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Abstract

In this paper, we investigate the concepts of the weighted average operator
(AW ) and weighted geometric operator (GW ) on neutrosophic cubic sets (NCSs)
to aggregate the neutrosophic cubic information. Moreover, on the basis of AW
& GW and certain functions, including score, certainty and accuracy, we develop
our algorithm to multiple-criteria decision making in NCSs, in which the assess-
ment standards of another possibility on the characteristics yield the technique of
neutrosophic cubic numbers (NCNs) to choice greatest necessary ones. Finally, we
provide a mathematical example of the technique to determine the application and
usefulness of the established technique.

Keywords: Neutrosophic cubic set, Average operator, Geometric operator,
Accuracy functions, Multi-criteria decision making.

1. Introduction

The whole world is characterized with complicated phenomenon, such as, pre-
cariousness is unavoidably implicated in difficulties which begin in multitudinous
scopes of our life and all the techniques did not succeed to manipulate the prob-
lems of this type. To deal with ambiguous or faulty, data is always the biggest task
for a long period. Various models were exhibited with the aim of suitably unite
ambiguity into system denomination. In 1965, Zadeh [23] familiarized the concept
of a fuzzy set. Zadeh reestablished stipulated characteristic purpose of classical
crisp sets whose value always takes place in {0, 1} by membership function whose
values always belongs to the closed interval [0,1]. Conceptually, the theory of a set
called a fuzzy set is a very potent procedure to treat with another way, inspection
of faulty information connected to elusiveness and for the multifarious system, it
is a modeling tool that can be restraint by the human being but very obstinate
to outline precisely. Also, it diminishes the probabilities of modeling failures. Up
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until 1960’s precariousness was deliberate solitarily in terms of prospect theory but,
Zadeh exposed the relationship between the fuzzy set (FS) theory and probability
which has a great approach to treating with different doubts and uncertainties.
This theory not only expresses indefinite information into the model but it benefits
us in resolving difficult problems and making a decision. In fact, FS-methods are
appropriate when it is required to model human being acquaintance or assessmen-
t. Furthermore, fuzzy logic is the branch of mathematics with the help of which
computers model the actual world in the similar means as that of the public do.

To generalize the basic concepts of algebras, various authors have applied the
fuzzy set theory. Mortenson et al. [10] have determined the outstanding investi-
gation of fuzzy semigroups, they discovered the fuzzy semigroups theory alongside
with some significant applications of fuzzy semigroups. The fuzzy methodology is
functional to the problematic integrated project of the highest speed planar device
too. But here the point of our conversation is totally about falsehood or degree of
non-membership so this theory doesn’t work appropriately and we essential some-
what fresh to contract with it much accurately. Atanassov [2, 3] in 1986 familiarized
falsehood (f) and describe the intuitionistic fuzzy sets (IFSs). An IFS is actually
a generality of a fuzzy set which can be seen in the perception as an approach to
fuzzy set in the situation when we are not delivered with enough information. Us-
age of IFS is supportive in the outline of extra non-membership into set description
and is widely used as an instrument of concentrated exploration by researchers and
experts for centuries.

Several concepts, including probability, FS, IFS, rough set theory are regular-
ly being practiced as great beneficial implements to contract with multiform in
decisions and fuzziness bounded in multifaceted systems. But these theories do
not model undecided information sufficiently. So, because of the actuality of in-
determinacy in numerous world glitches, neutrosophy establishes its approach into
the current exploration. Neutrosophy is a generality of FS, where every model
characterized by three sorts of perceptions that are truthfulness, falsity, and inde-
terminacy. Neutrosophy is actually Latin word “neuter” - neutral, Greek “sophia”
- skill/wisdom). It is an outlet of philosophy, idea familiarized by Smarandache
studied the commencement, scope, and nature of neutralities, and their relations
with many different ideational ranges. Neutrosophy studies an intention, theory,
occasion, perception, or article. Neutrosophy is actually the origin of neutrosoph-
ic logic, neutrosophic sets (NSs), neutrosophic statistics and probability etc. For
more details, see [4, 6, 7, 8, 9, 12].

Motivating from the realisms of physical life phenomenon, i.e., different sports
(win/ tie/ defeat), votes like yes/ NA/ NO and making a decision. In 1999, Sm-
randache [14, 15] presented a fresh idea of NSs and neutrosophic logic, which is the
generality of an FS and IFS, NS is defined by (truth-membership, indeterminacy-
membership and falsity-membership degrees). This idea of NS creates the NS
theory by providing the illustration to indeterminate. This theory is well thought-
out as the whole demonstration of nearly each model of all actual difficulties. Thus,
vagueness is complicated in problematical questions we use FS whereas, commerce
indeterminacy, we must have a neutrosophic theory. This theory has numerous
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applications in countless fields such as control theory, records, medicinal judgment
difficulties and decision-making questions. Such types of models have been studied
by several authors (see [11, 18, 19, 20, 21, 22, 24]).

In this paper, we present the perception of neutrosophic cubic sets (NCSs)
which is a generality of the FSs, cubic sets and NSs. Also, we provide different
procedures and operators on the NCSs. These procedures and operations actually
generalize the procedures and operators of FSs, cubic sets, and NS previously
which have been proposed. Thus, in section 2, we suggest a conception of NCS and
its different procedures as well as the score, certainty and accuracy functions to
associate the NCSs. In the similar sector, also we progressed the weighted average
operator on NCSs (AW ) and weighted geometric operator on NCSs (GW ) operator
to aggregate the neutrosophic cubic information. In section 3, on the based of
(AW ) and (GW ) and the functions like score, certainty and accuracy, we progress
an approach to multiple criteria decision-making on NCSs, in which the assessment
values of substitutes on the aspects took the form of NCNs to choice the utmost
necessary ones and stretch the scientific examples to determine the application and
usefulness of the establish technique. We conclude this paper in the last section.

2. Basic concepts

In this section, we give almost different perceptions associated to NSs and cubic
sets.

