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Abstract: The recent boom of various integrated decision-making methods has attracted many
researchers to the field. The recent integrated Analytic Network Process and Decision Making Trial
and Evaluation Laboratory (ANP–DEMATEL) methods were developed based on crisp numbers
and fuzzy numbers. However, these numbers are incapable of dealing with the indeterminant and
inconsistent information that exists in real-life problems. This paper proposes improvements to the
integrated ANP–DEMATEL method by bringing together the neutrosophic numbers, the ANP
method, and the DEMATEL method, which are later abbreviated to NS-DANP. The proposed
NS-DANP method can handle the indeterminacy elements in the decision-making environment, as the
single-valued neutrosophic numbers are used in the decision analysis. This proposed NS-DANP
modification method includes linguistic variables representing the single-valued neutrosophic
numbers (SVNNs), and also introduces the single-valued neutrosophic weighted averaging (SVNWA)
aggregation operator to aggregate the decision makers’ judgments instead of the typical averaging
method. The applicability of the proposed method is illustrated by a case study of the coastal erosion
problem along the Peninsular Malaysia coastline, where 12 factors were considered. Three experts of
coastal erosion from different organizations were invited to elicit their linguistic judgments on the
cause–effect of the coastal erosion. The seven-step decision approach was developed to acquire the
weightage of each coastal erosion factor. The outcome of this study reveals that coastal development is
the riskiest factor toward coastal erosion. The weight of factors and the cause–effect diagram could be
very helpful for government and stakeholders to project a better mitigation plan for the coastal erosion
problem. Comparative analysis is also provided to check the feasibility of the proposed method.

Keywords: decision making; single-valued neutrosophic set; coastal erosion management; DEMATEL;
analytic network process

1. Introduction

Real-world problems involving multiple attributes and alternatives can only be solved using
multi-criteria decision making (MCDM) tools. There are many well-known MCDM methods in
the decision-making field; for instance, the Analytic Hierarchy Process (AHP), Analytic Network
Process (ANP), the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS),
VlseKriterijumska Optimizacija I Kompromisno Resenje technique (VIKOR), Elimination and Choice
Expressing Reality (ELECTRE), Grey Relational Analysis (GRA), Preference Ranking Organization
Method for Enrichment of Evaluations (PROMETHEE), Decision Making Trial and Evaluation
Laboratory (DEMATEL), and a hybrid of MCDM methods. Every MCDM method has its own
specialty and advantages for solving complicated real problems. As for clarifying the interrelationships
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of criteria, the DEMATEL method is the best method that has been developed for this purpose.
The DEMATEL method was developed by the Science and Human Affairs Program of the Battelle
Memorial Institute of Geneva, and has been well-known for its capability in dealing with the degree of
importance of evaluation criteria, and more importantly to build cause–effect relationships among
the evaluation criteria [1]. By pairwise comparisons of the interactions among criteria, the method
utilizes matrix operations and mathematical techniques to quantify the causality and confirm the
interdependence among criteria [2]. The causal diagram portrays a clear causal relationship and the
degree of influence among the criteria. Recently, several studies have employed the DEMATEL method
in various problems, such as those regarding cloud service selection [3], business intelligence [4],
health technology assessment [5], the performance of a manufacturing company [6], supply chain [7,8],
coastal erosion [9], and the auto components manufacturing sector [10].

One of the established MCDM tools for handling the feedback and dependencies among criteria
and clusters is ANP [11]. The ANP method was introduced by Saaty [12] to avoid the hierarchical
constraint in the analytic hierarchy process (AHP). Furthermore, the ANP method is used to determine
the composite weights of the criteria through the development of a ‘supermatrix’ [13]. The supermatrix
is actually a partitioned matrix that represents a relationship between two clusters in a system [14].
In addition to this, along the process of obtaining the final weights, arrays of elements in a matrix are
used to easily convey the mechanisms of the methodology and show how dependencies function [15].
Therefore, the supermatrix is the better option, especially when involving a greater number of elements.
However, there are a few flaws in the standalone ANP method. One of them is the assumption that
each cluster has the same weight. This assumption is not sensible, since the weight of each cluster
has a high possibility of being different from each other. Another shortcoming of ANP is that the
assessment survey involves too many pairwise comparisons. This may lead to inconsistent judgment,
which is time consuming and difficult to interpret. Therefore, the hybridization of DEMATEL and
ANP methods has been widely explored, and has been recognized for supporting the imperfections in
the solely ANP method.

Besides the combination of the DEMATEL–ANP methods, there are several integrations that
promote DEMATEL that have been explored, such as the hybrid of AHP and DEMATEL [16],
DEMATEL and TOPSIS [17], grey-based DEMATEL [18], DEMATEL and adaptive neuro-fuzzy
inference systems (ANFIS) [6], DEMATEL and fuzzy inference system (FIS) [19], DEMATEL and
VIKOR [20], DEMATEL and data envelopment analysis (DEA) [21], DEMATEL–ANP with DEA [22,23],
DEMATEL, ANP, and PROMETHEE II [24], DEMATEL with ANP and the Multi-Attributive Ideal-Real
Comparative Analysis (MAIRCA) method [25], DEMATEL with ANP and ELECTRE [26], DEMATEL
with ANP and VIKOR [27], DEMATEL with ANP, GRA, and VIKOR [28], and DEMATEL with ANP
and TOPSIS [29].

Generally, ANP studies comprise three main components, which are the network structuring
of the problem, coping with inner and outer dependencies through the pairwise comparison, and
forming the weighted supermatrix. According to Baykasoklu and Golcuk [30], there are four types of
integrated DEMATEL–ANP technique in the literature. The first category employs DEMATEL merely
for structuring the network relationship map (NRM). The inner and outer dependencies and weighted
supermatrix are obtained via the traditional ANP method. The second category utilizes DEMATEL to
deal with the inner dependencies. The criteria structuring, the outer dependencies, and the weighted
supermatrix are accomplished using the ANP method. This category benefits from avoiding the
difficulty of pairwise comparison of the ANP method. The third category adopts DEMATEL for
obtaining the clusters’ weights and constructing the NRM. The inner and outer dependencies are
handled via the ANP method. The main purpose of this category is to incorporate the unequal weights
of clusters into the formation of the supermatrix. Lastly, the fourth category uses DEMATEL in
establishing the NRM, handling inner and outer dependencies and weighted supermatrix formation.
This type of hybridization generalizes the previous mentioned categories and is well-known as the
DANP method.
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However, most of the DANP method only uses the real number in their computation methodology.
Since the introduction of the fuzzy set (FS) theory by Zadeh [31], the studies related to this theory
have been explored widely, and its real applications have been successfully implemented in various
fields, including fuzzy DEMATEL [32,33], fuzzy ANP [34,35], and fuzzy DEMATEL–ANP [36,37].
The fuzzy DEMATEL, for instance, is superior to the traditional DEMATEL method, because it
uses linguistic variables that represent fuzzy numbers in the evaluation processes instead of integer
numbers from zero to four. Fuzzy numbers (FN) are well-known numbers in an uncertain environment
owing to its ability to handle uncertain information. As a result, many researchers have utilized
the DEMATEL method in a fuzzy environment and used triangular fuzzy numbers (TFNs) in its
method development [38,39]. Despite its capability, there is one weakness when applying TFNs into
the DEMATEL method, which has been pointed out by Pandey and Kumar [40]. According to Pandey
and Kumar [40], the computation of a multiplicative inverse of fuzzy matrix in the DEMATEL method
is invalid, because the elements in the matrix are dependent with each other, and thus the computation
of the multiplicative inverse of the fuzzy matrix cannot be implemented separately. These flaws can be
seen in many studies that apply the TFNs into DEMATEL methods: [32,41,42] just to cite a few. Besides
TFNs, DEMATEL is applied with other sets such as trapezoidal FS [43], type-2 FS [44], interval type-2
FN [16,45], intuitionistic fuzzy sets (IFS) [46–48], interval rough sets [25], hesitant fuzzy linguistic term
sets [49], and an interval-valued hesitant fuzzy set [50].

Besides that, the traditional FN only expresses one single value of membership function,
µA(x) ∈ [0, 1] of fuzzy set A. However, in most of the real applications such as an expert system,
information fusion, and a belief system, we should not only consider truth-membership, but also
falsity-membership [51]. Therefore, Atanassov [52] introduced intuitionistic fuzzy sets (IFSs), which
extend the concept of FS by adding the degree of non-membership. Since its introduction, IFS has
received significant interest among scholars, and lots of remarkable studies have been executed on
developing theories of IFSs. Later, Atanassov and Gargov [53] introduced interval-valued IFS (IVIFS),
which uses interval values to represent the degrees of membership and non-membership, instead
of just real numbers. However, FSs, IFSs, and IVIFSs are incapable of dealing with all the types of
uncertainty that exist in different real-life problems, especially when it involves indeterminant and
inconsistent information. In IFSs, the indeterminacy degree, or the so-called hesitancy degree in IFS
literature can be obtained by default, which is 1− µA(x)− νA(x).

