ 

m 

i =1 
∧ y ∈ V 

{
h R i 

c ( x, y ) ∨ h A (y ) 
}

; h ∑ m 
i =1 R i 

O 
(A ) 

(x ) = ∧ 

m 

i =1 
∨ y ∈ V 

{
h R i ( x, y ) ∧ h A (y ) 

}
. 

The pair ( 
∑ m 

i =1 R i 
O 
(A ) , 

∑ m 

i =1 R i 
O 
(A ) ) is an optimistic IVHF multigranulation rough set over two universes of A with respect

to ( U, V, R i ). Additionally, the IVHF multigranulation rough set over two universes will reduce to an IVHF rough set over two

universes if m = 1 . 



698 C. Zhang et al. / Applied Mathematical Modelling 42 (2017) 693–704 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Theorem 3.1. Let U, V be two universes of discourse and R i ∈ IV HF R ( U × V )( i = 1 , 2 , . . . , m ) be m interval-valued hesitant fuzzy

relations over U × V. For any A, A 

′ ∈ IVHF ( V ), the optimistic IVHF multigranulation lower and upper approximations over two

universes satisfy the following properties: 

(1) 
∑ m 

i =1 R i 
O 
( A 

c ) = ( 
∑ m 

i =1 R i 
O 
(A ) ) c , 

∑ m 

i =1 R i 
O 
( A 

c ) = ( 
∑ m 

i =1 R i 
O 
(A ) ) c ; 

(2) A ⊆ A 

′ ⇒ 

∑ m 

i =1 R i 
O 
(A ) ⊆ ∑ m 

i =1 R i 
O 
( A 

′ ) , A ⊆ A 

′ ⇒ 

∑ m 

i =1 R i 
O 
(A ) ⊆ ∑ m 

i =1 R i 
O 
( A 

′ ) ; 

(3) 
∑ m 

i =1 R i 
O 
( A ∩ A 

′ ) = 

∑ m 

i =1 R i 
O 
(A ) ∩ 

∑ m 

i =1 R i 
O 
( A 

′ ) , ∑ m 

i =1 R i 
O 
( A ∪ A 

′ ) = 

∑ m 

i =1 R i 
O 
(A ) ∪ 

∑ m 

i =1 R i 
O 
( A 

′ ) ; 

(4) 
∑ m 

i =1 R i 
O 
( A ∪ A 

′ ) ⊇ ∑ m 

i =1 R i 
O 
(A ) ∪ 

∑ m 

i =1 R i 
O 
( A 

′ ) , ∑ m 

i =1 R i 
O 
( A ∩ A 

′ ) ⊆ ∑ m 

i =1 R i 
O 
(A ) ∩ 

∑ m 

i =1 R i 
O 
( A 

′ ) . 

Proof. 

(1) For all x ∈ U , we have 
∑ m 

i =1 R i 
O 
( A 

c ) = {〈 x, ∨ 

m 

i =1 
∧ y ∈ V { h R i c ( x, y ) ∨ h A c (y ) }〉| x ∈ U } = {〈 x, ∨ 

m 

i =1 
∧ y ∈ V 

{ ( ∼ h R i ( x, y ) ) ∨ ( ∼ h A ( y ) ) }〉| x ∈ U } = { 〈 x, ∨ 

m 

i =1 
∧ y ∈ V { ∼ ( h R i ( x, y ) ∧ h A (y ) ) } 〉| x ∈ U } = {〈 x, ∼ ( ∧ 

m 

i =1 
∨ y ∈ V { ( h R i ( x, y ) ∧ 

h A (y )) } ) 〉| x ∈ U } = ( 
∑ m 

i =1 R i 
O 
(A ) ) c . 

∑ m 

i =1 R i 
O 
( A 

c ) = ( 
∑ m 

i =1 R i 
O 
(A ) ) c is similarly obtained. 

(2) Since A ⊆ A 

′ , by Definition 2.6 , we have h A (y ) ≺h A ′ (y ) ⇔ h σ (k ) L 
A 

(y ) ≤ h σ (k ) L 
A ′ (y ) , h σ (k ) U 

A 
(y ) ≤ h σ (k ) U 

A ′ (y ) . 

Thus, it follows that ∨ 

m 

i =1 
∧ y ∈ V { h σ (k ) L 

R i 
c ( x, y ) ∨ h σ (k ) L 

A 
(y ) } ≤ ∨ 

m 

i =1 
∧ y ∈ V { h σ (k ) L 

R i 
c ( x, y ) ∨ h σ (k ) L 

A ′ (y ) } and ∨ 

m 

i =1 
∧ y ∈ V { h σ (k ) U 

R i 
c ( x, y ) ∨

h σ (k ) U 
A 

(y ) } ≤ ∨ 

m 

i =1 
∧ y ∈ V { h σ (k ) U 

R i 
c ( x, y ) ∨ h σ (k ) U 

A ′ (y ) } . 
Therefore, we have A ⊆ A 

′ ⇒ 

∑ m 

i =1 R i 
O 
(A ) ⊆ ∑ m 

i =1 R i 
O 
( A 

′ ) . A ⊆ A 

′ ⇒ 

∑ m 

i =1 R i 
O 
(A ) ⊆ ∑ m 

i =1 R i 
O 
( A 

′ ) is obtained in an iden-

tical fashion. 

(3) For all x ∈ U , we have 
∑ m 

i =1 R i 
O 
( A ∩ A 

′ ) = {〈 x, ∨ 

m 

i =1 
∧ y ∈ V { h R i c ( x, y ) ∨ h A ∩ A ′ (y ) }〉| x ∈ U } = {〈 x, ∨ 

m 

i =1 
∧ y ∈ V { h R i c ( x, y ) ∨

( h A (y ) ∧ h A ′ (y )) }〉| x ∈ U } = {〈 x, [ ∨ 

m 

i =1 
∧ y ∈ V { h σ (k ) L 

R i 
c ( x, y ) ∨ ( h σ (k ) L 

A 
(y ) ∧ h σ (k ) L 

A ′ (y ) ) } , ∨ 

m 

i =1 
∧ y ∈ V { h σ (k ) U 

R i 
c ( x, y ) ∨ (h σ (k ) U 

A 
(y ) ∧ 

h σ (k ) U 
A ′ (y )) } ] 〉| x ∈ U } = {〈 x, [ ∨ 

m 

i =1 
∧ y ∈ V { ( h σ (k ) L 

R i 
c ( x, y ) ∨ h σ (k ) L 

A 
(y ) ) ∧ ( h σ (k ) L 

R i 
c ( x, y ) ∨ h σ (k ) L 

A ′ (y ) ) } , ∨ 

m 

i =1 
∧ y ∈ V { (h σ (k ) U 

R i 
c ( x, y ) ∨ 

h σ (k ) U 
A 

(y )) ∧ ( h σ (k ) U 

R i 
c ( x, y ) ∨ h σ (k ) U 

A ′ (y ) ) } ] 〉| x ∈ U } = { 〈 x, h ∑ m 
i =1 R i 

O 
(A ) 