Definition 2.1. [14] Let Z be a universe of discourse, then

Ψ = {〈v,ΛT (v),ΛI(v),ΛF (v)〉 : v ∈ Z}

is termed as an NS where ΛT ,ΛI ,ΛF : Z →]0−, 1+[ and the member-ship functions
ΛT ,ΛI ,ΛF are truth, indeterminacy and falsity membership degrees respectively and
on the sum of ΛT (v),ΛI(v),ΛF (v) there is no restraint so, 0 ≤ ΛT (v) + ΛI(v) +
ΛF (v) ≤ 3.

For application in physical technical and different engineering regions, Wang et
al. [16] gave the conception of a single valued NS as follows:

Definition 2.2. [16] A single-valued NS is define as:

ΨNS = {〈v,ΛT (v),ΛI(v),ΛF (v)〉 : v ∈ Z}

where, ΛF (v) : Z −→ [0, 1], ΛI (v) : Z −→ [0, 1] and ΛT (v) : Z −→ [0, 1] with
0 ≤ ΛF (v) + ΛI (v) + ΛT (v) ≤ 3 for all v ∈ Z. The intervals ΛF (v) ,ΛI (v)
and ΛT (v) denote truth, indeterminacy and falsity membership degrees of Z to A,
respectively.

Here, we explain some set-theoretic operations for two single valued NSs [16].
Consider two single valued NSs

ΨNS = {〈v,ΛT (v),ΛI(v),ΛF (v)〉 : v ∈ Z}
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and
Ψ

′

NS =
{〈

v,Λ
′

T (v),Λ
′

I(v),Λ
′

F (v)
〉

: v ∈ Z
}

then set-theoretic operations for these two single valued NSs are given as;

(i) ΨNS ⊂ Ψ
′
NS ⇔ ΛT (v) ≤ Λ

′
T (v),ΛI(v) ≤ Λ

′
I(v),ΛF (v) ≥ Λ

′
F (v).

(ii) ΨNS = Ψ
′
NS ⇔ ΛT (v) = Λ

′
T (v),ΛI(v) = Λ

′
I(v),ΛF (v) = Λ

′
F (v), for any v ∈ Z.

(iii) The complementation of ΨNS is represented by Ψc
NS and is defined as follows

Ψc
NS = {〈v,ΛF (v), 1− ΛI(v),ΛT (v)〉 /v ∈ Z}

(iv) The intersection

ΨNS

⋂
Ψ

′

NS =
{〈

v,min
{

ΛT (v),Λ
′

T (v)
}
, max

{
ΛI(v),Λ

′

I(v)
}
, max

{
ΛF (v),Λ

′

F (v)
}〉

: v ∈ Z
}

(v) The Union

ΨNS

⋃
Ψ

′

NS =
{〈

v,max
{

ΛT (v),Λ
′

T (v)
}
, min

{
ΛI(v),Λ

′

I(v)
}
, min

{
ΛF (v),Λ

′

F (v)
}〉

: v ∈ Z
}

Note: For convenience, a single-valued NN is denoted by Ψ = 〈ΛT ,ΛI ,ΛF 〉

Definition 2.3. [11] Let Ψ1 = 〈ΛT1,ΛI1,ΛF1〉 and Ψ2 = 〈ΛT2,ΛI2,ΛF2〉 be two single
valued NNs. Then, the operations for NNs are defined as below;

(i) λΨ1 =
〈
1− (1− ΛT1)

λ,Λλ
I1
,Λλ

F1

〉
(ii) Ψλ

1 =
〈
Λλ
T1
, 1− (1− ΛI1)

λ, 1− (1− ΛF1)
λ
〉

(iii) Ψ1 + Ψ2 = 〈ΛT1 + ΛT2 − ΛT1ΛT2 ,ΛI1ΛI2 ,ΛF1ΛF2〉
(iv) Ψ1Ψ2 = 〈ΛT1ΛT2 ,ΛI1 + ΛI2 − ΛI1ΛI2 ,ΛF1 + ΛF2 − ΛF1ΛF2〉 , where λ > 0.

Definition 2.4. [1, 11] Let Ψ1 = 〈ΛT1,ΛI1,ΛF1〉 be a singled-valued NN. Then, the
score, accuracy and certainty function of an NNs are define as follows:

(i) s(Ψ1) =
(ΛT1

+1−ΛI1
+1−ΛF1

)

3
;

(ii) a(Ψ1) = ΛT1 − ΛF1 ;
(iii) c(Ψ1) = ΛT1 .

Theorem 2.5. [12] Let Ψ1 = 〈ΛT1,ΛI1,ΛF1〉 and Ψ2 = 〈ΛT2,ΛI2,ΛF2〉 be two single-
valued NNs. If Ψ1 ⊆ Ψ2, then s(Ψ1) ≤ s(Ψ2).

Proof. By Definition 2.1, we have that

s(Ψ1) =
(ΛT1 + 1− ΛI1 + 1− ΛF1)

3
and s(Ψ2) =

(ΛT2 + 1− ΛI2 + 1− ΛF2)

3
.

Now

s(Ψ2)− s(Ψ1) =
(ΛT2 + 1− ΛI2 + 1− ΛF2)

3
− (ΛT1 + 1− ΛI1 + 1− ΛF1)

3

=
(ΛT2 − ΛT1) + (ΛI1 − ΛF1) + (ΛF1 − ΛF2)

3

since Ψ1 ⊆ Ψ2, ΛT1 ≤ ΛT2 , ΛI1 ≥ ΛI2 , ΛF1 ≥ ΛF2 and hence (ΛT1 − ΛT2) ≥
0, (ΛI1 − ΛI2) ≥ 0 and (ΛF1 − ΛF2) ≥ 0. Then it follows that s(Ψ2)− s(Ψ1) ≥ 0.�
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Definition 2.6. [11, 12] Let Ψ1 = 〈ΛT1,ΛI1,ΛF1〉 and Ψ2 = 〈ΛT2,ΛI2,ΛF2〉 be two
single valued NNs. Then, the comparison method is defined by:

(i) if s(Ψ1) > s(Ψ2), then Ψ1 > Ψ2,

(ii) if s(Ψ1) = s(Ψ2) and a(Ψ1) > a(Ψ2) then Ψ1 is inferior to ,Ψ2 denoted by
Ψ1 < Ψ2,

(iii) if s(Ψ1) = s(Ψ2), a(Ψ1) = a(Ψ2) and c(Ψ1) > c(Ψ2) then Ψ1 is superior to,
Ψ2 denoted by Ψ1 > Ψ2,

(iv) if s(Ψ1) = s(Ψ2), a(Ψ1) = a(Ψ2) and c(Ψ1) = c(Ψ2) then Ψ1 is equal to Ψ2 ,
that is, Ψ1 is indifferent to, Ψ2 denoted by Ψ1 = Ψ2.