When we asked a decision maker (DM) about his or her opinion on a certain statement, he or she
may evaluate the statement with three possibilities. First, he or she may state that the truthness of
that statement is 0.5. Second, he or she may elicit that the degree of falsity is 0.6, and third, that the
degree of unsure is 0.2, which is beyond the scope of FSs, IFSs, and IVIFSs [51]. In a neutrosophic set
(NS), indeterminacy is quantified explicitly, which means that the truth, falsity, and indeterminacy
components are completely independent. NS is a set that was introduced by Smarandache [54] where
each element has the degree of truth, falsity, and indeterminacy, and it is within the non-standard
unit interval of ]0−, 1+[. This set is clearly an extension from the standard unit interval of IFS, [0, 1].
However, the non-standard unit of NSs are difficult to be applied in the real-case situations; therefore,
Wang et al. [51] presented the notion of single-valued neutrosophic set (SVNS), which is a special
case of NSs. Since its introduction, the SVNS has attracted many scholars to theoretically improve
the set by introducing new concepts of measures, defining operations, aggregation operators, and
correlation coefficients associated to the set [55–58]. It also has been successfully applied in various
MCDM problems such as in logistics center location selection [59], teacher selection problem [60],
medical diagnosis [61], etc.

The successful applications of neutrosophic numbers, especially SVNSs in the MCDM-related
problems, motivated us to explore the possibility of the development of an integrated neutrosophic
DEMATEL-based ANP (NS-DANP). The acronym NS-DANP will be used throughout this paper.
The introduction of SVNSs in the DEMATEL method would enhance the efficiency in handling the
uncertainty and indeterminacy information that exists during the pairwise comparison evaluation
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process. In addition, to the best of our knowledge, there are no studies in the previous literature
that used neutrosophic sets in an integrated DEMATEL and ANP method. In contrast to the other
ANP–DEMATEL methods, this proposed NS-DANP method makes the computation a lot easier, as it
generalizes the other hybrid ANP–DEMATEL methods. In addition, comparative analysis is carried
out to show the applicability and effectiveness of the proposed NS-DANP method under a single
valued neutrosophic environment compared to other existing methods. It is consistent with most of the
past research in decision analysis, where comparative analysis was made to compare their proposed
methods with existing methods [62–64].

This paper has twofold purposes. First, we aim to introduce the SVNSs into the DEMATEL
method, as they are superior to traditional FSs, and avoid the multiplicative inverse problem in the
fuzzy DEMATEL method. Secondly, to test the applicability of the proposed method, it is applied to a
case study of coastal erosion problem along the Peninsular Malaysia coastal area. The rest of the paper
is as follows. The second section discusses the preliminaries. The third section explains the proposed
integrated neutrosophic DEMATEL-based ANP method (NS-DANP). Then, we provide a case study
where the coastal erosion problem is implemented using the proposed methodology. The next section
is continued with the comparative analysis. The last section concludes.

2. Preliminaries

This section provides some basic definitions of NSs, SVNSs, the weights of decision makers (DMs),
the deneutrosophication of single-valued neutrosophic numbers, and the single-valued neutrosophic
weighted averaging (SVNWA) aggregation operator.

Definition 1 ([54]). Let X be a space of points, with generic elements in X denoted by x. A neutrosophic set Q
in X is denoted by Q =

{〈
x, TQ(x), IQ(x), FQ(x)

〉∣∣x ∈ X
}

where TQ(x) is the truth-membership function,
IQ(x) is the indeterminacy-membership function, and FQ(x) is the falsity-membership function. The functions
TQ(x), IQ(x) and FQ(x) are real standard subsets of ]0−, 1+[. That is, TQ(x), IQ(x), FQ(x)→ ]0−, 1+[ .
Thus, the sum of TQ(x), IQ(x) and FQ(x) is 0− ≤ supTQ(x) + supIQ(x) + supFQ(x) ≤ 3+.

Obviously, the non-standard subsets are difficult to be applied in real scientific and engineering
areas. Hence, Wang et al. [51] presented the SVNS and defined it as follows.

Definition 2. Let X be a space of points (objects) with generic elements in X denoted by x. An SVNS Q
can be denoted by Q =

{〈
x, TQ(x), IQ(x), FQ(x)

〉∣∣x ∈ X
}

where TQ(x) is the truth-membership function,
IQ(x) is the indeterminacy-membership function, and FQ(x) is the falsity-membership function. That is,
TQ(x), IQ(x), FQ(x)→ [0, 1] for each point x in X, and the sum of TQ(x), IQ(x) and FQ(x) satisfies the
condition 0 ≤ TQ(x) + IQ(x) + FQ(x) ≤ 3.

The weight of DMs may be distinct from each other. The DM’s weights can be obtained by the
following definition [65].

Definition 3. Let Qm = 〈Tm, Im, Fm〉 be an SVNS defined for the rating of the m-th DM. Then, the weight
of the m-th DM can be written as:

ωm =
1−

√{
(1− Tm)

2 + (Im)
2 + (Fm)

2
}

/3

∑
p
m=1

(
1−

√{
(1− Tm)

2 + (Im)
2 + (Fm)

2
}

/3
) (1)

Further, in any decision analysis, the consensus decision making is the important key in achieving
a promising solution. In this regard, the formation of an aggregated decision matrix is a must where
all the individual DMs’ judgments are aggregated. By incorporating the weights of DMs in Definition
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3, the aggregated SVNS decision matrix can be computed using the SVNWA aggregation operator
defined in Definition 4 [66].

Definition 4. Let A(m) =
(

a(m)
ij

)
n×n

be the individual SVNS decision matrix of the m-th DM and ω =(
ω1, ω2, . . . , ωp

)T be the weight vector of DM such that each ωm ∈ [0, 1]. A =
(
aij
)

n×n, where

aij = SVNWAω

(
a(1)ij , a(2)ij , . . . , a(p)

ij

)
= ω1a(1)ij ⊕ω2a(2)ij ⊕ . . .⊕ωpa(p)

ij

=

〈
1−

p

∏
m=1

(
1− T(m)

ij

)ωm

,
p

∏
m=1

(
I(m)
ij

)ωm
,

p

∏
m=1

(
F(m)

ij

)ωm

〉
(2)

Deneutrosophication is the process of obtaining one single real number from any of the
neutrosophic numbers. The deneutrosophication of SVNNs is defined as below [65].

Definition 5. Let Q =
{〈

x, TQ(x), IQ(x), FQ(x)
〉∣∣x ∈ X

}
be an SVNN, then the deneutrosophication of Q

is the process of set Q mapping into a real number χ ∈ X i.e., f : Q→ χ for x ∈ X. The set Q is reduced to a
crisp number χ ∈ X. Therefore, the deneutrosophication can be computed as Equation (3).

χQ = 1−
√{(

1− TQ(x)
)2

+
(

IQ(x)
)2

+
(

FQ(x)
)2
}

/3 (3)

3. Proposed Method

The DANP hybrid technique with SVNSs (NS-DANP) is adopted in this study. The NS-DANP
approach does not only apply neutrosophic DEMATEL to obtain the NRM and the degree of influences
of dimensions and criteria. Instead, the NS-DANP that is incorporated normalizes the total-influence
matrix T of DEMATEL into an unweighted supermatrix of ANP. In addition, the relationships element
reflected from the total-influence matrix of DEMATEL is similar to the idea of ANP, which supports
the importance of criteria through questionnaires. Besides that, this proposed NS-DANP method is
better than the integrated DEMATEL and AHP, because the AHP only considers the unidirectional
interactions between components in the lower level of the hierarchy with respect to the components
in upper level of the hierarchy, while the ANP method can handle the interactions among inner
dependency, outer dependency, and self-feedback [30]. Therefore, the ANP is a practical tool to
solve the real complex problem by integrating the key interrelationships of criteria in the form of
the supermatrix. The supermatrix or influence matrix is a generalization of the AHP, since the ANP
offers more flexible interactions among clusters and criteria. Development of the proposed NS-DANP
method is carried out in three phases. The initial phase is where the collection of data is executed
via the linguistic evaluation of DMs. The second phase analyzes the data using the developed
neutrosophic DEMATEL method. The total-influence matrix of DEMATEL is incorporated into the
ANP methodology in Phase 3 to get the influential weights of criteria. To highlight the new developed
structure of the proposed NS-DANP method, the three phases are visualized as in Figure 1.
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Figure 1. The framework of the proposed neutrosophic Decision Making Trial and Evaluation
Laboratory (DEMATEL)-based Analytic Hierarchy Process (ANP) (NS-DANP) method.

In the first phase, the questionnaire is developed, a group of experts is recognized, the dimensions
and influencing criteria are finalized, and the linguistic variables are set to carry out the pairwise
comparison evaluation and get the information for this study. After obtaining the data, the linguistic
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variable information is transformed into SVNSs in matrix form. The individual experts’ initial
direct-influence matrices are aggregated using the SVNWA aggregation operator. This aggregation
operator is introduced into this study, as it is easy to compute and efficient in aggregating SVNSs. Then,
in the second phase, the DEMATEL method based on SVNS is implemented to develop the NRM and
classify the influencing criteria into cause and effect groups. The third phase is where the integration
between DEMATEL and ANP commences. The total-influence matrix obtained from the DEMATEL
method is utilized in the ANP method. As a result of this NS-DANP integration, the weights of
each influencing criteria are obtained. The individual steps of the proposed NS-DANP method are
shown below.

Step 1. Establish the neutrosophic aggregated direct-influence matrix AG.