(x ) 〉| x ∈ U } ∧ { 〈 x, h ∑ m 
i =1 R i 

O 
( A ′ ) (x ) 〉| x ∈ U } = 

∑ m 

i =1 R i 
O 
(A ) ∩ 

∑ m 

i =1 R i 
O 
( A 

′ ) Similarly, 
∑ m 

i =1 R i 
O 
( A ∪ A 

′ ) = 

∑ m 

i =1 R i 
O 
(A ) ∪ 

∑ m 

i =1 R i 
O 
( A 

′ ) is obtained. 

(4) Based on above conclusions, it is easy to obtain 

∑ m 

i =1 R i 
O 
( A ∪ A 

′ ) ⊇ ∑ m 

i =1 R i 
O 
(A ) ∪ 

∑ m 

i =1 R i 
O 
( A 

′ ) and 

∑ m 

i =1 R i 
O 
( A ∩ A 

′ ) ⊆∑ m 

i =1 R i 
O 
(A ) ∩ 

∑ m 

i =1 R i 
O 
( A 

′ ) . �

In this theorem, (1) indicates the complement of optimistic interval-valued hesitant fuzzy multigranulation rough sets

over two universes; (2) indicates the monotone of optimistic interval-valued hesitant fuzzy multigranulation rough sets

over two universes with respect to a variety of interval-valued hesitant fuzzy targets; (3) and (4) indicate the multiplication

and addition of optimistic interval-valued hesitant fuzzy multigranulation rough sets over two universes. 

Theorem 3.2. Let U, V be two universes of discourse and R i , R 
′ 
i 
∈ IV HF R ( U × V )( i = 1 , 2 , . . . , m ) be two interval-valued hesitant

fuzzy relations over U × V. If R i ⊆ R ′ 
i 
, for any A ∈ IVHF ( V ), the following properties are true. 

(1) 
∑ m 

i =1 R 
′ 
i 

O 
(A ) ⊆ ∑ m 

i =1 R i 
O 
(A ) , for all A ∈ IVHF ( V ) ; 

(2) 
∑ m 

i =1 R 
′ 
i 

O 
(A ) ⊇ ∑ m 

i =1 R i 
O 
(A ) , for all A ∈ IVHF ( V ) . 

Proof. Since R i ⊆ R ′ 
i 
, according to Definition 2.6 , we have h σ (k ) L 

R i 
c ( x, y ) ≥ h σ (k ) L 

R ′ 
i 
c ( x, y ) and h σ (k ) U 

R i 
c ( x, y ) ≥ h σ (k ) U 

R ′ 
i 
c ( x, y )

for all ( x, y ) ∈ ( U × V ). Therefore, it follows that 
∑ m 

i =1 R i 
O 
(A ) = { 〈 x, ∨ 

m 

i =1 
∧ y ∈ V { h R i c ( x, y ) ∨ h A (y ) } 〉| x ∈ U } =

{ 〈 x, [ ∨ 

m 

i =1 
∧ y ∈ V { h σ (k ) L 

R i 
c ( x, y ) ∨ h σ (k ) L 

A 
(y ) } , ∨ 

m 

i =1 
∧ y ∈ V { h σ (k ) U 

R i 
c ( x, y ) ∨ h σ (k ) U 

A 
(y ) } ] 〉| x ∈ U } ≥ {〈 x, [ ∨ 

m 

i =1 
∧ y ∈ V { h σ (k ) L 

R ′ 
i 
c ( x, y ) ∨ h σ (k ) L 

A 
(y ) } , 

∨ 

m 

i =1 
∧ y ∈ V { h σ (k ) U 

R ′ 
i 
c ( x, y ) ∨ h σ (k ) U 

A 
(y ) } ] 〉| x ∈ U } = 

∑ m 

i =1 R 
′ 
i 

O 
(A ) Hence, we have 

∑ m 

i =1 R 
′ 
i 

O 
(A ) ⊆ ∑ m 

i =1 R i 
O 
(A ) . Similarly,

∑ m 

i =1 R 
′ 
i 

O 
(A ) ⊇ ∑ m 

i =1 R i 
O 
(A ) is obtained. �

In this theorem, (1) and (2) indicate the lower and upper approximations in optimistic interval-valued hesitant

fuzzy multigranulation rough sets over two universes are monotonic with respect to the monotonic forms of multiple

interval-valued hesitant fuzzy relations. 

3.2. Pessimistic IVHF multigranulation rough sets over two universes 

Definition 3.2. Let U, V be two universes of discourse and R i ∈ IV HF R ( U × V )( i = 1 , 2 , . . . , m ) be m interval-valued hesitant

fuzzy relations over U × V , the pair ( U, V, R ) is called an interval-valued hesitant fuzzy multigranulation approximation
i 
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space over two universes. For any A ∈ IVHF ( V ), the pessimistic IVHF multigranulation lower and upper approximations over

two universes of A are defined by: 

m ∑ 

i =1 

R i 

P 

(A ) = 

{ 〈 
x, h 

∑ m 
i =1 R i 

P 
(A ) 

(x ) 
〉 
| x ∈ U 

} 

;

m ∑ 

i =1 

R i 

P 

(A ) = 

{ 〈 
x, h ∑ m 

i =1 R i 
P 
( A ) 

( x ) 

〉 
| x ∈ U 

} 

, 

where h ∑ m 
i =1 R i 

P 
( A ) 

( x ) = ∧ 

m 

i =1 
∧ y ∈ V 

{
h R i 

c ( x, y ) ∨ h A ( y ) 
}

; h ∑ m 
i =1 R i 

P 
( A ) 

( x ) = ∨ 

m 

i =1 
∨ y ∈ V 

{
h R i ( x, y ) ∧ h A ( y ) 

}
. 