The idea of NCSs was given by Jun et al. in 2015, for details, see [6].

Definition 2.7. [5] A non-empty set Z, then structure of the arrangement

{̈ =
{
v, ž(v),z(v)|v ∈ Z

}
is called a cubic set in Z in which ž is an interval-valued fuzzy (IV F ) set in Z
and z is a fuzzy set (FS) in Z.

A cubic set {̈ =
{
〈Z, ž(v),z(v)〉|v ∈ Z

}
is simply denoted by {̈ = 〈ž,z〉

and the collection of all cubic sets in Z is denoted by {̈n such that {̈1 = 〈ž1
,z1〉

ž
1

(v) = [0, 0] and z1 (v) = 1
(

respectivly ž
1

(v) = [1, 1] and z1 (v) = 0
)
∀ v ∈ Z

is denoted by
..

0
(

respectively
..

1
)
. A cubic set {̈2 = 〈ž2

,z2〉 in which ž
′

(v) =

[0, 0] and z2 (v) = 0
(

respectively ž
2
(v) = [1, 1] and z2 (v) = 1

)
for all v ∈ Z is

denoted by 0̂
(

respectively 1̂
)
.

3. Neutrosophic Cubic Sets(NCSs)

In this segment, we outline the NCSs and some operations on it for instance
score, certainty and accuracy functions to associate the NCSs. Also, we develop the
neutrosophic cubic weight and geometric operators to aggregate the neutrosophic
cubic information. Some of it is mentioned from [3, 4, 5, 19, 21].

Definition 3.1. [6] An NCS in Z is a pair A = (Ψ̃,Ψ) where

Ψ̃ :=
{〈

v, Φ̃T (v), Φ̃I(v), Φ̃F (v)
〉

: v ∈ Z
}

is an interval NS in Z where Φ̃T , Φ̃I , Φ̃F : Z → D[0, 1] and

Ψ := {〈v,ΛT (v),ΛI(v),ΛF (v)〉 : v ∈ Z}

is an NS in Z. where ΛT ,ΛI ,ΛF : Z → [0, 1].
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Φ̃T (v), Φ̃I(v), Φ̃F (v) are interval membership degrees and are described by the
respective truth, indeterminate and falsity memberships of an element v ∈ Z cor-
responding to an NCS A and ΛT (v),ΛI(v),ΛF (v) are singled valued memberships
described by the respective truth indeterminate and falsity memberships of an el-
ement v ∈ Z to some implicit counter-property equivalent to an NCS A.

Example 3.2. Let Z = {v1, v2, v3}. Then

A1 =


(v1 〈[0.3, 0.5], [0.2, 0.3], [0.1, 0.5]〉 , 〈(0.6, 0.4, 0.01)〉)
(v2, 〈[0.2, 0.3], [0.1, 0.2], [0.3, 0.7]〉 , 〈0.02, 0.003, 0.5〉)
(v3, 〈[0.3, 0.5], [0.2, 0.3], [0.1, 0.4]〉 , 〈0.1, 0.5, 0.06〉)


is a neutrosophic cubic subset of Z.

The NCS is the generalization of a cubic set which is shown as follows:

Theorem 3.3. [6] An NCS is the generalization of a cubic set.

Definition 3.4. [6] Let

A1 =
(
v,
〈

Φ̃T1(v), Φ̃I1(v), Φ̃F1(v)
〉
, 〈ΛT1(v),ΛI1(v),ΛF1(v)〉

)
and

A2 =
(
v,
〈

Φ̃T2(v), Φ̃I2(v), Φ̃F2(v)
〉
, 〈ΛT2(v),ΛI2(v),ΛF2(v)〉

)
be two NCSs. Then A1 ⊆ A2 if and only if

Φ̃T1(v) � Φ̃T2(v), Φ̃I1(v) � Φ̃I2(v), Φ̃F1(v) � Φ̃F2(v)

and
ΛT1(v) ≥ ΛT2(v),ΛI1(v) ≥ ΛI2(v),ΛF1(v) ≤ ΛF2(v)

for all v ∈ Z.

Example 3.5. Consider two neutrosophic cubic numbers (NCNs)

ã1 = {v, 〈[0.3, 0.5], [0.2, 0.3], [0.3, 0.5]〉 , 〈0.5, 0.4, 0.6〉} and

ã2 = {v, 〈[0.5, 0.7], [0.4, 0.5], [0.2, 0.4]〉 , 〈0.3, 0.2, 0.8〉}

such that ã1 < ã2,because

[0.3, 0.5] � [0.5, 0.7], [0.2, 0.3] � [0.4, 0.5], [0.2, 0.4] � [0.3, 0.5]

and 0.5 ≥ 0.3, 0.4 ≥ 0.2, 0.6 ≤ 0.8.

Definition 3.6. [6] Let

A1 =
(
v,
〈

Φ̃T1(v), Φ̃I1(v), Φ̃F1(v)
〉
, 〈ΛT1(v),ΛI1(v),ΛF1(v)〉

)
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and
A2 =

(
v,
〈

Φ̃T2(v), Φ̃I2(v), Φ̃F2(v)
〉
, 〈ΛT2(v),ΛI2(v),ΛF2(v)〉

)
be two NCSs. Then A1 = A2 if and only if

Φ̃T1(v) = Φ̃T2(v), Φ̃I1(v) = Φ̃I2(v), Φ̃F1(v) = Φ̃F2(v)

and
ΛT1(v) = ΛT2(v),ΛI1(v) = ΛI2(v),ΛF1(v) = ΛF2(v)

for all v ∈ Z.