In this step, each expert was asked to state the degree of direct influence based on the scale
ranging from zero to four, which indicates the linguistic variable from “no influence” to “very high
influence”. The linguistic variable is used in most of the MCDM evaluation process, because of the
human language that is easy to be interpreted for gaining information from experts’ purposes. Table 1
shows the zero to four scale, the linguistic variables, and their corresponding SVNSs adopted from
Biswas et al. [65].

Table 1. Linguistic variable and its corresponding single-valued neutrosophic numbers (SVNNs) [65].

Integer Linguistic Variable SVNNs

0 Very unimportant (VU) 〈0.1, 0.8, 0.9〉
1 Unimportant (U) 〈0.35, 0.6, 0.7〉
2 Medium important (M) 〈0.5, 0.4, 0.45〉
3 Important (I) 〈0.8, 0.2, 0.15〉
4 Absolutely important (AI) 〈0.9, 0.1, 0.1〉

The evaluation information obtained from each expert will be converted into the neutrosophic
direct-influence matrix form. Since each expert produces an individual neutrosophic direct-relation
matrix, a neutrosophic aggregated direct-relation matrix needs to be derived by the SVNWA
aggregation operator using Equation (2). The weights of experts need to be calculated beforehand
using Equation (1).

Hence, the neutrosophic aggregated direct-influence matrix, AG, is denoted as below.

AG =


a11 · · · a1n

...
. . .

...
an1 · · · ann

,

where aij is SVNSs with the form of
〈

Tij, Iij, Fij
〉
, and indicates the influence degree of factor i on

factor j.

Step 2. Construct the neutrosophic normalized direct-influence matrix, B.

The neutrosophic normalized direct-influence matrix can be obtained through Equations (4)
and (5).

B = k× AG, (4)

where k = min

 1
max

i
∑n

j=1 Tij
,

1
max

j
∑n

i=1 Tij

 (5)
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Step 3. Acquire the total direct-influence matrix, S.

For this step, the multiplicative inverse of (I − B) matrices need to be calculated in order to get the
total direct-influence matrices. In this regard, Pandey and Kumar [40] cautioned in their commenting
paper that it was an invalid step for the computation of the multiplicative inverse of fuzzy matrices.
This invalid inverse operation has been noticed in most of the previous articles when applying the
fuzzy DEMATEL method [32,41,42]. In the fuzzy DEMATEL method, the multiplicative inverse of
fuzzy matrices was done separately by its elements. This is invalid, since the elements of fuzzy
numbers are dependent on each other. In this regard, this paper utilizes the neutrosophic numbers so
as to divert the flaws that exist in the fuzzy DEMATEL method. Since the elements in neutrosophic
sets are independent from each other, the multiplicative inverse of neutrosophic matrices can be done
separately. The introduction of neutrosophic sets in DEMATEL is seen as the way to overcome the
drawback in fuzzy DEMATEL methodology.

The matrix S can be obtained by the following equations:

S = B + B2 + . . . + Bk

= B
(

1 + B + B2 + . . . + Bk−1
)
(1− B)(1− B)−1

= B
(

1− Bk
)
(1− B)−1

= B(1− B)−1when lim
k→∞

Bk = [0]n×n (6)

where S =
[
sij
]

n×n =


s11 · · · s1n

...
. . .

...
sn1 · · · snn

, and sij =
〈

Tij(x), Iij(x), Fij(x)
〉
, then

Matrix
[
Tij
]
= BT(I − BT)

−1 (7)

Matrix
[
Iij
]
= BI(I − BI)

−1 (8)

Matrix
[
Fij
]
= BF(I − BF)

−1 (9)

where I is the neutrosophic identity matrix with diagonal elements of 〈1, 1, 1〉 and non-diagonal
elements of 〈0, 0, 0〉.

Then, the elements in matrix S is deneutrosophied to obtain crisp numbers.
The deneutrosophication can be computed as Equation (3). From the deneutrosophied matrix S,
the prominence and relation of each criterion can be derived by Equations (10) and (11):

a = (ai)n×1 =

[
n

∑
j=1

sij

]
n×1

(10)

b =
(
bj
)

1×n =

[
n

∑
i=1

sij

]
1×n

(11)

where ai is the sum of rows of matrix S, and bj is the sum of columns of matrix S. The (ai + bi) values
indicate the importance of each criterion. The (ai − bi) values can be categorized into two groups,
which are the net receiver and net causer. The positive (ai − bi) values indicate the criterion i affecting
the other criterion, while if the (ai − bi) value is negative, the criterion i is being influenced by the
other criteria.
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Step 4. Draw the network relationship map (NRM).

The NRM can be drawn by mapping (ai + bi, ai − bi), which provides an understandable structure
that clearly expresses the relationship among criteria, degree of influences, and impacts of each criterion.
The threshold value is set to eliminate the small influences in matrix S. The threshold value is given by
an expert based on their opinions. After verifying the interrelationship among dimensions and criteria
by neutrosophic DEMATEL, the ANP method is incorporated to determine the influential weights of
each criteria.

Step 5. Form the unweighted supermatrix.

The neutrosophic total-influence matrix for criteria obtained from the neutrosophic DEMATEL
method is denoted by Sc.

D1 D2 · · · Dn

cn1 . . . cnmn cn1 . . . cnmn · · · cn1 . . . cnmn

Sc =

D1

D2

...

Dn

c11

c12
...

c1m1

c21

c22
...

c2m2
...

cn1

cn2
...

cnmn



S11
c S12

c · · · S1n
c

S21
c S22

c · · · S2n
c

...
...

. . .
...

Sn1
c Sn2

c · · · Snn
c



(12)

To obtain matrix sα
c , the matrix Sc needs to be normalized by dimensions as shown in Equation (13):

D1 D2 · · · Dn

cn1 . . . cnmn cn1 . . . cnmn · · · cn1 . . . cnmn

Sα
c =

D1

D2

...

Dn

c11

c12
...

c1m1

c21

c22
...

c2m2
...

cn1

cn2
...

cnmn



Sα11
c Sα12

c · · · Sα1n
c

Sα21
c Sα22

c · · · Sα2n
c

...
...

. . .
...

Sαn1
c Sαn2

c · · · Sαnn
c



(13)
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where Sα11
c can be computed by Equations (14) and (15), and Sαnn

c is computed the same way.

d11
ci =

m1

∑
j=1

s11
ij , i = 1, 2, . . . , m1 (14)

Sα11
c =



s11
c11/d11

c1 · · · s11
c1j/d11

c1j · · · s11
c11/d11

c1
...

...
...

s11
ci1/d11

ci · · · s11
cij/d11

ci · · · s11
cim1

/d11
ci

...
...

...
s11

cm11/d11
cm1

· · · s11
cm1 j/d11

cm1
· · · s11

cm1m1
/d11

cm1



=



sα11
c11 · · · sα11

c1j · · · sα11
c1j

...
...

...
sα11

ci1 · · · sα11
cij · · · sα11

cim1
...

...
...

sα11
cm11 · · · sα11

cm1 j · · · sα11
cm1m1


(15)

To acquire the unweighted supermatrix ψ, the interdependence relationship among dimensions is
incorporated. It is based on transposition of a neutrosophic total-influence matrix of criteria ψ = (Sα

c )
′.

D1 D2 · · · Dn

cn1 . . . cnmn cn1 . . . cnmn · · · cn1 . . . cnmn

ψ =

D1

D2

...

Dn

c11

c12
...

c1m1

c21

c22
...

c2m2
...

cn1

cn2
...

cnmn



ψ11 ψ12 · · · ψ1n

ψ21 ψ22 · · · ψ2n

...
...

. . .
...

ψn1 ψn2 · · · ψnn



(16)

where the matrix ψ11 represents the vector of factors in the D1 group to the factors in the D1 group as
well. If the matrix ψ11 is zero, it indicates that the factors of that group are independent. In the similar
way, the matrix ψ12 until ψnn can be obtained.

c11 c12 c1m1

ψ11 =

c11
...

c12
...

c1m1



sα11
c11 · · · sα11

ci1 · · · sα11
cm11

...
...

...
sα11

c1j · · · sα11
cij · · · sα11

cm11 j
...

...
...

sα11
c1m1

· · · sα11
cim1

· · · sα11
cm1m1


(17)
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Step 6. Construct the weighted supermatrix.

In order to determine the weighted supermatrix, normalize the sum of each column in the
dimensions of the total direct-influence matrix, as shown in Equation (18).

SD =



s11
D · · · s1j

D · · · s1n
D

...
si1

D · · · sij
D · · · sin

D
...

...
...

sn1
D · · · snj

D · · · snn
D


(18)

Normalizing matrix SD yields the new matrix Sα
D, as shown in Equation (19):

Sα
D =



s11
D /d1 · · · s1j

D/d1 · · · s1n
D /d1

...
si1

D/d2 · · · sij
D/d2 · · · sin

D /d2
...

...
...

sn1
D /d3 · · · snj

D /d3 · · · snn
D /d3



=



sα11
D · · · sα1j

D · · · sα1n
D

...
sαi1

D · · · sαij
D · · · siαn

D
...