The pair 

(∑ m 

i =1 R i 
P 
( A ) , 

∑ m 

i =1 R i 
P 
( A ) 

)
is a pessimistic IVHF multigranulation rough set over two universes of A with respect

to ( U, V, R i ). 

Theorem 3.3. Let U, V be two universes of discourse and R i ∈ IV HF R ( U × V )( i = 1 , 2 , . . . , m ) be m interval-valued hesitant fuzzy

relations over U × V. For any A, A 

′ ∈ IVHF ( V ), the pessimistic IVHF multigranulation lower and upper approximations over two

universes satisfy the following properties: 

(1) 
∑ m 

i =1 R i 
P 
( A 

c ) = ( 
∑ m 

i =1 R i 
P 
(A ) ) c , 

∑ m 

i =1 R i 
P 
( A 

c ) = ( 
∑ m 

i =1 R i 
P 
(A ) ) c ; 

(2) A ⊆ A 

′ ⇒ 

∑ m 

i =1 R i 
P 
(A ) ⊆ ∑ m 

i =1 R i 
P 
( A 

′ ) , A ⊆ A 

′ ⇒ 

∑ m 

i =1 R i 
P 
(A ) ⊆ ∑ m 

i =1 R i 
P 
( A 

′ ) ; 

(3) 
∑ m 

i =1 R i 
P 
( A ∩ A 

′ ) = 

∑ m 

i =1 R i 
P 
(A ) ∩ 

∑ m 

i =1 R i 
P 
( A 

′ ) , ∑ m 

i =1 R i 
P 
( A ∪ A 

′ ) = 

∑ m 

i =1 R i 
P 
(A ) ∪ 

∑ m 

i =1 R i 
P 
( A 

′ ) ; 

(4) 
∑ m 

i =1 R i 
P 
( A ∪ A 

′ ) ⊇ ∑ m 

i =1 R i 
P 
(A ) ∪ 

∑ m 

i =1 R i 
P 
( A 

′ ) , ∑ m 

i =1 R i 
P 
( A ∩ A 

′ ) ⊆ ∑ m 

i =1 R i 
P 
(A ) ∩ 

∑ m 

i =1 R i 
P 
( A 

′ ) . 

In this theorem, (1) indicates the complement of pessimistic interval-valued hesitant fuzzy multigranulation rough sets

over two universes; (2) indicates the monotone of pessimistic interval-valued hesitant fuzzy multigranulation rough sets

over two universes with respect to a variety of interval-valued hesitant fuzzy targets; (3) and (4) indicate the multiplication

and addition of pessimistic interval-valued hesitant fuzzy multigranulation rough sets over two universes. 

Theorem 3.4. Let U, V be two universes of discourse and R i , R 
′ 
i 
∈ IV HF R ( U × V )( i = 1 , 2 , . . . , m ) be two interval-valued hesitant

fuzzy relations over U × V. If R i ⊆ R ′ 
i 
, for any A ∈ IVHF ( V ), the following properties are true. 

(1) 
∑ m 

i =1 R 
′ 
i 

P 
(A ) ⊆ ∑ m 

i =1 R i 
P 
(A ) , for all A ∈ IVHF ( V ) ; 

(2) 
∑ m 

i =1 R 
′ 
i 

P 
(A ) ⊇ ∑ m 

i =1 R i 
P 
(A ) , for all A ∈ IVHF ( V ) . 

In this theorem, (1) and (2) indicate the lower and upper approximations in pessimistic interval-valued hesitant

fuzzy multigranulation rough sets over two universes are monotonic with respect to the monotonic forms of multiple

interval-valued hesitant fuzzy relations. 

3.3. Relationships between optimistic and pessimistic IVHF multigranulation rough sets over two universes 

Theorem 3.5. Let U, V be two universes of discourse and R i ∈ IV HF R ( U × V )( i = 1 , 2 , . . . , m ) be m interval-valued hesitant fuzzy

relations over U × V. For any A ∈ IVHF ( V ), the optimistic and pessimistic IVHF multigranulation lower and upper approximations

over two universes satisfy the following properties: 

(1) 
∑ m 

i =1 R i 
P 
(A ) ⊆ ∑ m 

i =1 R i 
O 
(A ) ; 

(2) 
∑ m 

i =1 R i 
P 
(A ) ⊇ ∑ m 

i =1 R i 
O 
(A ) . 

Proof. For any x ∈ U , 
∑ m 

i =1 R i 
O 
(A ) = { 〈 x, ∨ 

m 

i =1 
∧ y ∈ V { h R i c ( x, y ) ∨ h A (y ) } 〉| x ∈ U } ≥ { 〈 x, ∧ 

m 

i =1 
∧ y ∈ V { h R i c ( x, y ) ∨ h A (y ) } 〉| x ∈ U } =∑ m 

i =1 R i 
P 
(A ) . 

∑ m 

i =1 R i 
P 
(A ) ⊇ ∑ m 

i =1 R i 
O 
(A ) is similarly obtained. �

From Theorem 3.5 , it is noted that the pessimistic interval-valued hesitant fuzzy multigranulation lower approximation

is included in the optimistic interval-valued hesitant fuzzy multigranulation lower approximation, while the optimistic

interval-valued hesitant fuzzy multigranulation upper approximation is included in the pessimistic interval-valued hesitant

fuzzy multigranulation upper approximation. 

4. Steam turbine fault diagnosis approach 

In this section, we present a novel method to the decision-making problem of steam turbine fault diagnosis with the aid

of IVHF multigranulation rough sets over two universes. Specifically, some key points of the established decision-making

approach are summarized in the following subsections. 
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4.1. Application model 

In the domain of electric power production and management, steam turbine generator units are a significant piece of

equipment in the power industry. One of the common fault types of a steam turbine generator unit is vibration, which can

be triggered by many factors, such as mechanical structure, load, and vacuum degree. To deal with this type of mechanical

fault diagnosis, failures of steam turbine generator units have been specified based on the different amplitude ratios

of vibration signals in various frequency ranges. Moreover, many researchers have established the relationship between

the cause and fault phenomena of steam turbine generator units, and numerous studies have been conducted based on

intelligent computational and mathematical methods, such as expert systems, neural networks, and fuzzy approaches.