Definition 3.7. [6] Let

A1 =
(
v,
〈

Φ̃T1(v), Φ̃I1(v), Φ̃F1(v)
〉
, 〈ΛT1(v),ΛI1(v),ΛF1(v)〉

)
and

A2 =
(
v,
〈

ΛT2(v), Φ̃I2(v), Φ̃F2(v)
〉
, 〈ΛT2(v),ΛI2(v),ΛF2(v)〉

)
be two NCSs. Then the union is defined as:

(A1

⋃
A2)(v) =

(
max(Φ̃T1(v), Φ̃T2(v)),

Φ̃I1
(v)+Φ̃I2

(v)

2
,min(Φ̃F1(v), Φ̃F2(v)),

min(ΛT1(v),ΛT2(v)),
ΛI1

(v)+ΛI2
(v)

2
,max(ΛF1(v),ΛF2(v))

)
for all v ∈ Z.

Example 3.8. Let Z = {v1, v2, v3}, then

A1 =


(v1, 〈[0.3, 0.5], [0.1, 0.3], [0.1, 0.6]〉 , 〈0.6, 0.4, 0.01〉)

(v2, 〈[0.2, 0.3], [0.2, 0.4], [0.2, 0.7]〉 , 〈0.02, 0.003, 0.5〉)
(v3, 〈[0.3, 0.5], [0.3, 0.4], [0.1, 0.2]〉 , 〈0.1, 0.5, 0.06〉)


and

A2 =


(v1, 〈[0.2, 0.6], [0.2, 0.5], [0.2, 0.4]〉 , 〈0.3, 0.5, 0.1〉)

(v2, 〈[0.3, 0.5], [0.1, 0.7], [0.3, 0.6]〉 , 〈0.02, 0.03, 0.3〉)
(v3, 〈[0.1, 0.4], [0.4, 0.5], [0.3, 0.7]〉 , 〈0.4, 0.6, 0.7〉)


are two NCSs in Z, then their union is given as follows:

(A1

⋃
A2)(v) =


(v1, 〈[0.3, 0.6], [0.15, 0.4], [0.1, 0.4]〉 , 〈0.3, 0.45, 0.1〉)

(v2, 〈[0.3, 0.5], [0.15, 0.55], [0.2, 0.6]〉 , 〈0.02, 0.0165, 0.5〉)
(v3, 〈[0.3, 0.5], [0.35, 0.45], [0.1, 0.2]〉 , 〈0.1, 0.55, 0.7〉)


Definition 3.9. Let

A1 =
(
v,
〈

Φ̃T1(v), Φ̃I1(v), Φ̃F1(v)
〉
, 〈ΛT1(v),ΛI1(v),ΛF1(v)〉

)
and

A2 =
(
v,
〈

Φ̃T2(v), Φ̃I2(v), Φ̃F2(v)
〉
, 〈ΛT2(v),ΛI2(v),ΛF2(v)〉

)
be two NCSs. Then the intersection is defined as:

(A1

⋂
A2)(v) =

(
min(Φ̃T1(v), Φ̃T2(v)),

Φ̃I1
(v)+Φ̃I2

(v)

2
,max(Φ̃F1(v), Φ̃F2(v)),

max(ΛT1(v),ΛT2(v)),
ΛI1

(v)+ΛI2
(v)

2
,min ΛF1(v),ΛF2(v))

)
for all v ∈ Z.
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Example 3.10. Let Z = {v1, v2, v3}, then

A1 =


(v1, 〈[0.3, 0.5], [0.1, 0.3], [0.1, 0.6]〉 , 〈0.6, 0.4, 0.01〉)

(v2, 〈[0.2, 0.3], [0.2, 0.4], [0.2, 0.7]〉 , 〈0.02, 0.003, 0.5〉)
(v3, 〈[0.3, 0.5], [0.3, 0.4], [0.1, 0.2]〉 , 〈0.1, 0.5, 0.06〉)


and

A2 =


(v1, 〈[0.2, 0.6], [0.2, 0.5], [0.2, 0.4]〉 , 〈0.3, 0.5, 0.1〉)

(v2, 〈[0.3, 0.5], [0.1, 0.7], [0.3, 0.6]〉 , 〈0.02, 0.03, 0.3〉)
(v3, 〈[0.1, 0.4], [0.4, 0.5], [0.3, 0.7]〉 , 〈0.4, 0.6, 0.7〉)


are two NCSs in Z, then their intersection is given as follows:

(A1

⋂
A2)(v) =


(v1, 〈[0.2, 0.5], [0.15, 0.4], [0.2, 0.6]〉 , 〈0.6, 0.45, 0.01〉)

(v2, 〈[0.2, 0.3], [0.15, 0.55], [0.3, 0.7]〉 , 〈0.02, 0.0165, 0.3〉)
(v3, 〈[0.1, 0.4], [0.35, 0.45], [0.3, 0.7]〉 , 〈0.4, 0.55, 0.06〉)


Definition 3.11. Let

A =
(
v,
〈

Φ̃T (v), Φ̃I(v), Φ̃F (v)
〉
, 〈ΛT (v),ΛI(v),ΛF (v)〉

)
be an NCS in Z. Then their complement Ac is defined as

Φ̃c
T (v) = [1, 1]− Φ̃T (v), Φ̃c

I(v) = [1, 1]− Φ̃I(v), Φ̃c
F (v) = [1, 1]− Φ̃F (v)

and
Λc
T (v) = 1− ΛT (v),Λc

I(v) = 1− ΛI(v),Λc
F (v) = 1− ΛF (v)

for all v ∈ Z.

Example 3.12. Consider Z = {v1, v2, v3}, then

A =


(v1, 〈[0.3, 0.5], [0.1, 0.3], [0.1, 0.6]〉 , 〈0.6, 0.4, 0.01〉)

(v2, 〈[0.2, 0.3], [0.2, 0.4], [0.2, 0.7]〉 , 〈0.02, 0.003, 0.5〉)
(v3, 〈[0.3, 0.5], [0.3, 0.4], [0.1, 0.2]〉 , 〈0.1, 0.5, 0.06〉)


is an NCS in Z. Then the complement of A is given as follows:

Ac =


(v1, 〈[0.5, 0.7], [0.7, 0.9], [0.4, 0.9]〉 , 〈0.4, 0.6, 0.99〉)

(v2, 〈[0.7, 0.8], [0.6, 0.8], [0.3, 0.8]〉 , 〈0.98, 0.997, 0.5〉)
(v3, 〈[0.5, 0.7], [0.6, 0.7], [0.8, 0.9]〉 , 〈0.9, 0.5, 0.94〉)


Result: For two NCSs, De-Morgan’s laws also hold i.e.