...
...

sαn1
D · · · sαnj

D · · · sαnn
D


(19)

Let the normalized total-influence matrix Tα
D be filled into the unweighted supermatrix to obtain

a weighted supermatrix, as shown in Equation (20):

ψα =



sα11
D × ψ11 sα12

D × ψ12 · · · · · · sαn1
D × ψ1n

sα12
D × ψ12 sα22

D × ψ22 ...
...

... · · · sαij
D × ψij · · · sαni

D × ψni

...
...

...
sαn1

D × ψn1 sα2n
D × ψ2n · · · · · · sαnn

D × ψnn


(20)

Step 7. Construct the limited supermatrix.

The limited supermatrix can be obtained by raising the weighted supermatrix to a sufficiently
large power k, until the supermatrix converged and become a long-term stable supermatrix to get the
global weights, such that limk→∞(ψα)k. The influential weights need to be deneutrosophied using
Equation (3) to get the crisp final influential weights.

4. Case Study

In this section, a case study is presented to verify the developed NS-DANP method in finding
the interrelationship between factors and the influential weights of factors of coastal erosion. In this
section, the word ‘factor’ is used rather than criteria, as it is widely used in the literature to address
the coastal erosion problem, while the word ‘dimension’, which has the same meaning as clusters,
is maintained.
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4.1. Background of the Problem

Malaysia comprises two regions, which are the Peninsular Malaysia and Sabah-Sarawak region.
Peninsular Malaysia has a 1972-km long coastline with a west coast facing the Straits of Malacca
and an east coast fronting the South China Sea. The west coast of Peninsular Malaysia is a mud
flats kind of beach, while the east coastline is dominated by sandy beaches. The sandy beaches
are continuously enriched by sediment loads from several major rivers such as the Kelantan River,
Terengganu River, and Pahang River. Unlike the mud flats’ shoreline areas, the mangrove colonies
are isolated to river estuaries and inlets for a sand-dominated shoreline. In this study, our focus is to
study the coastal erosion problem for the sandy beaches’ shoreline specifically along the east coast of
Peninsular Malaysia.

4.2. Data Collection and Decision Makers

The data were collected via face-to-face interview with three professional experts in the coastal
erosion problem, namely DM1, DM2, and DM3. The experience of these experts in the coastal erosion
problem is between five and 26 years. The evaluation process took about 30 min for each expert to give
their judgments on 138 pairwise comparisons of three dimensions and 12 factors of coastal erosion
problem. Table 2 shows the personal profile of all three decision makers. The decision makers were
chosen based on their experience in the coastal erosion problem.

Table 2. Personal profiles of decision makers (DMs).

DM Position Sector Experience

1 Coastal engineer Private 20 years
2 Lecturer Government 5 years
3 Coastal engineer Private 26 years

4.3. Dimensions and Factors

The finalized factors of coastal erosion are revised from Luo et al. [67] along with the experts’
agreement. There are three dimensions and 12 factors of coastal erosion to be considered in this study,
as shown in Table 3.

Table 3. The dimensions and factors of coastal erosion.

Dimensions Factors

Natural factors (D1)

Wave and current (c1)
Sediment transport (c2)

Storm surge (c3)
Tidal range (c4)

Global warming (c5)
Beach profile and stability (c6)

Sea level rise (c7)

Man-made factors (D2)
Sand mining activities (c8)
Coastal development (c9)

Socio-economic factors (D3)
Coastal protection (c10)
Budgetary revenue (c11)

Coastal zone management (c12)

4.4. The Analysis of Data Using the Proposed NS-DANP Method

The DMs were asked to give their judgments on the influence of one dimension/factor toward
another dimension/factor using pairwise comparison. The collected linguistic data were transformed
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into SVNS matrices using the defined linguistic variable (see Table 1). The following matrices and
matrices are the individual direct-influence matrices of dimensions and factors, respectively.

A3
D =

 VU U I
I VU I

M I VU



A2
D =

 VU AI I
I VU I
I AI VU

,A1
D =

 VU M AI
I VU AI

AI AI VU

,

A1
c =



VU AI I VU U AI M M U AI AI AI
U VU U VU I AI I U AI AI AI AI
I I VU VU I I I I AI AI I AI

U I AI VU M AI I I AI I AI I
I AI AI AI VU I AI I AI AI AI AI

M AI M M I VU U AI I AI I I
AI I AI M AI AI VU I AI AI AI AI
U AI I U I AI M VU AI I AI AI
AI AI AI U M AI AI I VU AI AI AI
AI AI M M M AI AI M I VU AI M
I AI M U M M AI I AI AI VU AI

M AI U VU U I I AI AI AI AI VU



A2
c =



VU I M I M AI U VU U U M U
M VU VU VU VU I VU VU U M I M
I I VU I VU AI U VU I I I I
I M AI VU U AI I U I I M I

AI U I I VU I AI U I U M M
I M U M VU VU M VU I I I M

M U M I VU M VU U I I M I
M M U M M I I VU U M I I
I I VU U U U U M VU M U M

U I VU U U M U VU VU VU M M
M M U M U I U U M M VU I
U I VU VU U U VU U M AI I VU



A3
c =



VU I M I U I I M I I I I
I VU M I M I I I I I I I
I I VU I M I I M M I M I
I I I VU U I I I U I I I
I I AI I VU I AI M I I I I
I I M I U VU I I I I I I
I I I I I I VU I I I I I
I AI I I I I I VU I I I M
I AI I I I I I I VU I I M
I I M I I I I M I VU I U

U U U VU U U U I I I VU I
U U VU U U U U I I I I VU


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The weights of each DM are calculated using Equation (1). Based on the experience in handling
coastal erosion problems, we rate each DM as follows:

{DM1, DM2, DM3} = {I, M, I} = {〈0.8, 0.2, 0.15〉, 〈0.5, 0.4, 0.45〉, 〈0.8, 0.2, 0.15〉}

From Equation (1):

ωm =
1−

√{
(1− Tm)

2 + (Im)
2 + (Fm)

2
}

/3

∑
p
m=1

(
1−

√{
(1− Tm)

2 + (Im)
2 + (Fm)

2
}

/3
)

Then:

ω1 =
1−
√
{(1−0.8)2+(0.2)2+(0.15)2}/3(

1−
√
{(1−0.8)2+(0.2)2+(0.15)2}/3

)
+

(
1−
√
{(1−0.5)2+(0.4)2+(0.45)2}/3

)
+

(
1−
√
{(1−0.8)2+(0.2)2+(0.15)2}/3

)

Hence, we obtained the weights of each DM as:

{ω1,ω2, ω3} = {0.3742, 0.2516, 0.3742}

The aggregated neutrosophic direct-influence matrix AG
c can be obtained by aggregating the

individual neutrosophic direct-influence matrices A1
c , A2

c and A3
c using Equation (2). The aggregated

neutrosophic direct-influence matrix for factors AG
c is shown in Table 4. By applying Equation (4) and

Equation (5), the neutrosophic normalized direct-influence matrix, B is obtained (see Table 5). Table 6
shows the neutrosophic total-influence matrix calculated using Equations (6) to (9).
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Table 4. Aggregated initial direct-influence matrix AG
c for factors.