However, few studies have addressed the situation where the vibration signal amplitude ratio value is in the background of

hesitant and interval ambiguity. By utilizing the model of IVHF multigranulation rough sets over two universes, we can not

only express the vibration signal amplitude ratio value by using interval-valued hesitant fuzzy elements, but can also solve

group decision-making problems by providing optimistic and pessimistic strategies. 

There are two kinds of objections related to steam turbine fault diagnosis, namely, the fault pattern sets and the

frequency range sets of the steam turbine generator unit. Therefore, we let U = { x 1 , x 2 , . . . , x j } be a set of fault patterns and

V = { y 1 , y 2 , . . . , y k } be a set of frequency ranges. Let R i ∈ IV HF R ( U × V )( i = 1 , 2 , . . . , m ) be m interval-valued hesitant fuzzy

relations over U × V , which reflects the steam turbine fault diagnosis knowledge base with interval-valued hesitant fuzzy

information given by m experts. We also let A ∈ IVHF ( V ) be the fault testing sample. Then, we obtain an interval-valued

hesitant fuzzy decision information system ( U, V, R i , A ) of a typical steam turbine fault diagnosis procedure. 

Next, we present a decision-making approach for the above-mentioned problem by using IVHF multigranulation rough

sets over two universes. First, according to Definitions 3.1 and 3.2 , we separately compute lower and upper approxima-

tions of optimistic and pessimistic IVHF multigranulation rough sets over two universes of A . That is, we obtain the sets∑ m 

i =1 R i 
O 
(A ) , 

∑ m 

i =1 R i 
O 
(A ) , 

∑ m 

i =1 R i 
P 
(A ) and 

∑ m 

i =1 R i 
P 
(A ) . Then, according to the operational laws presented in [24] : 

h A (x ) � h B (x ) = { [ h 

σ (k ) L 
A 

(x ) + h 

σ (k ) L 
B 

(x ) − h 

σ (k ) L 
A 

(x ) h 

σ (k ) L 
B 

(x ) , h 

σ (k ) U 
A 

(x ) + h 

σ (k ) U 
B 

(x ) − h 

σ (k ) U 
A 

(x ) h 

σ (k ) U 
B 

(x ) ] } , 
we further obtain the sets 

∑ m 

i =1 R i 
O 
(A ) �

∑ m 

i =1 R i 
O 
(A ) and 

∑ m 

i =1 R i 
P 
(A ) �

∑ m 

i =1 R i 
P 
(A ) . Based on Definition 2.4 , we can

calculate the score function values of interval-valued hesitant fuzzy elements belonging to 
∑ m 

i =1 R i 
O 
(A ) �

∑ m 

i =1 R i 
O 
(A ) and∑ m 

i =1 R i 
P 
(A ) �

∑ m 

i =1 R i 
P 
(A ) . Based on a previously established decision-making strategy [32] , we then present the decision

rules for steam turbine fault diagnosis using the proposed rough set model. First, to facilitate the decision-making process,

we denote: 

T 1 = 

{ 

i 

∣∣∣∣max 
x i ∈ U 

{ 

m ∑ 

i =1 

R i 

O 

(A ) ( x i ) �
m ∑ 

i =1 

R i 

O 

(A ) ( x i ) 

} } 

, 

T 2 = 

{ 

j 

∣∣∣∣max 
x j ∈ U 

{ 

m ∑ 

i =1 

R i 

P 

(A ) 
(
x j 

)
�

m ∑ 

i =1 

R i 

P 

(A ) 
(
x j 

)} } 

, 

T 3 = 

{ 

k 

∣∣∣∣max 
x k ∈ U 

{ ( 

m ∑ 

i =1 

R i 

O 

(A ) ( x k ) �
m ∑ 

i =1 

R i 

O 

(A ) ( x k ) 

) 

�

( 

m ∑ 

i =1 

R i 

P 

(A ) ( x k ) �
m ∑ 

i =1 

R i 

P 

(A ) ( x k ) 

) } } 

. 

From the viewpoint of decision-making, optimistic multigranulation rough sets are based on the “seeking common

ground while reserving differences” (SCRD) strategy, which implies that one reserves both common decisions and inconsis- 

tent decisions at the same time. Thus, this opinion can be viewed as a risk-seeking decision strategy. In contrast, pessimistic

multigranulation rough sets are based on the “seeking common ground while eliminating differences” (SCED) strategy, this

strategy indicates that one reserves common decisions while deleting inconsistent decisions. Hence, this opinion can be

seen as a risk-averse decision strategy. According to the above decision rules, T 1 is the optimistic decision-making criterion,

T 2 is the pessimistic decision-making criterion, and T 3 is the weighted decision-making criterion of T 1 and T 2 with the

weighted value 0.5. Based on the above definitions, the decision rules can be presented as follows: 

(1) If T 1 ∩ T 2 ∩ T 3 � = ∅ , then x i ( i ∈ T 1 ∩ T 2 ∩ T 3 ) is the determined fault pattern; 

(2) If T 1 ∩ T 2 ∩ T 3 = ∅ and T 1 ∩ T 2 � = ∅ , then x i ( i ∈ T 1 ∩ T 2 ) is the determined fault pattern. Otherwise, if T 1 ∩ T 2 ∩ T 3 = ∅ and

T 1 ∩ T 2 = ∅ , then x i ( i ∈ T 3 ) is the determined fault pattern. 

4.2. Algorithm for steam turbine fault diagnosis using IVHF multigranulation rough sets over two universes 

We present an algorithm for steam turbine fault diagnosis by utilizing IVHF multigranulation rough sets over two

universes: 
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Algorithm 1 Steam turbine fault diagnosis based on IVHF multigranulation rough sets over two universes. 

Require: The relation between the universes U and V provided by an expert ( U, V, R i ) and a fault testing sample A . 

Ensure: The determined fault pattern. 

1: Calculate 
∑ m 

i =1 R i 
O 
(A ) , 

∑ m 

i =1 R i 
O 
(A ) , 

∑ m 

i =1 R i 
P 
(A ) and 

∑ m 

i =1 R i 
P 
(A ) , respectively; 

2: Calculate 
∑ m 

i =1 R i 
O 
(A ) �

∑ m 

i =1 R i 
O 
(A ) and 

∑ m 

i =1 R i 
P 
(A ) �

∑ m 

i =1 R i 
P 
(A ) , respectively; 

3: Determine the score function values for the sets 
∑ m 

i =1 R i 
O 
(A ) �

∑ m 

i =1 R i 
O 
(A ) and 

∑ m 

i =1 R i 
P 
(A ) �

∑ m 

i =1 R i 
P 
(A ) , respectively; 

4: Compute T 1 , T 2 , T 3 , T 1 ∩ T 2 ∩ T 3 and T 1 ∩ T 2 , and confirm the determined fault pattern. 