(i)
(
A1

⋃
A2

)C
= AC1

⋂
AC2 ;

(ii)
(
A1

⋂
A2

)C
= AC1

⋃
AC2 .

NOTE: The set of all NCSs in Z are denoted byQ and NCN by ã =
(〈

Φ̃T , Φ̃I , Φ̃F

〉
, 〈ΛT,ΛI,ΛF 〉

)
for suitability.
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Definition 3.13. Let ã1 =
(〈

Φ̃T1 , Φ̃I1 , Φ̃F1

〉
, 〈ΛT1,ΛI1,ΛF1〉

)
and ã2 =

(〈
Φ̃T2 , Φ̃I2 , Φ̃F2

〉
, 〈ΛT2,ΛI2,ΛF2〉

)
be two NCNs, then the following operations for NCSs are defined as below:

(i)

λã1 =

{ 〈
[1, 1]− ([1, 1]− (Φ̃T1))

λ, [1, 1]− ([1, 1]− (Φ̃I1))
λ, [1, 1]− ([1, 1]− (Φ̃F1))

λ
〉
,〈

(ΛT1)
λ, (ΛI1)

λ, (ΛF1)
λ
〉 }

,

(ii)

ãλ1 =

{ 〈
(Φ̃T1)

λ, (Φ̃I1)
λ, (Φ̃F1)

λ
〉
,〈

1− (1− ΛT1)
λ, 1− (1− ΛI1)

λ, 1− (1− ΛF1)
λ
〉 } ,

(iii)

ã1+ã2 =

{ 〈
Φ̃T1 + T̃2 − Φ̃T1T̃2, Φ̃I1 + Φ̃I2 − Φ̃I1Φ̃I2), Φ̃F1 + Φ̃F2 − Φ̃F1Φ̃F2

〉
,

〈ΛT1ΛT2 ,ΛI1ΛI2 ,ΛF1ΛF2〉

}
,

(iv)

ã1 · ã2 =

{ 〈
Φ̃T1Φ̃T2 , Φ̃I1Φ̃I2 , Φ̃F1Φ̃F2 ,

〉
,

〈ΛT1 + ΛT2 − ΛT1ΛT2 ,ΛI1 + ΛI2 − ΛI1ΛI2 ,ΛF1 + ΛF2 − ΛF1ΛF2〉

}

where λ > 0.

Example 3.14. Let Z = {v1}, then

ã1 = {v, 〈[0.3, 0.5], [0.1, 0.3], [0.1, 0.6]〉 , 〈0.6, 0.4, 0.1〉}

and
ã2 = {v, 〈[0.2, 0.6], [0.2, 0.5], [0.2, 0.4]〉 , 〈0.3, 0.5, 0.1〉}

are two NCNs in Z and λ = 2 then

(i) λã1 is given by

λã1 =

{
v,
〈

[1, 1]− ([1, 1]− (Φ̃T1))
λ, [1, 1]− ([1, 1]− (Φ̃I1))

λ, [1, 1]− ([1, 1]− (Φ̃F1))
λ
〉
,〈

(ΛT1)
λ, (ΛI1)

λ, (ΛF1)
λ
〉 }

2ã1 =

{
v, 〈[1, 1]− ([1, 1]− [0.3, 0.5])2, [1, 1]− ([1, 1]− [0.1, 0.3])2, [1, 1]− ([1, 1]− [0.1, 0.6])2〉 ,

〈(0.6)2, (0.4)2, (0.1)2〉

}
=

{
v, 〈[1, 1]− ([0.5, 0.7])2, [1, 1]− ([0.7, 0.9])2, [1, 1]− ([0.4, 0.9])2〉 ,

〈0.36, 0.16, 0.01〉

}
=

{
v, 〈[1, 1]− [0.25, 0.49], [1, 1]− [0.49, 0.81], [1, 1]− [0.16, 0.81]〉 ,

〈0.36, 0.16, 0.01〉

}
=

{
v, 〈[0.51, 0.75], [0.19, 0.51], [0.19, 0.84]〉 ,

〈0.36, 0.16, 0.01〉

}
.
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(ii) ãλ1 is given by

ãλ1 =

{ 〈
(Φ̃T1)

λ, (Φ̃I1)
λ, (Φ̃F1)

λ
〉
,〈

1− (1− ΛT1)
λ, 1− (1− (ΛI1)

λ, 1− (1− ΛF1)
λ
〉 }

ã2
1 =

{
〈[0.3, 0.5]2, [0.1, 0.3]2, [0.1, 0.6]2〉 ,

〈1− (1− 0.6)2, 1− (1− 0.4)2, 1− (1− 0.1)2〉

}
=

{
〈[0.09, 0.25], [0.01, 0.09], [0.01, 0.36]〉 ,
〈1− (0.4)2, 1− (0.6)2, 1− (0.9)2〉

}
=

{
〈[0.09, 0.25], [0.01, 0.09], [0.01, 0.36]〉 ,

〈0.84, 0.64, 0.19〉

}
.

(iii) ã1 + ã2 is given by

ã1 + ã2 =

{ 〈
Φ̃T1 + Φ̃T2 − Φ̃T1Φ̃T2 , Φ̃I1 + Φ̃I2 − Φ̃I1Φ̃I2), Φ̃F1 + Φ̃F2 − Φ̃F1Φ̃F2

〉
,

〈ΛT1ΛT2 ,ΛI1ΛI2 ,ΛF1ΛF2〉

}
= (v1, 〈[0.44, 0.8], [0.28, 0.65], [0.28, 0.76]〉 , 〈0.18, 0.20, 0.001〉) .

(iv) ã1 · ã2 is given by

ã1 · ã2 =

{ 〈
Φ̃T1Φ̃T2 , Φ̃I1 Ĩ2, Φ̃F1Φ̃F2 ,

〉
,

〈ΛT1 + ΛT2 − ΛT1ΛT2 ,ΛI1 + ΛI2 − ΛI1ΛI2 ,ΛF1 + ΛF2 − ΛF1ΛF2〉

}
= (v1, 〈[0.06, 0.30], [0.02, 0.15], [0.02, 0.24]〉 , 〈0.72, 0.7, 0.2〉) .