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12
c1 〈0.10, 0.80, 0.90〉 〈0.85, 0015, 0.13〉 〈0.65, 0.31, 0.30〉 〈0.65, 0.34, 0.29〉 〈0.39, 0.54, 0.63〉 〈0.87, 0.13, 0.12〉 〈0.62, 0.34, 0.33〉 〈0.42, 0.48, 0.54〉 〈0.58, 0.40, 0.39〉 〈0.79, 0.20, 0.19〉 〈0.81, 0.18, 0.17〉 〈0.79, 0.20, 0.19〉
c2 〈0.61, 0.36, 0.35〉 〈0.10, 0.80, 0.90〉 〈0.87, 0.13, 0.12〉 〈0.49, 0.48, 0.46〉 〈0.59, 0.37, 0.36〉 〈0.85, 0.15, 0.13〉 〈0.71, 0.28, 0.24〉 〈0.55, 0.43, 0.42〉 〈0.79, 0.20, 0.19〉 〈0.81, 0.18, 0.17〉 〈0.85, 0.15, 0.13〉 〈0.81, 0.18, 0.17〉
c3 〈0.80, 0.20, 0.15〉 〈0.80, 0.20, 0.15〉 〈0.10, 0.80, 0.90〉 〈0.65, 0.34, 0.29〉 〈0.59, 0.37, 0.36〉 〈0.83, 0.17, 0.14〉 〈0.73, 0.26, 0.22〉 〈0.59, 0.37, 0.36〉 〈0.78, 0.20, 0.19〉 〈0.85, 0.15, 0.13〉 〈0.72, 0.26, 0.23〉 〈0.85, 0.15, 0.13〉
c4 〈0.69, 0.30, 0.27〉 〈0.75, 0.24, 0.20〉 〈0.43, 0.30, 0.27〉 〈0.10, 0.80, 0.90〉 〈0.41, 0.52, 0.59〉 〈0.87, 0.13, 0.12〉 〈0.80, 0.20, 0.15〉 〈0.73, 0.26, 0.22〉 〈0.76, 0.23, 0.23〉 〈0.80, 0.20, 0.15〉 〈0.81, 0.18, 0.17〉 〈0.80, 0.20, 0.15〉
c5 〈0.83, 0.17, 0.14〉 〈0.79, 0.20, 0.19〉 〈0.88, 0.12, 0.11〉 〈0.85, 0.15, 0.13〉 〈0.10, 0.80, 0.90〉 〈0.80, 0.20, 0.15〉 〈0.90, 0.10, 0.10〉 〈0.62, 0.34, 0.33〉 〈0.85, 0.15, 0.13〉 〈0.79, 0.20, 0.19〉 〈0.81, 0.18, 0.17〉 〈0.81, 0.18, 0.17〉
c6 〈0.72, 0.26, 0.23〉 〈0.81, 0.18, 0.17〉 〈0.47, 0.44, 0.50〉 〈0.65, 0.31, 0.30〉 〈0.55, 0.43, 0.42〉 〈0.10, 0.80, 0.90〉 〈0.61, 0.36, 0.35〉 〈0.77, 0.22, 0.20〉 〈0.72, 0.26, 0.23〉 〈0.85, 0.15, 0.13〉 〈0.80, 0.20, 0.15〉 〈0.75, 0.24, 0.20〉
c7 〈0.81, 0.28, 0.30〉 〈0.73, 0.26, 0.22〉 〈0.81, 0.18, 0.17〉 〈0.72, 0.26, 0.23〉 〈0.77, 0.22, 0.20〉 〈0.81, 0.18, 0.17〉 〈0.10, 0.80, 0.90〉 〈0.73, 0.26, 0.22〉 〈0.85, 0.15, 0.13〉 〈0.85, 0.15, 0.13〉 〈0.81, 0.18, 0.17〉 〈0.85, 0.15, 0.13〉
c8 〈0.61, 0.36, 0.35〉 〈0.85, 0.14, 0.15〉 〈0.73, 0.26, 0.22〉 〈0.61, 0.36, 0.35〉 〈0.75, 0.24, 0.20〉 〈0.85, 0.15, 0.13〉 〈0.72, 0.26, 0.23〉 〈0.10, 0.80, 0.90〉 〈0.79, 0.20, 0.19〉 〈0.75, 0.24, 0.20〉 〈0.85, 0.15, 0.13〉 〈0.78, 0.20, 0.19〉
c9 〈0.85, 0.15, 0.13〉 〈0.88, 0.12, 0.11〉 〈0.77, 0.22, 0.20〉 〈0.58, 0.40, 0.39〉 〈0.62, 0.34, 0.33〉 〈0.79, 0.20, 0.19〉 〈0.79, 0.20, 0.19〉 〈0.75, 0.24, 0.20〉 〈0.10, 0.80, 0.90〉 〈0.81, 0.18, 0.17〉 〈0.79, 0.20, 0.19〉 〈0.73, 0.24, 0.26〉
c10 〈0.79, 0.20, 0.19〉 〈0.85, 0.15, 0.13〉 〈0.42, 0.48, 0.54〉 〈0.62, 0.34, 0.33〉 〈0.62, 0.34, 0.33〉 〈0.81, 0.18, 0.17〉 〈0.79, 0.20, 0.19〉 〈0.42, 0.48, 0.54〉 〈0.71, 0.28, 0.24〉 〈0.10, 0.80, 0.90〉 〈0.81, 0.18, 0.17〉 〈0.45, 0.47, 0.53〉
c11 〈0.61, 0.36, 0.35〉 〈0.70, 0.28, 0.30〉 〈0.41, 0.52, 0.59〉 〈0.31, 0.60, 0.69〉 〈0.41, 0.52, 0.59〉 〈0.56, 0.39, 0.40〉 〈0.68, 0.31, 0.34〉 〈0.73, 0.26, 0.22〉 〈0.81, 0.18, 0.17〉 〈0.81, 0.18, 0.17〉 〈0.10, 0.80, 0.90〉 〈0.85, 0.15, 0.13〉
c12 〈0.41, 0.52, 0.59〉 〈0.76, 0.23, 0.23〉 〈0.20, 0.72, 0.82〉 〈0.20, 0.72, 0.82〉 〈0.35, 0.60, 0.70〉 〈0.58, 0.40, 0.39〉 〈0.55, 0.43, 0.42〉 〈0.79, 0.20, 0.19〉 〈0.81, 0.18, 0.17〉 〈0.87, 0.13, 0.12〉 〈0.85, 0.15, 0.13〉 〈0.10, 0.80, 0.90〉

Table 5. The normalized direct-influence matrix Bc for factors.

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12
c1 〈0.01, 0.09, 0.1〉 〈0.09, 0.02, 0.01〉 〈0.07, 0.03, 0.03〉 〈0.07, 0.04, 0.03〉 〈0.04, 0.06, 0.07〉 〈0.10, 0.01, 0.01〉 〈0.07, 0.04, 0.04〉 〈0.05, 0.05, 0.05〉 〈0.06, 0.04, 0.04〉 〈0.09, 0.02, 0.02〉 〈0.09, 0.02, 0.02〉 〈0.09, 0.02, 0.02〉
c2 〈0.09, 0.02, 0.02〉 〈0.01, 0.09, 0.1〉 〈0.04, 0.06, 0.07〉 〈0.05, 0.05, 0.05〉 〈0.06, 0.04, 0.04〉 〈0.09, 0.02, 0.01〉 〈0.08, 0.03, 0.03〉 〈0.06, 0.05, 0.05〉 〈0.09, 0.02, 0.02〉 〈0.09, 0.02, 0.02〉 〈0.09, 0.02, 0.01〉 〈0.09, 0.02, 0.02〉
c3 〈0.09, 0.04, 0.03〉 〈0.09, 0.02, 0.02〉 〈0.01, 0.09, 0.1〉 〈0.07, 0.04, 0.03〉 〈0.06, 0.04, 0.04〉 〈0.09, 0.02, 0.01〉 〈0.08, 0.03, 0.02〉 〈0.06, 0.04, 0.04〉 〈0.09, 0.02, 0.02〉 〈0.09, 0.02, 0.01〉 〈0.08, 0.03, 0.02〉 〈0.09, 0.02, 0.01〉
c4 〈0.08, 0.03, 0.03〉 〈0.08, 0.03, 0.02〉 〈0.10, 0.01, 0.01〉 〈0.01, 0.09, 0.1〉 〈0.05, 0.06, 0.07〉 〈0.10, 0.01, 0.01〉 〈0.09, 0.02, 0.02〉 〈0.08, 0.03, 0.02〉 〈0.08, 0.03, 0.03〉 〈0.09, 0.02, 0.02〉 〈0.09, 0.02, 0.02〉 〈0.09, 0.02, 0.02〉
c5 〈0.09, 0.02, 0.01〉 〈0.09, 0.02, 0.02〉 〈0.10, 0.01, 0.01〉 〈0.09, 0.02, 0.01〉 〈0.01, 0.09, 0.01〉 〈0.09, 0.02, 0.02〉 〈0.10, 0.01, 0.01〉 〈0.07, 0.04, 0.04〉 〈0.09, 0.02, 0.01〉 〈0.09, 0.02, 0.02〉 〈0.09, 0.02, 0.02〉 〈0.09, 0.02, 0.02〉
c6 〈0.08, 0.03, 0.02〉 〈0.09, 0.02, 0.02〉 〈0.05, 0.05, 0.06〉 〈0.07, 0.03, 0.03〉 〈0.06, 0.05, 0.05〉 〈0.01, 0.09, 0.1〉 〈0.07, 0.04, 0.04〉 〈0.09, 0.02, 0.02〉 〈0.08, 0.05, 0.04〉 〈0.09, 0.02, 0.01〉 〈0.09, 0.02, 0.02〉 〈0.08, 0.03, 0.02〉
c7 〈0.09, 0.03, 0.03〉 〈0.08, 0.03, 0.02〉 〈0.09, 0.02, 0.02〉 〈0.08, 0.03, 0.02〉 〈0.09, 0.02, 0.02〉 〈0.09, 0.02, 0.02〉 〈0.01, 0.09, 0.1〉 〈0.08, 0.03, 0.02〉 〈0.09, 0.02, 0.01〉 〈0.09, 0.02, 0.01〉 〈0.09, 0.02, 0.02〉 〈0.01, 0.09, 0.1〉
c8 〈0.07, 0.04, 0.04〉 〈0.09, 0.02, 0.02〉 〈0.08, 0.03, 0.02〉 〈0.07, 0.04, 0.04〉 〈0.08, 0.03, 0.02〉 〈0.09, 0.02, 0.01〉 〈0.08, 0.03, 0.02〉 〈0.01, 0.09, 0.1〉 〈0.09, 0.02, 0.02〉 〈0.08, 0.03, 0.02〉 〈0.09, 0.02, 0.01〉 〈0.09, 0.02, 0.02〉
c9 〈0.09, 0.02, 0.01〉 〈0.10, 0.01, 0.01〉 〈0.09, 0.02, 0.02〉 〈0.06, 0.04, 0.04〉 〈0.07, 0.04, 0.04〉 〈0.09, 0.02, 0.02〉 〈0.09, 0.02, 0.02〉 〈0.08, 0.03, 0.02〉 〈0.01, 0.09, 0.1〉 〈0.09, 0.02, 0.02〉 〈0.09, 0.02, 0.02〉 〈0.08, 0.03, 0.03〉
c10 〈0.09, 0.02, 0.02〉 〈0.09, 0.02, 0.01〉 〈0.05, 0.05, 0.06〉 〈0.07, 0.04, 0.04〉 〈0.07, 0.04, 0.04〉 〈0.09, 0.02, 0.02〉 〈0.09, 0.02, 0.02〉 〈0.05, 0.05, 0.06〉 〈0.08, 0.03, 0.03〉 〈0.01, 0.09, 0.1〉 〈0.09, 0.02, 0.02〉 〈0.05, 0.05, 0.06〉
c11 〈0.07, 0.04, 0.04〉 〈0.08, 0.03, 0.03〉 〈0.05, 0.06, 0.07〉 〈0.03, 0.07, 0.08〉 〈0.05, 0.06, 0.07〉 〈0.06, 0.04, 0.04〉 〈0.07, 0.03, 0.04〉 〈0.08, 0.03, 0.02〉 〈0.09, 0.02, 0.02〉 〈0.09, 0.02, 0.02〉 〈0.01, 0.09, 0.1〉 〈0.01, 0.09, 0.1〉
c12 〈0.05, 0.06, 0.07〉 〈0.08, 0.03, 0.03〉 〈0.02, 0.08, 0.09〉 〈0.02, 0.08, 0.09〉 〈0.04, 0.07, 0.08〉 〈0.06, 0.04, 0.04〉 〈0.06, 0.05, 0.05〉 〈0.09, 0.02, 0.02〉 〈0.09, 0.02, 0.02〉 〈0.10, 0.01, 0.01〉 〈0.09, 0.02, 0.01〉 〈0.01, 0.09, 0.1〉
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Table 6. The total direct-influence matrix Sc for factors.