Table 1 

Knowledge of system fault given by expert 1. 

R 1 y 1 y 2 y 3 y 4 y 5 

x 1 {[0, 0]} {[0, 0]} {[0, 0]} {[0, 0]} {[0.85, 0.88], [0.85, 0.93]} 

x 2 {[0, 0]} {[0.27, 0.32], [0.28, 0.33]} {[0.08, 0.1], [0.09, 0.13]} {[0.54, 0.6], [0.56, 0.7]} {[0, 0]} 

x 3 {[0, 0]} {[0, 0]} {[0, 0]} {[0, 0]} {[0.3, 0.58], [0.4, 0.6]} 

x 4 {[0.09, 0.1], [0.1, 0.12]} {[0.78, 0.8], [0.8, 0.82]} {[0, 0]} {[0.08, 0.1], [0.1, 0.11]} {[0, 0]} 

x 5 {[0.09, 0.11], [0.11, 0.12]} {[0.09, 0.1], [0.1, 0.11]} {[0.08, 0.1], [0.1, 0.12]} {[0.09, 0.11], [0.11, 0.12]} {[0.18, 0.2], [0.19, 0.21]} 

x 6 {[0, 0]} {[0, 0]} {[0, 0]} {[0, 0]} {[0.18, 0.2], [0.2, 0.22]} 

x 7 {[0, 0]} {[0, 0]} {[0.08, 0.11], [0.1, 0.12]} {[0.86, 0.89], [0.88, 0.93]} {[0, 0]} 

x 8 {[0, 0]} {[0.27, 0.3], [0.29, 0.32]} {[0.08, 0.1], [0.09, 0.12]} {[0.54, 0.6], [0.57, 0.62]} {[0, 0]} 

x 9 {[0.85, 0.9], [0.89, 0.93]} {[0, 0]} {[0, 0]} {[0, 0]} {[0, 0]} 

x 10 {[0, 0]} {[0, 0]} {[0, 0]} {[0, 0]} {[0, 0]} 

R 1 y 6 y 7 y 8 y 9 

x 1 {[0.03, 0.05], [0.04, 0.06]} {[0.04, 0.06], [0.05, 0.07]} {[0, 0]} {[0, 0]} 

x 2 {[0, 0]} {[0, 0]} {[0, 0]} {[0.07, 0.12], [0.08, 0.14]} 

x 3 {[0.4, 0.6], [0.45, 0.62]} {[0.08, 0.12], [0.1, 0.13]} {[0, 0]} {[0, 0]} 

x 4 {[0, 0]} {[0, 0]} {[0, 0]} {[0, 0]} 

x 5 {[0.08, 0.12], [0.1, 0.13]} {[0.08, 0.12], [0.1, 0.13]} {[0.08, 0.1], [0.1, 0.12]} {[0.08, 0.1], [0.1, 0.12]} 

x 6 {[0.12, 0.15], [0.15, 0.17]} {[0.37, 0.4], [0.4, 0.45]} {[0, 0]} {[0.22, 0.25], [0.24, 0.28]} 

x 7 {[0, 0]} {[0, 0]} {[0, 0]} {[0, 0]} 

x 8 {[0, 0]} {[0, 0]} {[0, 0]} {[0, 0]} 

x 9 {[0, 0]} {[0, 0]} {[0.08, 0.1], [0.09, 0.12]} {[0, 0]} 

x 10 {[0.77, 0.8], [0.8, 0.83]} {[0.19, 0.2], [0.2, 0.23]} {[0, 0]} {[0, 0]} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Case study 

In this section, we illustrate the efficiency of our proposed algorithm by using a steam turbine fault diagnosis problem

with IVHFS information. To enhance the accuracy and reliability of the steam turbine fault diagnosis procedure, we aim to

solve the problem in the context of group decision-making. In group decision-making, each mechanical engineer might have

differing thoughts about the system fault knowledge base, but should also have the common goal to reach a final consensus.

Moreover, the knowledge of system faults has been modeled and studied by many scholars utilizing sets such as interval-

valued intuitionistic fuzzy sets [3] , vague sets [4] , and single-valued neutrosophic sets [5] . To express the aforementioned

hesitant and interval ambiguity, based on existing knowledge of system faults and following detailed discussions about

several previous cases of steam turbine fault diagnosis with mechanical engineers, we obtained the required knowledge of

the system fault dataset with respect to this paper from a state-owned scientific and technological enterprise. 

Let U = { x 1 , x 2 , . . . , x 10 } be a set of fault patterns, where x j ( j = 1 , 2 , . . . , 10 ) represents unbalance, pneumatic force

couple, offset center, oil-membrane oscillation, radial impact friction of rotor, symbiosis looseness, damage of antithrust

bearing, surge, looseness of bearing block, and nonuniform bearing stiffness. We also let V = { y 1 , y 2 , . . . , y k } be a set of fre-

quency ranges, where y k ( k = 1 , 2 , . . . , 9 ) stands for frequency ranges for different spectra: C 1 ( 0 . 01 − 0 . 39 f ) , C 2 ( 0 . 4 − 0 . 49 f ) ,

C 3 (0.5 f ), C 4 ( 0 . 51 − 0 . 99 f ) , C 5 ( f ), C 6 (2 f ), C 7 ( 3 − 5 f ) , C 8 (odd times of f ), and C 9 (high frequency > 5 f ). The steam turbine fault

diagnosis knowledge base with IVHFS information is presented in Tables 1 , 2 and 3 . The fault testing sample is also given as

follows. We aim to seek the determined fault pattern by utilizing the proposed model. 

In steam turbine fault diagnosis, assume that we take a fault testing sample, which is represented by the following

IVHFS information: 

A = { 〈 y 1 , { [ 0 . 39 , 0 . 4 ] , [ 0 . 39 , 0 . 41 ] } 〉 , 〈 y 2 , { [ 0 . 07 , 0 . 09 ] , [ 0 . 08 , 0 . 1 ] } 〉 , 〈 y 3 , { [ 0 , 0 ] } 〉 , 〈 y 4 , { [ 0 . 06 , 0 . 07 ] , [ 0 . 06 , 0 . 08 ] } 〉 , 
〈 y 5 , { [ 0 , 0 ] } 〉 , 〈 y 6 , { [ 0 . 12 , 0 . 14 ] , [ 0 . 13 , 0 . 15 ] } 〉 , 〈 y 7 , { [ 0 , 0 ] } 〉 , 〈 y 8 , { [ 0 , 0 ] } 〉 , 〈 y 9 , { [ 0 . 33 , 0 . 36 ] , [ 0 . 34 , 0 . 37 ] } 〉 } . 