Definition 3.15. Let ã1 =
(〈

Φ̃T1 , Φ̃I1 , Φ̃F1

〉
, 〈ΛT1 ,ΛI1 ,ΛF1〉

)
be NCNs. Then, the

score, accuracy and certainty functions of an NCN are defined as follows:

(a) s̃(ã1) =
{〈

Φ̃T1
+[1,1]−Φ̃I1

+[1,1]−Φ̃F1

3

〉
,
〈

ΛT1
+1−ΛI1

+1−ΛF1

3

〉}
,

(b) ã(ã1) =
{〈

Φ̃T1 − Φ̃F1

〉
, 〈ΛT1 − ΛF1〉

}
,

(c) c̃(ã1) =
{〈

Φ̃T1

〉
, 〈ΛT1〉

}
.

Example 3.16. Consider Z = {v1}, and

ã1 = {Z, 〈[0.3, 0.5], [0.2, 0.3], [0.3, 0.5]〉 , 〈0.5, 0.4, 0.6〉} ,

then
(a) s(ã1) is given by

s̃(ã1) =

{〈
Φ̃T1 + [1, 1]− Φ̃I1 + [1, 1]− Φ̃F1

3

〉
,

〈
ΛT1 + 1− ΛI1 + 1− ΛF1

3

〉}

=

{〈
[0.3, 0.5] + [1, 1]− [0.2, 0.3] + [1, 1]− [0.3, 0.6]

3

〉
,

〈
0.6 + 1− 0.4 + 1− 0.5

3

〉}
= {〈[0.46, 0.66]〉 , 〈0.83〉} .

10



(b) ã(ã1) is given by

a(̃ã1) =
{〈

Φ̃T1 − Φ̃F1

〉
, 〈ΛT1 − ΛF1〉

}
= {〈[0.3, 0.6]− [0.3, 0.5]〉 , 〈0.5− 0.6〉} = {[0.0, 0.1], 0.1}.

(c) c̃(ã1) is given by

c̃(ã1) =
{〈

Φ̃T1

〉
, 〈ΛT1〉

}
= {[0.3, 0.5], 0.5}.

We state the following Theorem without its proof.

Theorem 3.17. Let A1 =
{〈

Φ̃T1 , Φ̃I1 , Φ̃F1

〉
, 〈ΛT1,ΛI1,ΛF1〉

}
and A2 =

{〈
Φ̃T2 , Φ̃I2 , Φ̃F2

〉
, 〈ΛT2,ΛI2,ΛF2〉

}
be two single valued NCNs. If A1 ⊆ A2, then s̃(A1) ≤ s̃(A2).

Definition 3.18. Let ã1 =
(〈

Φ̃T1 , Φ̃I1 , Φ̃F1

〉
, 〈ΛT1,ΛI1,ΛF1〉

)
and ã2 =

(〈
Φ̃T2 , Φ̃I2 , Φ̃F2

〉
, 〈ΛT2,ΛI2,ΛF2〉

)
be two NCNs. Then comparison method for NCNs can be defined as follows:

(i) if s̃(ã1) > s̃(ã2), then ã1 is greater than ã2, and is denoted by ã1 > ã2,

(ii) if s̃(ã1) = s̃(ã2), and ã(ã1) > ã(ã2) then ã1 is greater than ã2, and is denoted
by ã1 < ã2,

(iii) if s̃(ã1) = s̃(ã2), ã(ã1) = ã(ã2) and c̃(ã1) > c̃(ã2) then ã1 is greater than
ã2,and is denoted by ã1 > ã2,

(iv) if s̃(ã1) = s̃(ã2), ã(ã1) = ã(ã2) and c̃(ã1) = c̃(ã2) then ã1 is equal to ã2, that
is ã1 is indifferent to ã2, and is denoted by ã1 = ã2.

Example 3.19. Consider two NCNs

ã1 = {v, 〈[0.5, 0.7], [0.4, 0.5], [0.2, 0.4]〉 , 〈0.3, 0.2, 0.8〉} and

ã2 = {v, 〈[0.3, 0.5], [0.2, 0.3], [0.3, 0.5]〉 , 〈0.5, 0.4, 0.6〉}

such that ã1 > ã2, then,

(i) We want to show that s̃(ã1) > s̃(ã2). Since

s̃(ã1) =

〈
(Φ̃T1 + [1, 1]− Φ̃I1 + [1, 1]− Φ̃F1)

3

〉
,

〈
(ΛT1 + 1− ΛI1 + 1− ΛF1)

3

〉
= {v, 〈[0.93, 0.96]〉 , 〈0.76〉}

and

s̃(ã2) =

〈
(Φ̃T2 + [1, 1]− Φ̃I2 + [1, 1]− Φ̃F2)

3

〉
,

〈
(ΛT2 + 1− ΛI2 + 1− ΛF2)

3

〉
= {v, 〈[0.90, 0.93]〉 , 〈0.83〉} ,

which clearly shows that s̃(ã1) > s̃(ã2). Similarly we can show (ii),(iii) and
(iv) hold.
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Based on the study given in [17, 22] we define some weighted aggregation op-
erators related to NCSs as follows:

Theorem 3.20. Let ãj =
(〈

Φ̃Tj , Φ̃Ij , Φ̃Fj

〉
,
〈
ΛTj ,ΛIj ,ΛFj

〉)
(j = 1, 2, ..., n) be a

family of NCNs. A mapping Aw : Qn → Q is called neutrosophic cubic weighted
average operator if it satisfies

Aw(ã1, ã2, ..., ãn) =
n∑
j=1

wj ãj

=

(〈
[1, 1]−

n∏
j=1

([1, 1]− Φ̃Tj)
wj , [1, 1]−

n∏
j=1

([1, 1]− Φ̃Ij)
wj , [1, 1]−

n∏
j=1

([1, 1]− Φ̃Fj
)wj

〉
,〈

n∏
j=1

(ΛTj)
wj ,

n∏
j=1

(ΛIj)
wj ,

n∏
j=1

(ΛFj
)wj)

〉)

where wj is weight of ãj (j = 1, 2, ..., n), wj ∈ [0, 1] and
n∑
j=1

wj = 1.