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12
c1 〈0.46, 0.12, 0.13〉 〈0.59, 0.04, 0.03〉 〈0.44, 0.06, 0.06〉 〈0.43, 0.07, 0.07〉 〈0.40, 0.1, 0.11〉 〈0.58, 0.03, 0.03〉 〈0.52, 0.06, 0.06〉 〈0.46, 0.08, 0.09〉 〈0.55, 0.07, 0.07〉 〈0.6, 0.04, 0.04〉 〈0.6, 0.04, 0.04〉 〈0.57, 0.04, 0.04〉
c2 〈0.51, 0.07, 0.07〉 〈0.51, 0.11, 0.12〉 〈0.41, 0.09, 0.11〉 〈0.42, 0.09, 0.09〉 〈0.42, 0.08, 0.08〉 〈0.58, 0.04, 0.03〉 〈0.53, 0.06, 0.05〉 〈0.48, 0.08, 0.08〉 〈0.57, 0.04, 0.04〉 〈0.6, 0.04, 0.04〉 〈0.6, 0.04, 0.03〉 〈0.57, 0.04, 0.04〉
c3 〈0.58, 0.04, 0.04〉 〈0.64, 0.04, 0.03〉 〈0.42, 0.12, 0.13〉 〈0.47, 0.07, 0.06〉 〈0.46, 0.07, 0.07〉 〈0.63, 0.03, 0.03〉 〈0.58, 0.05, 0.04〉 〈0.52, 0.07, 0.06〉 〈0.62, 0.04, 0.04〉 〈0.66, 0.03, 0.03〉 〈0.64, 0.05, 0.04〉 〈0.62, 0.03, 0.03〉
c4 〈0.57, 0.06, 0.05〉 〈0.64, 0.04, 0.04〉 〈0.51, 0.04, 0.03〉 〈0.42, 0.12, 0.13〉 〈0.45, 0.09, 0.1〉 〈0.64, 0.03, 0.03〉 〈0.59, 0.04, 0.03〉 〈0.54, 0.05, 0.05〉 〈0.62, 0.04, 0.04〉 〈0.66, 0.04, 0.03〉 〈0.66, 0.04, 0.03〉 〈0.63, 0.04, 0.03〉
c5 〈0.62, 0.04, 0.03〉 〈0.69, 0.04, 0.03〉 〈0.54, 0.03, 0.03〉 〈0.53, 0.04, 0.03〉 〈0.44, 0.12, 0.13〉 〈0.68, 0.04, .03〉 〈0.64, 0.03, 0.02〉 〈0.57, 0.06, 0.06〉 〈0.67, 0.03, 0.03〉 〈0.7, 0.04, 0.03〉 〈0.7, 0.03, 0.03〉 〈0.67, 0.03, 0.03〉
c6 〈0.54, 0.05, 0.05〉 〈0.61, 0.04, 0.04〉 〈0.44, 0.08, 0.09〉 〈0.45, 0.07, 0.06〉 〈0.43, 0.08, 0.08〉 〈0.52, 0.11, 0.12〉 〈0.54, 0.06, 0.06〉 〈0.51, 0.05, 0.05〉 〈0.58, 0.05, 0.04〉 〈0.62, 0.03, 0.03〉 〈0.62, 0.04, 0.03〉 〈0.58, 0.05, 0.04〉
c7 〈0.61, 0.05, 0.05〉 〈0.67, 0.05, 0.04〉 〈0.53, 0.04, 0.04〉 〈0.51, 0.05, 0.05〉 〈0.5, 0.05, 0.05〉 〈0.66, 0.03, 0.03〉 〈0.55, 0.11, 0.12〉 〈0.57, 0.05, 0.05〉 〈0.66, 0.03, 0.03〉 〈0.69, 0.03, 0.03〉 〈0.69, 0.03, 0.03〉 〈0.66, 0.03, 0.03〉
c8 〈0.57, 0.06, 0.06〉 〈0.65, 0.03, 0.03〉 〈0.5, 0.05, 0.05〉 〈0.47, 0.07, 0.07〉 〈0.48, 0.06, 0.05〉 〈0.64, 0.03, 0.03〉 〈0.59, 0.05, 0.04〉 〈0.48, 0.12, 0.13〉 〈0.63, 0.04, 0.04〉 〈0.66, 0.04, 0.04〉 〈0.66, 0.03, 0.03〉 〈0.63, 0.04, 0.04〉
c9 〈0.59, 0.04, 0.03〉 〈0.66, 0.03, 0.03〉 〈0.5, 0.05, 0.05〉 〈0.48, 0.07, 0.07〉 〈0.47, 0.07, 0.07〉 〈0.64, 0.04, 0.04〉 〈0.6, 0.04, 0.04〉 〈0.55, 0.05, 0.04〉 〈0.56, 0.11, 0.12〉 〈0.67, 0.03, 0.03〉 〈0.66, 0.04, 0.03〉 〈0.62, 0.04, 0.05〉
c10 〈0.53, 0.05, 0.05〉 〈0.59, 0.04, 0.03〉 〈0.42, 0.09, 0.1〉 〈0.43, 0.07, 0.07〉 〈0.42, 0.08, 0.08〉 〈0.58, 0.04, 0.04〉 〈0.54, 0.05, 0.05〉 〈0.46, 0.09, 0.09〉 〈0.56, 0.05, 0.05〉 〈0.53, 0.11, 0.12〉 〈0.59, 0.04, 0.04〉 〈0.53, 0.08, 0.09〉
c11 〈0.48, 0.07, 0.07〉 〈0.55, 0.05, 0.06〉 〈0.39, 0.09, 0.11〉 〈0.38, 0.11, 0.12〉 〈0.38, 0.1, 0.12〉 〈0.52, 0.07, 0.07〉 〈0.5, 0.06, 0.07〉 〈0.47, 0.06, 0.06〉 〈0.54, 0.04, 0.04〉 〈0.57, 0.04, 0.04〉 〈0.49, 0.11, 0.13〉 〈0.54, 0.04, 0.03〉
c12 〈0.43, 0.09, 0.1〉 〈0.52, 0.05, 0.05〉 〈0.35, 0.12, 0.14〉 〈0.34, 0.13, 0.14〉 〈0.35, 0.12, 0.14〉 〈0.49, 0.07, 0.07〉 〈0.45, 0.08, 0.08〉 〈0.44, 0.06, 0.06〉 〈0.51, 0.05, 0.05〉 〈0.54, 0.04, 0.03〉 〈0.53, 0.04, 0.04〉 〈0.43, 0.12, 0.13〉
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The deneutrosophied total-influence matrix S can be obtained by Equation (3) and illustrated as
in Table 7 (for factors) and Table 8 (for dimensions). The ai and bi values in Table 9 are obtained from
summing the rows and columns of the neutrosophic total relation matrix, respectively. The NRM is
constructed by mapping deneutrosophied (ai + bi) and values, as indicated in Figures 2–5.

Table 7. The deneutrosophied total-influence matrix Sc for factors.