Next, we calculate lower and upper approximations of optimistic and pessimistic IVHF multigran-

ulation rough sets over two universes of A . 
∑ 3 

i =1 R i 
O 
(A ) = {〈 x 1 , { [ 0 . 07 , 0 . 15 ] , [ 0 . 12 , 0 . 15 ] } 〉 , 〈 x 2 , { [ 0 . 3 , 0 . 45 ] ,

[ 0 . 4 , 0 . 46 ] }〉 , 〈 x , { [ 0 . 38 , 0 . 6 ] , [ 0 . 42 , 0 . 6 ] } 〉 , . 〈 x , {[0.18, 0.22], [0.2, 0.22]} 〉 , 〈 x , {[0.79, 0.82], [0.81, 0.82]} 〉 , 〈 x , {[0.55, 0.63], [0.6,
3 4 5 6 
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Table 2 

Knowledge of system fault given by expert 2. 

R 2 y 1 y 2 y 3 y 4 y 5 

x 1 {[0, 0]} {[0, 0]} {[0, 0]} {[0, 0]} {[0.85, 0.93]} 

x 2 {[0, 0]} {[0.28, 0.31]} {[0.09, 0.11], [0.1, 0.13]} {[0.55, 0.7]} {[0, 0]} 

x 3 {[0, 0]} {[0, 0]} {[0, 0]} {[0, 0]} {[0.3, 0.58]} 

x 4 {[0.09, 0.11], [0.1, 0.12]} {[0.78, 0.82]} {[0, 0]} {[0.08, 0.11]} {[0, 0]} 

x 5 {[0.09, 0.12]} {[0.09, 0.1], [0.1, 0.11]} {[0.08, 0.12]} {[0.09, 0.12]} {[0.18, 0.19], [0.18, 0.21]} 

x 6 {[0, 0]} {[0, 0]} {[0, 0]} {[0, 0]} {[0.18, 0.22]} 

x 7 {[0, 0]} {[0, 0]} {[0.08, 0.12]} {[0.86, 0.88], [0.86, 0.93]} {[0, 0]} 

x 8 {[0, 0]} {[0.27, 0.32]} {[0.08, 0.11], [0.09, 0.12]} {[0.54, 0.62]} {[0, 0]} 

x 9 {[0.85, 0.93]} {[0, 0]} {[0, 0]} {[0, 0]} {[0, 0]} 

x 10 {[0, 0]} {[0, 0]} {[0, 0]} {[0, 0]} {[0, 0]} 

R 2 y 6 y 7 y 8 y 9 

x 1 {[0.03, 0.06], [0.04, 0.07]} {[0.04, 0.07]} {[0, 0]} {[0, 0]} 

x 2 {[0, 0]} {[0, 0]} {[0, 0]} {[0.08, 0.13]} 

x 3 {[0.4, 0.58], [0.42, 0.62]} {[0.08, 0.1], [0.1, 0.13]} {[0, 0]} {[0, 0]} 

x 4 {[0, 0]} {[0, 0]} {[0, 0]} {[0, 0]} 

x 5 {[0.08, 0.13]} {[0.08, 0.12], [0.1, 0.13]} {[0.08, 0.12]} {[0.08, 0.09], [0.1, 0.12]} 

x 6 {[0.12, 0.16], [0.14, 0.17]} {[0.37, 0.45]} {[0, 0]} {[0.22, 0.26], [0.24, 0.28]} 

x 7 {[0, 0]} {[0, 0]} {[0, 0]} {[0, 0]} 

x 8 {[0, 0]} {[0, 0]} {[0, 0]} {[0, 0]} 

x 9 {[0, 0]} {[0, 0]} {[0.08, 0.12]} {[0, 0]} 

x 10 {[0.77, 0.79], [0.79, 0.83]} {[0.19, 0.23]} {[0, 0]} {[0, 0]} 

Table 3 

Knowledge of system fault given by expert 3. 

R 3 y 1 y 2 y 3 y 4 y 5 

x 1 {[0, 0]} {[0, 0]} {[0, 0]} {[0, 0]} {[0.85, 0.9], [0.88, 0.93]} 

x 2 {[0, 0]} {[0.28, 0.3], [0.29, 0.32]} {[0.09, 0.12]} {[0.55, 0.65], [0.6, 0.7]} {[0, 0]} 

x 3 {[0, 0]} {[0, 0]} {[0, 0]} {[0, 0]} {[0.3, 0.55], [0.31, 0.58]} 

x 4 {[0.09, 0.11]} {[0.78, 0.81], [0.8, 0.82]} {[0, 0]} {[0.08, 0.1], [0.8, 0.11]} {[0, 0]} 

x 5 {[0.09, 0.1], [0.1, 0.12]} {[0.09, 0.11]} {[0.08, 0.09], [0.08, 0.12]} {[0.09, 0.1], [0.1, 0.12]} {[0.18, 0.21]} 

x 6 {[0, 0]} {[0, 0]} {[0, 0]} {[0, 0]} {[0.18, 0.2], [0.18, 0.22]} 

x 7 {[0, 0]} {[0, 0]} {[0.08, 0.1], [0.1, 0.12]} {[0.86, 0.93]} {[0, 0]} 

x 8 {[0, 0]} {[0.27, 0.31], [0.29, 0.32]} {[0.08, 0.12]} {[0.54, 0.58], [0.55, 0.62]} {[0, 0]} 

x 9 {[0.85, 0.88], [0.88, 0.93]} {[0, 0]} {[0, 0]} {[0, 0]} {[0, 0]} 

x 10 {[0, 0]} {[0, 0]} {[0, 0]} {[0, 0]} {[0, 0]} 

R 3 y 6 y 7 y 8 y 9 

x 1 {[0.03, 0.06]} {[0.04, 0.05], [0.05, 0.07]} {[0, 0]} {[0, 0]} 

x 2 {[0, 0]} {[0, 0]} {[0, 0]} {[0.08, 0.1], [0.1, 0.13]} 

x 3 {[0.4, 0.62]} {[0.08, 0.13]} {[0, 0]} {[0, 0]} 

x 4 {[0, 0]} {[0, 0]} {[0, 0]} {[0, 0]} 

x 5 {[0.08, 0.1], [0.09, 0.13]} {[0.08, 0.13]} {[0.08, 0.1], [0.1, 0.12]} {[0.08, 0.12]} 