Proof: Let ãj =
(〈

Φ̃Tj , Φ̃Ij , Φ̃Fj

〉
,
〈
ΛTj ,ΛIj ,ΛFj

〉)
(j = 1, 2, ..., n), and let

Aw : Qn → Q be a map, wj ∈ [0, 1]. Let w1 = 1 , we can prove this result by
induction method. First let for n = 1, we have

Aw(ã1) =
1∑
j=1

wj ãj = w1ã1 = ã1

1∑
j=1

wj = ã1(1) ∵
n∑
j=1

wj = 1 = ã1

=

(〈
[1, 1]−

1∏
j=1

([1, 1]− Φ̃Tj)
wj , [1, 1]−

1∏
j=1

([1, 1]− Φ̃Ij)
wj , [1, 1]−

1∏
j=1

([1, 1]− Φ̃Fj
)wj

〉
,〈

1∏
j=1

(ΛT1)
wj ,

1∏
j=1

(ΛI1)
wj ,

1∏
j=1

(ΛF1)
wj)

〉)
=
(〈

[1, 1]− ([1, 1]− Φ̃T1)
w1 , [1, 1]− ([1, 1]− Φ̃I1)

w1 , [1, 1]− ([1, 1]− Φ̃F1)
w1

〉
,

〈(ΛT1)
w1 , (ΛI1)

w1 , (ΛF1)
w1)〉)

=
(〈

[1, 1]− ([1, 1]− Φ̃T1), [1, 1]− ([1, 1]− Φ̃I1), [1, 1]− ([1, 1]− Φ̃F1)
〉
, 〈(ΛT1), (ΛI1), (ΛF1))〉

)
=
(〈

Φ̃T1 , Φ̃I1 , Φ̃F1

〉
, 〈ΛT1,ΛI1,ΛF1〉

)
= ã1.
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Suppose that this is true for n = k, that is

Aw(ã1, ã2, ..., ãk) =
k∑
j=1

wj ãj = wkãk = ãk

=

(〈
[1, 1]−

k∏
j=1

([1, 1]− Φ̃Tj)
wj , [1, 1]−

k∏
j=1

([1, 1]− Φ̃Ij)
wj , [1, 1]−

k∏
j=1

([1, 1]− Φ̃Fj
)wj

〉
,〈

k∏
j=1

(ΛTj)
wj ,

k∏
j=1

(ΛIj)
wj ,

k∏
j=1

(ΛFj
)wj)

〉)
.

In order to prove for n = k + 1, i.e.,

Aw(ã1, ã2, ..., ãk, ãk+1) =
k+1∑
j=1

wj ãj =
k∑
j=1

wj ãj + w1ã1 = ãk+1

=

(〈
[1, 1]−

k+1∏
j=1

([1, 1]− Φ̃Tj)
wj , [1, 1]−

k+1∏
j=1

([1, 1]− Φ̃Ij)
wj , [1, 1]−

k+1∏
j=1

([1, 1]− Φ̃Fj
)wj

〉
,〈

k+1∏
j=1

(ΛTj)
wj ,

k+1∏
j=1

(ΛIj)
wj ,

k+1∏
j=1

(ΛFj
)wj)

〉)

=

(〈
[1, 1]−

k∏
j=1

([1, 1]− Φ̃Tj)
wj([1, 1]− Φ̃T1), [1, 1]−

k∏
j=1

([1, 1]− Φ̃Ij)
wj([1, 1]− Φ̃I1) ,

[1, 1]−
k∏
j=1

([1, 1]− Φ̃Fj
)wj([1, 1]− Φ̃F1)

〉
,〈

k∏
j=1

(ΛTj)
wj(ΛT1),

k∏
j=1

(ΛIj)
wj(ΛI1),

k∏
j=1

(ΛFj
)wj)(ΛF1))

〉)
= ãk+1.

This completes the proof. �

Theorem 3.21. Let ãj =
(〈

Φ̃Tj , Φ̃Ij , Φ̃Fj

〉
,
〈
ΛTj ,ΛIj ,ΛFj

〉)
(j = 1, 2, ..., n) be a

family of NCNs. Then

(i) If ãj = ã for all j = 1, 2, ..., n then, Aw(ã1, ã2, ..., ãn) = ã,

(ii) min
j=1,2,...,n

{ãj} ≤ Aw(ã1, ã2, ..., ãn) ≤ max
j=1,2,...,n

{ãj},

(iii) If ãj ≤ ã∗j for all j = 1, 2, ..., n then, Aw(ã1, ã2, ..., ãn) ≤ Aw(ã∗1, ã
∗
2, ..., ã

∗
n).

Proof: Let ãj =
(〈

Φ̃Tj , Φ̃Ij , Φ̃Fj

〉
,
〈
ΛTj ,ΛIj ,ΛFj

〉)
(j = 1, 2, ..., n) be a family

of NCNs, and
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(i) Let ãj = ã for all j = 1, 2, ..., n such that ã1 = ã, ã2 = ã, ã3 = ã...ãn = ã.
This implies that ã = (ã1, ã2, ..., ãn) = (ã, ã, ã, ..., ã). Now,

Aw(ã1, ã2, ..., ãn) =
n∑
j=1

wj ãj = w1ã1 + w2ã2 + w3ã3 + ...+ wnãn

= w1ã+ w2ã+ w3ã+ ...+ wnã ∵ ã1 = ã, ã2 = ã, ã3 = ã...ãn = ã

ã(w1 + w2 + w3 + ...+ wn) = ã
n∑
j=1

wj

= ã(1) (
n∑
j=1

wj = 1 = ã)

Similarly we can prove (ii) and (iii) hold. �

Definition 3.22. Let ãj =
(〈

Φ̃Tj , Φ̃Ij , Φ̃Fj

〉
,
〈
ΛTj ,ΛIj ,ΛFj

〉)
(j = 1, 2, ..., n) be a

family of NCNs. A mapping Gw : Qn → Q is called neutrosophic cubic weighted
geometric operator if it satisfies

Gw(ã1, ã2, ..., ãn) =
n∏
j=1

ã
wj

j =

(〈
n∏
j=1

(Φ̃Tj)
wj ,

n∏
j=1

(Φ̃Ij)
wj ,

n∏
j=1

(Φ̃Fj
)wj

〉
,〈

[1, 1]−
n∏
j=1

([1, 1]− ΛTj)
wj , [1, 1]−

n∏
j=1

([1, 1]− ΛIj)
wj , [1, 1]− [1, 1]−

n∏
j=1

(ΛFj
)wj

〉)

where wj is weight of ãj (j = 1, 2, ..., n), wj ∈ [0, 1] and
n∑
j=1

wj = 1.