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12
c1 0.671 0.763 0.673 0.668 0.643 0.758 0.719 0.681 0.734 0.766 0.765 0.748
c2 0.713 0.705 0.652 0.657 0.660 0.757 0.726 0.691 0.750 0.768 0.768 0.750
c3 0.753 0.791 0.653 0.691 0.681 0.786 0.754 0.719 0.778 0.801 0.790 0.781
c4 0.749 0.791 0.715 0.650 0.670 0.792 0.763 0.732 0.780 0.802 0.800 0.782
c5 0.782 0.819 0.735 0.727 0.662 0.812 0.792 0.745 0.810 0.827 0.825 0.807
c6 0.731 0.772 0.669 0.677 0.664 0.709 0.728 0.716 0.755 0.781 0.776 0.756
c7 0.770 0.807 0.724 0.712 0.709 0.804 0.722 0.746 0.802 0.822 0.817 0.801
c8 0.744 0.799 0.706 0.692 0.696 0.791 0.758 0.682 0.783 0.799 0.803 0.781
c9 0.763 0.803 0.711 0.692 0.689 0.790 0.765 0.736 0.730 0.806 0.802 0.780
c10 0.725 0.762 0.657 0.666 0.660 0.753 0.730 0.680 0.742 0.710 0.763 0.722
c11 0.695 0.734 0.641 0.628 0.631 0.718 0.705 0.687 0.732 0.748 0.690 0.733
c12 0.663 0.719 0.609 0.604 0.611 0.700 0.678 0.676 0.713 0.732 0.729 0.657

Table 8. The deneutrosophied total influence matrix SD for dimensions.

D1 D2 D3

D1 0.30 0.36 0.35
D2 0.33 0.26 0.36
D3 0.37 0.38 0.29

The ai and bi values in Table 9 are obtained from summing the rows and columns of the
neutrosophic total relation matrix, respectively.

Table 9. The sum of causes and effects on dimensions and factors.

Dimensions/Factors ai bi ai+bi ai−bi

Natural factors (D1) 2.37 2.47 4.84 −0.10
Wave and current (c1) 8.59 8.76 17.35 −0.17

Sediment transport (c2) 8.60 9.27 17.86 −0.67
Storm surge (c3) 8.98 8.15 17.12 0.83
Tidal range (c4) 9.03 8.06 17.09 0.96

Global warming (c5) 9.34 7.98 17.32 1.37
Beach profile and stability (c6) 8.74 9.17 17.91 −0.44

Sea level rise (c7) 9.24 8.84 18.07 0.40
Man-made factors (D2) 2.52 2.38 4.89 0.14

Sand mining activities (c8) 9.03 8.49 17.53 0.54
Coastal development (c9) 9.07 9.11 18.18 −0.04

Socio-economic factors (D3) 2.51 2.55 5.06 −0.04
Coastal protection (c10) 8.57 9.36 17.93 −0.79
Budgetary revenue (c11) 8.34 9.33 17.67 −0.98

Coastal zone management (c12) 8.09 9.10 17.19 −1.01

The NRM is constructed by mapping deneutrosophied (ai + bi) and (ai − bi) values. Figure 2
shows the coordinates of the dimensions where D1 is influenced by D2 and D3. The threshold value is
set at 0.33, which will produce the NRM among the dimensions, as shown in Figure 2.
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The threshold value for factors is set at 0.730. Thus, the coordinates and causal direction of the
natural factors are presented after eliminating the minor effects and causes that were lower than the
threshold value. Figure 3 shows the NRM of factors within dimension D1.
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Figure 4. The NRM within factors of man-made factors (D2) of coastal erosion.
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Under the socio-economic dimension, the factors are mapped in the negative quadrant of the
(ai − bi) axis. The coordinates of the three factors are shown in Figure 5.
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Figure 5. The NRM within factors of socio-economic factors (D3) of coastal erosion.

The network relationship mapping obtained via the proposed method can provide a better
understanding of the entire structure. Then, the neutrosophic total-influence matrix, S, is normalized
using Equation (13), and it is shown in Table 10.

Table 10. The new matrix Sα
c .

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12
c1 0.137 0.156 0.138 0.137 0.131 0.155 0.147 0.481 0.519 0.336 0.336 0.328
c2 0.146 0.145 0.134 0.135 0.135 0.155 0.149 0.479 0.521 0.336 0.336 0.328
c3 0.147 0.155 0.128 0.135 0.133 0.154 0.148 0.480 0.520 0.338 0.333 0.329
c4 0.146 0.154 0.139 0.127 0.131 0.154 0.149 0.484 0.516 0.336 0.335 0.328
c5 0.147 0.154 0.138 0.136 0.124 0.152 0.149 0.479 0.521 0.336 0.336 0.328
c6 0.148 0.156 0.135 0.137 0.134 0.143 0.147 0.487 0.513 0.338 0.335 0.327
c7 0.147 0.154 0.138 0.136 0.135 0.153 0.137 0.482 0.518 0.337 0.335 0.328
c8 0.143 0.154 0.136 0.133 0.134 0.153 0.146 0.466 0.534 0.335 0.337 0.328
c9 0.146 0.154 0.136 0.133 0.132 0.152 0.147 0.502 0.498 0.337 0.336 0.327
c10 0.146 0.154 0.133 0.134 0.133 0.152 0.147 0.478 0.522 0.323 0.348 0.329
c11 0.146 0.154 0.135 0.132 0.133 0.151 0.148 0.484 0.516 0.344 0.318 0.338
c12 0.145 0.157 0.133 0.132 0.133 0.153 0.148 0.486 0.514 0.346 0.344 0.310

The next step is to construct the transpose matrix. By transposing the normalized neutrosophic
total-influence matrix Sα, the unweighted supermatrix ψ is obtained. Table 11 shows the
unweighted supermatrix.

Table 11. The unweighted supermatrix, ψ.

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12
c1 0.137 0.146 0.147 0.146 0.147 0.148 0.147 0.143 0.146 0.146 0.146 0.145
c2 0.156 0.145 0.155 0.154 0.154 0.156 0.154 0.154 0.154 0.154 0.154 0.157
c3 0.138 0.134 0.128 0.139 0.138 0.135 0.138 0.136 0.136 0.133 0.135 0.133
c4 0.137 0.135 0.135 0.127 0.136 0.137 0.136 0.133 0.133 0.134 0.132 0.132
c5 0.131 0.135 0.133 0.131 0.124 0.134 0.135 0.134 0.132 0.133 0.133 0.133
c6 0.155 0.155 0.154 0.154 0.152 0.143 0.153 0.153 0.152 0.152 0.151 0.153
c7 0.147 0.149 0.148 0.149 0.149 0.147 0.137 0.146 0.147 0.147 0.148 0.148
c8 0.481 0.479 0.480 0.484 0.479 0.487 0.482 0.466 0.502 0.478 0.484 0.486
c9 0.519 0.521 0.520 0.516 0.521 0.513 0.518 0.534 0.498 0.522 0.516 0.514
c10 0.336 0.336 0.338 0.336 0.336 0.338 0.337 0.335 0.337 0.323 0.344 0.346
c11 0.336 0.336 0.333 0.335 0.336 0.335 0.335 0.337 0.336 0.348 0.318 0.344
c12 0.328 0.328 0.329 0.328 0.328 0.327 0.328 0.328 0.327 0.329 0.338 0.310
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Table 12 shows the unweighted matrix of DMs.

Table 12. The new matrix Sα
D.

D1 D2 D3

D1 0.29 0.36 0.35
D2 0.35 0.27 0.38
D3 0.36 0.36 0.28

By multiplying the elements in the unweighted supermatrix ψ of factors (Table 11) and the new
matrix of dimensions, Sα

D (Table 12), the weighted supermatrix, ψα in Table 13 is constructed.

Table 13. The weighted supermatrix ψα of dimensions.

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12
c1 0.041 0.044 0.044 0.044 0.044 0.044 0.044 0.052 0.053 0.051 0.051 0.051
c2 0.047 0.043 0.046 0.046 0.046 0.047 0.046 0.055 0.055 0.054 0.054 0.055
c3 0.041 0.040 0.038 0.042 0.041 0.041 0.041 0.049 0.049 0.046 0.047 0.046
c4 0.041 0.040 0.041 0.038 0.041 0.041 0.041 0.048 0.048 0.047 0.046 0.046
c5 0.039 0.041 0.040 0.039 0.037 0.040 0.041 0.048 0.048 0.047 0.046 0.047
c6 0.046 0.047 0.046 0.046 0.046 0.043 0.046 0.055 0.055 0.053 0.053 0.053
c7 0.044 0.045 0.044 0.045 0.045 0.044 0.041 0.053 0.053 0.052 0.052 0.052
c8 0.159 0.158 0.158 0.160 0.158 0.161 0.159 0.121 0.131 0.172 0.174 0.175
c9 0.171 0.172 0.172 0.170 0.172 0.169 0.171 0.139 0.129 0.188 0.186 0.185
c10 0.124 0.124 0.125 0.124 0.124 0.125 0.125 0.127 0.128 0.094 0.100 0.100
c11 0.124 0.124 0.123 0.124 0.124 0.124 0.124 0.128 0.128 0.101 0.092 0.100
c12 0.121 0.121 0.122 0.121 0.121 0.121 0.121 0.125 0.124 0.095 0.098 0.090

Table 14 shows the limited supermatrix by limiting the power of the weighted supermatrix.

Table 14. The limiting supermatrix.