x 6 {[0.12, 0.17]} {[0.36, 0.44], [0.37, 0.45]} {[0, 0]} {[0.22, 0.28]} 

x 7 {[0, 0]} {[0, 0]} {[0, 0]} {[0, 0]} 

x 8 {[0, 0]} {[0, 0]} {[0, 0]} {[0, 0]} 

x 9 {[0, 0]} {[0, 0]} {[0.08, 0.1], [0.09, 0.12]} {[0, 0]} 

x 10 {[0.77, 0.83]} {[0.19, 0.21], [0.2, 0.23]} {[0, 0]} {[0, 0]} 

 

 

 

 

 

 

0.64]} 〉 , 〈 x 7 , {[0.07, 0.14], [0.12, 0.14]} 〉 , . . 〈 x 8 , {[0.38, 0.46], [0.42, 0.46]} 〉 , 〈 x 9 , {[0.39, 0.4], [0.39, 0.41]} 〉 , 〈 x 10 , {[0.17, 0.23], [0.21,

0.23]} 〉 }; 
∑ 3 

i =1 R i 
O 

(A ) = { 〈 x 1 , { [ 0 . 03 , 0 . 05 ] , [ 0 . 03 , 0 . 06 ] } 〉 , 〈 x 2 , { [ 0 . 07 , 0 . 12 ] , [ 0 . 08 , 0 . 14 ] } 〉 , 〈 x 3 , { [ 0 . 12 , 0 . 14 ] , [ 0 . 13 , 0 . 15 ] } 〉 , . 〈 x 4 , 
{[0.09, 0.1], [0.09, 0.11]} 〉 , 〈 x 5 , {[0.09, 0.12], [0.1, 0.13]} 〉 , 〈 x 6 , {[0.22, 0.25], [0.22, 0.28]} 〉 , 〈 x 7 , {[0.06, 0.07],

[0.06, 0.08]} 〉 , . . 〈 x 8 , {[0.07, 0.09], [0.08, 0.1]} 〉 , 〈 x 9 , {[0.39, 0.4], [0.39, 0.41]} 〉 , 〈 x 10 , {[0.12, 0.14], [0.13, 0.15]} 〉 };∑ 3 
i =1 R i 

P 
(A ) = { 〈 x 1 , { [ 0 . 07 , 0 . 12 ] , [ 0 . 07 , 0 . 15 ] } 〉 , 〈 x 2 , { [ 0 . 3 , 0 . 4 ] , [ 0 . 3 , 0 . 45 ] } 〉 , 〈 x 3 , { [ 0 . 38 , 0 . 55 ] , [ 0 . 38 , 0 . 6 ] } 〉 , . 〈 x 4 , {[0.18, 0.2], 

[0.18, 0.22]} 〉 , 〈 x 5 , {[0.79, 0.81], [0.79, 0.82]} 〉 , 〈 x 6 , {[0.55, 0.6], [0.55, 0.63]} 〉 , . . 〈 x 7 , {[0.07, 0.12], [0.07, 0.14]} 〉 ,
〈 x 8 , {[0.38, 0.43], [0.38, 0.46]} 〉 , 〈 x 9 , {[0.39, 0.4], [0.39, 0.41]} 〉 , 〈 x 10 , {[0.17, 0.2], [0.17, 0.23]} 〉 }; 

∑ 3 
i =1 R i 

P 

(A ) =
{ 〈 x 1 , { [ 0 . 03 , 0 . 06 ] , [ 0 . 04 , 0 . 07 ] } 〉 , 〈 x 2 , { [ 0 . 08 , 0 . 13 ] , [ 0 . 1 , 0 . 14 ] } 〉 , 〈 x 3 , { [ 0 . 12 , 0 . 14 ] , [ 0 . 13 , 0 . 15 ] } 〉 , . 〈 x 4 , {[0.09, 0.11], [0.1, 0.12]} 〉 , 
〈 x 5 , {[0.09, 0.13], [0.11, 0.13]} 〉 , 〈 x 6 , {[0.22, 0.28], [0.24, 0.28]} 〉 , . . 〈 x 7 , {[0.06, 0.07], [0.06, 0.08]} 〉 , 〈 x 8 , {[0.07, 0.09], [0.08,

0.1]} 〉 , 〈 x , {[0.39, 0.4], [0.39, 0.41]} 〉 , 〈 x , {[0.12, 0.14], [0.13, 0.15]} 〉 }. 
9 10 
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Then, we further obtain 

∑ m 

i =1 R i 
O 
(A ) �

∑ m 

i =1 R i 
O 
(A ) and 

∑ m 

i =1 R i 
P 
(A ) �

∑ m 

i =1 R i 
P 
(A ) as follows: 

∑ 3 
i =1 R i 

O 
(A ) �∑ 3 

i =1 R i 
O 

(A ) = { 〈 x 1 , { [ 0 . 0979 , 0 . 1925 ] , [ 0 . 1464 , 0 . 201 ] } 〉 , 〈 x 2 , { [ 0 . 349 , 0 . 516 ] , [ 0 . 448 , 0 . 5356 ] } 〉 , . 〈 x 3 , {[0.4544, 0.656],

[0.4954, 0.66]} 〉 , 〈 x 4 , {[0.2538, 0.298], [0.272, 0.3058]} 〉 , 〈 x 5 , {[0.8089, 0.8416], [0.829, 0.8434]} 〉 , 〈 x 6 , {[0.649,

0.7225], [0.688, 0.7408]} 〉 , 〈 x 7 , {[0.1258, 0.2002], [0.1728, 0.2088]} 〉 , 〈 x 8 , {[0.4234, 0.5086], [0.4664, 0.514]} 〉 .,
〈 x 9 , {[0.6279, 0.64], [0.6279, 0.6519]} 〉 , 〈 x 10 , {[0.2696, 0.3378], [0.3127, 0.3455]} 〉 }; 

∑ 3 
i =1 R i 

P 
(A ) �

∑ 3 
i =1 R i 

P 

(A ) =
{ 〈 x 1 , { [ 0 . 0979 , 0 . 1728 ] , [ 0 . 1072 , 0 . 2095 ] } 〉 , 〈 x 2 , { [ 0 . 356 , 0 . 478 ] , [ 0 . 37 , 0 . 527 ] } 〉 , 〈 x 3 , {[0.4544, 0.613], [0.4606, 0.66]} 〉 , 〈 x 4 ,
{[0.2538, 0.288], [0.262, 0.3136]} 〉 , 〈 x 5 , {[0.8089, 0.8347], [0.8131, 0.8434]} 〉 , 〈 x 6 , {[0.649, 0.712], [0.658, 0.7336]} 〉 , 〈 x 7 ,
{[0.1258, 0.1816], [0.1258, 0.2088]} 〉 , 〈 x 8 , {[0.4234, 0.4813], [0.4296, 0.514]} 〉 ., 〈 x 9 , {[0.6279, 0.64], [0.6279, 0.6519]} 〉 , 〈 x 10 ,

{[0.2696, 0.312], [0.2779, 0.3455]} 〉 }. 

Finally, according to Definition 2.4 , we calculate the score function values of interval-valued hesitant fuzzy elements

belonging to 
∑ 3 

i =1 R i 
O 
(A ) �

∑ 3 
i =1 R i 

O 

(A ) and 

∑ 3 
i =1 R i 

P 
(A ) �

∑ 3 
i =1 R i 

P 

(A ) , respectively. The ranking results for optimistic and

pessimistic IVHF multigranulation rough sets on two universes of A are identical. That is, the ranking order of all faults is:

x 5 > x 6 > x 9 > x 3 > x 8 > x 2 > x 10 > x 4 > x 7 > x 1 . According to the diagnostic order of the above results, it is not difficult

to obtain T 1 ∩ T 2 ∩ T 3 = { 5 } . Thus, from the arguments of the above results, it is easy to find that the turbine vibration fault

is initiated by rotor radial impact friction. 

To validate the effectiveness of the proposed model based on IVHF multigranulation rough sets over two universes,

a comparison analysis is conducted by utilizing the most commonly used aggregation operators for interval-valued hes-

itant fuzzy information. As established in previous work [14] , we let h j ( j = 1 , 2 , . . . , n ) be a collection of IVHFEs and

w = ( 1 /n, 1 /n, . . . , 1 /n ) T be the weight vector of of h j with equal weight. Then, we have the following special aggregation

operators. 

(1) The interval-valued hesitant fuzzy averaging (IVHFA) operator IV HF A ( h 1 , h 2 , . . . , h n ) = �
n 
j=1 

( 1 n h j ) =
{ [ 1 − ∏ n 

j=1 ( 1 − γ L 
j 
) 

1 /n 
, 1 − ∏ n 

j=1 ( 1 − γ U 
j 
) 

1 /n 
] | γ1 ∈ h 1 , γ2 ∈ h 2 , . . . , γn ∈ h n } ; 

(2) The interval-valued hesitant fuzzy geometric (IVHFG) operator IV HF G ( h 1 , h 2 , . . . , h n ) = �
n 
j=1 

h j 
1 /n =

{ [ ∏ n 
j=1 ( γ

L 
j 
) 

1 /n 
, 
∏ n 

j=1 ( γ
U 
j 
) 

1 /n 
] | γ1 ∈ h 1 , γ2 ∈ h 2 , . . . , γn ∈ h n } . 

Through utilizing the above two aggregation operators, we can aggregate the IVHF relations R 1 , R 2 and R 3 in Tables 1,

2 and 3 to a single IVHF relation R . Then, we calculate the score function values of interval-valued hesitant fuzzy elements

belonging to R (A ) � R (A ) within the background of IVHF rough sets over two universes. The ranking order of all faults for

the IVHFA and IVHFG operators is x 5 > x 6 > x 9 > x 3 > x 8 > x 2 > x 10 > x 4 > x 7 > x 1 , the ranking order is consistent with

that obtained by Algorithm 1 . 

By comparing the aggregation methods of the IVHFA and IVHFG operators and of IVHF multigranulation rough sets on

two universes model utilized in steam turbine fault diagnosis, the main fault of the testing sample is rotor radial impact

friction. Compared to the other aggregation operators, the IVHF multigranulation rough set over two universes model takes

full advantages of interval-valued hesitant fuzzy sets and multigranulation rough sets in steam turbine fault diagnosis

procedures. On one hand, the hesitancy membership function in interval-valued hesitant fuzzy sets provides mechanical en-

gineers with more flexible vehicles by which to convey understanding about the system fault knowledge base. On the other

hand, the multigranulation rough set method can be viewed as a superior information fusion strategy that allows synthesis

of each engineer’s view to form a final conclusion by providing optimistic and pessimistic decision-making strategies. If the

ranking order of all faults for the optimistic and pessimistic versions of IVHF multigranulation rough sets over two universes

are different from each other, the mechanical engineer could refer to results according to risk preference. Thus, the ranking

result of optimistic IVHF multigranulation rough sets over two universes is often adopted when the decision-maker is

more prone to pursue risk. Conversely, the pessimistic counterpart is adopted when the decision-maker intends to select

a conservative fault diagnosis strategy. In light of the above, the superiorities of IVHF multigranulation rough sets over two

universes could greatly decrease uncertainties and increase diagnostic accuracies of steam turbine fault diagnosis. 

6. Conclusions 

The focal point of interest in the paper is to propose a novel rough set approach, called an interval-valued hesitant

fuzzy multigranulation rough set over two universes, for solving steam turbine fault diagnosis problems. In the framework

of this study, basic definitions and some useful theorems of optimistic and pessimistic interval-valued hesitant fuzzy

multigranulation rough sets over two universes were explored. Then, we proposed a general approach to decision-making

related to steam turbine fault diagnosis. Lastly, case study outcomes show that the proposed fault diagnosis method could

effectively handle steam turbine fault diagnosis problems. There still exist some challenging issues in the theoretical and

practical researches of the proposed rough set model. First, it is meaningful to further study attribute reduction approaches,

uncertainty measures, and topological structures for interval-valued hesitant fuzzy multigranulation rough sets over two

universes. Second, how to apply the proposed approach to other complex and uncertain decision-making situations will

also be taken into account in the future. 
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