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12
c1 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049
c2 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052
c3 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045
c4 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045
c5 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045
c6 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051
c7 0.050 0.049 0.049 0.049 0.049 0.050 0.050 0.050 0.050 0.050 0.049 0.050
c8 0.153 0.153 0.153 0.153 0.153 0.153 0.153 0.153 0.153 0.153 0.153 0.153
c9 0.164 0.164 0.164 0.164 0.164 0.164 0.164 0.164 0.164 0.164 0.164 0.164
c10 0.116 0.116 0.116 0.116 0.116 0.116 0.116 0.116 0.116 0.116 0.116 0.116
c11 0.116 0.116 0.116 0.116 0.116 0.116 0.116 0.116 0.116 0.116 0.116 0.116
c12 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113

Finally, the rows in the limited supermatrix contribute the weight of the factor of coastal erosion.
The overall local weights and global weights of factors and dimensions are illustrated in Table 15.

The results show that coastal development (C9) is the most important factor, with a weight of
0.164, followed by sand mining activities (C8) at 0.153 and coastal protection (C10) and budgetary
revenue (C11), which are both at 0.116. Relative to other factors, the DM suggests that the storm surge
(C3), tidal range (C4), and global warming (C5) are the least important factors with the global weights
of 0.045. With respect to each dimension, the DMs indicate that sediment transport (C2) is the most
important factor in the dimension of natural factors (D1), while coastal development (C9) is the most
important of the man-made factors (D2). It also concludes that coastal protection (C10) and budgetary
revenue (C11) are the most important factors under socio-economic factors (D3).



Symmetry 2019, 11, 328 21 of 26

Table 15. The weights of dimensions and factors of coastal erosion.

Dimensions/Factors Local Weights Global Weights

Natural factors 0.336
Wave and current (c1) 0.145 0.049

Sediment transport (c2) 0.153 0.052
Storm surge (c3) 0.136 0.045
Tidal range (c4) 0.135 0.045

Global warming (c5) 0.132 0.045
Beach profile and stability (c6) 0.152 0.051

Sea level rise (c7) 0.146 0.05
Man-made factors 0.317

Sand mining activities (c8) 0.484 0.153
Coastal development (c9) 0.516 0.164

Socio-economic factors 0.347
Coastal protection (c10) 0.338 0.116
Budgetary revenue (c11) 0.337 0.116

Coastal zone management (c12) 0.326 0.113

4.5. Discussion and Implications

Based on the results, we know that the degrees of influence of coastal erosion factors are different
from each other. The traditional average method, which assumes that the weights of clusters are equal,
is thus irrational. Therefore, the normalized total-influence matrix Sc of DEMATEL is incorporated
into the ANP method, which is able to consider the influential weight of each cluster. The findings
show that the coastal development with the weightage of 0.164 is the most important factor for coastal
erosion. Consequently, this study clearly shows the influence of the man-made factors on coastal
erosion. Man-made factors such as coastal development are one of the factors that influenced the
coastal environment and triggered the destruction of the natural dynamic ecosystem and coastline
changes. Human influence on coastal environment and erosion can be connected to the demands and
effects of coastal development. The development along coastal areas includes the engineering works
such as land reclamation for urban expansion and airport extension, the dredging of navigational
channels, and the construction of ports, harbors, groynes, breakwaters, and jetties. These developments
can cause the interruption of long-shore sediment supply, which can cause either coastal erosion or
accretion. Therefore, the government or stakeholders should pay more attention to the development
projects near the coastal zone areas.

In addition, the problems of coastal erosion can be improved based on the NRM in Figures 2–5,
which were obtained via the DEMATEL method to comprehensively understand the interrelationships
between dimensions and factors. Through the NRM, (ai + bi) indicates the degree of influences given
and received, and it shows the importance index that each dimension and factor contributed to the
problem. On the other hand, (ai − bi) categorizes the factors into net causer and net receiver groups.
If the (ai − bi) value is positive, it indicates that the particular factor is influenced by the other factors,
and if (ai − bi) is negative, then it means that the factor is being influenced by other factors. Considering
the (ai + bi) and (ai − bi) values in Figure 2, it seems that the man-made factor should first be improved,
because it influences the other dimensions the most. That is, if stakeholders plan the man-made factor
well, it will improve the other two dimensions. They also can begin on the coastal development
factor and sand-mining activities to improve the man-made factors dimension. As seen in Figure 2,
it also determines that the natural factors dimension is being influenced the most, followed by the
socio-economic factors dimension.

Collectively, this study of combining neutrosophic DEMATEL and ANP methods provides
a comprehensive yet simple decision-making model, which can help solve complicated decision
problems. This study outlines a critical role for finding the importance of each dimension and provides
important insights on how to improve the coastal erosion problems.
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5. Comparative Analysis

The comparative analysis is also made to compare the degree of importance of criteria obtained
using the proposed method with the DEMATEL, fuzzy DEMATEL, and neutrosophic DEMATEL
methods. Table 16 shows a comparative analysis of the proposed NS-DANP method with the
DEMATEL, fuzzy DEMATEL, and neutrosophic DEMATEL methods, and the respective type of
number used.

Table 16. The results of coastal erosion study using different methods.

Evaluation Method Degree of Importance Type of Number Used

DEMATEL c9 > c10 > c7 > c2 > c6 > c11 > c8 > c1 > c3 > c12 > c5 > c4 Real number
Fuzzy DEMATEL c9 > c7 > c10 > c2 > c6 > c11 > c8 > c1 > c3 > c5 > c12 > c4 Triangular fuzzy number

Neutrosophic DEMATEL c9 > c7 > c10 > c6 > c2 > c11 > c8 > c1 > c5 > c12 > c3 > c4 Single Valued Neutrosophic Number
NS-DANP c9 > c7 > c10 > c6 > c2 > c11 > c8 > c1 > c5 > c12 > c3 > c4 Single Valued Neutrosophic Number

Based on the Table 16, the degree of importance of factors obtained using the DEMATEL method,
fuzzy DEMATEL method, neutrosophic DEMATEL method, and our proposed NS-DANP method
are almost consistent. It also can be seen that the results of the neutrosophic DEMATEL method
and our proposed NS-DANP method are exactly the same. However, the DEMATEL method only
produces the end result of the degree of importance, while our proposed integrated ANP method with
DEMATEL can give us the weights of every influential factor. In addition to that, ANP can consider
the interaction and dependencies that exist among factors and dimensions. The introduction of the
SVNWA aggregation operator in the process of combining all the DMs’ judgments can be considered
better than just the normal averaging operator. Another distinct feature of the proposed method is
the application of SVNSs into the proposed method, which makes it superior to the real number and
triangular fuzzy numbers. The SVNS has an edge in dealing with a problem that is characterized by
not only uncertainty but also truth, indeterminacy, and falsity information.

6. Conclusions

In this paper, an integrated ANP and DEMATEL method under the neutrosophic environment
has been successfully developed. The neutrosophic DEMATEL-based ANP (NS-DANP) method
offers two main contributions. Firstly, the single-valued neutrosophic numbers (SVNNs) are used
instead of crisps or triangular fuzzy numbers (TFNs) to cater to the indeterminacy elements in the
decision-making problem. The linguistic evaluation scale from Biswas et al. [65] was employed
to obtain a comprehensive judgment. Secondly, we used the single-valued neutrosophic weighted
averaging (SVNWA) aggregation operator proposed by Ye [66] to aggregate all the DMs’ judgments.
This aggregation operator is simple but powerful enough to aggregate the SVNSs without losing
the information.

A case study of the coastal erosion along Peninsular Malaysia coastline areas with 12 factors was
implemented using the proposed NS-DANP method to get the most important factor. The results
reveal that coastal development is the most important factor, followed by sand mining activities,
coastal protection, and budgetary revenue. The stakeholders should pay extra attention to these three
factors to minimize the coastal erosion events. The proposed method also successfully classified the
factors of coastal erosion into two groups. The factors that caused the coastal erosion problem are
sea level rise, tidal range, storm surge, global warming, and sand-mining activities. The other group
of factors is known as the effects group, which includes sediment transport, waves and currents,
coastal development, beach profile and stability, coastal protection, budgetary revenue, and coastal
zone management.

A comparative analysis on the ranking of coastal erosion factors between the proposed NS-DANP
method and the other existing methods was done. The results show that the proposed NS-DANP
method is consistent with the neutrosophic DEMATEL method and almost consistent with the other
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two methods. Thus, we can conclude that the proposed NS-DANP is comparable with the other
methods. Overall, the proposed NS-DANP method highlights the criteria weight and development of
the causal diagram by applying single-valued neutrosophic numbers and the concept of the SVNWA
aggregation operator. Besides that, the flaws in computing the multiplicative inverse of fuzzy matrices
can be avoided, as SVNNs were used. Nonetheless, this study has some limitations. The relationships
between the ideal number of DMs and reliability of the output have been a big question mark in
the decision-making field. However, there are several mathematical methods that could be used
in validating the reliability of the results. One of them is the sensitivity analysis, which can be
incorporated in the future. The analysis could be used to check the sensitivity of the findings in the
NRM due to a variety of uncertainty sources in linguistic evaluation.
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23. Adalı, E.A.; Işık, A.T. Integration of DEMATEL, ANP and DEA methods for third party logistics providers’
selection. Manag. Sci. Lett. 2016, 6, 325–340. [CrossRef]

24. Bongo, M.F.; Alimpangog, K.M.S.; Loar, J.F. An application of DEMATEL-ANP and PROMETHEE II approach
for air traffic controllers’ workload stress problem: A case of Mactan Civil Aviation Authority of the
Philippines. J. Air Transp. Manag. 2018, 68, 198–213. [CrossRef]
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