Example 3.23. Consider a problem in which we have four alternatives Ai(i =
1, 2, 3, 4) are available and four attributes are Cj(j = 1, 2, 3, 4). Also, the weight
vector of the attributes Cj(j = 1, 2, 3, 4) is w = (1

2
1
4

1
8

1
8
)T then, find the geometric

weight by using neutrosophic cubic weighted geometric operator.

C1 C2

A1 (〈[0.2, 0.5], [0.3.0.7], [0.1, 0.2]〉 , 〈0.5, 0.7, 0.2〉) (〈[0.2, 0.4], [0.4, 0.5], [0.2, 0.5]〉 , 〈0.4, 0.4, 0.5〉)
A2 (〈[0.3, 0.9], [0.2, 0.7], [0.3, 0.5]〉 , 〈0.9, 0.7, 0.5〉) (〈[0.3, 0.7], [0.6, 0.8], [0.2, 0.4]〉 , 〈0.7, 0.6, 0.8〉)
A3 (〈[0.1, 0.3], [0.4, 0.8], [0.2, 0.6]〉 , 〈0.3, 0.4, 0.2〉) (〈[0.1, 0.2], [0.2, 0.3], [0.2, 0.5]〉 , 〈0.2, 0.2, 0.2〉)
A4 (〈[0.5, 0.9], [0.1, 0.8], [0.2, 0.6]〉 , 〈0.9, 0.7, 0.2〉) (〈[0.3, 0.5], [0.5, 0.7], [0.1, 0.2]〉 , 〈0.3, 0.5, 0.2〉)

C3 C4

A1 (〈[0.2, 0.7], [0.4, 0.9], [0.5, 0.7]〉 , 〈0.7, 0.7, 0.5〉) (〈[0.1, 0.6], [0.3, 0.4], [0.5, 0.8]〉 , 〈0.1, 0.5, 0.7〉)
A2 (〈[0.3, 0.9], [0.4, 0.6], [0.6, 0.8]〉 , 〈0.9, 0.4, 0.6〉) (〈[0.2, 0.5], [0.4, 0.9], [0.5, 0.8]〉 , 〈0.5, 0.2, 0.7〉)
A3 (〈[0.4, 0.9], [0.1, 0.2], [0.4, 0.5]〉 , 〈0.9, 0.5, 0.5〉) (〈[0.6, 0.7], [0.3, 0.6], [0.3, 0.7]〉 , 〈0.7, 0.5, 0.3〉)
A4 (〈[0.5, 0.6], [0.2, 0.4], [0.3, 0.5]〉 , 〈0.5, 0.4, 0.5〉) (〈[0.3, 0.7], [0.7, 0.8], [0.6, 0.7]〉 , 〈0.4, 0.2, 0.8〉)
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Solution: As

Gw(ã1, ã2, ..., ãn) =
n∏
j=1

ã
wj

j =

(〈
n∏
j=1

(Φ̃Tj)
wj ,

n∏
j=1

(Φ̃Ij)
wj ,

n∏
j=1

(Φ̃Fj
)wj

〉
,〈

[1, 1]−
n∏
j=1

([1, 1]− ΛTj)
wj , [1, 1]−

n∏
j=1

([1, 1]− ΛIj)
wj , [1, 1]− [1, 1]−

n∏
j=1

(ΛFj
)wj

〉)
.

Now we compute Gw(ãi1, ãi2, ãi3, ãi4) for each i = (1, 2, 3, 4) as:

G(ã1) = 〈([0.183, 0.50], [0.33, 0.62], [0.177, 0.35]), (0.47, 0.62, 0.41)〉
G(ã2) = 〈([0.28, 0.78], [0.31, 0.73], [0.31, 0.53]), (0.84, 0.60, 0.63)〉
G(ã3) = 〈([0.14, 0.34], [0.27, 0.50], [0.23, 0.57]), (0.49, 0.38, 0.26)〉
G(ã4) = 〈([0.412, 0.71], [0.20, 0.70], [0.20, 0.45]), (0.75, 0.58, 0.36)〉

Theorem 3.24. Let ãj =
(〈

Φ̃Tj , Φ̃Ij , Φ̃Fj

〉
,
〈
ΛTj ,ΛIj ,ΛFj

〉)
(j = 1, 2, ..., n) be a

family of NCNs, then

(i) If ãj = ã for all j = 1, 2, ..., n then, Gw(ã1, ã2, ..., ãn) = ã,

(ii) min
j=1,2,...,n

{ãj} ≤ Gw(ã1, ã2, ..., ãn) ≤ max
j=1,2,...,n

{ãj},

(iii) If ãj ≤ ã∗j for all j = 1, 2, ..., n then, Gw(ã1, ã2, ..., ãn) ≤ Gw(ã∗1, ã
∗
2, ..., ã

∗
n).

Proof: Let ãj =
(〈

Φ̃Tj , Φ̃Ij , Φ̃Fj

〉
,
〈
ΛTj ,ΛIj ,ΛFj

〉)
(j = 1, 2, ..., n) be a family

of NCNs, and

(i) Let If ãj = ã for all j = 1, 2, ..., n such that ã1 = ã, ã2 = ã, ã3 = ã...ãn = ã,
this implies that ã = (ã1, ã2, ..., ãn) = (ã, ã, ã, ..., ã).

Now,

Gw(ã1, ã2, ..., ãn) =
n∏
j=1

ã
wj

j = ãw1
1 ãw2

2 ãw3
3 ...ãwn

n

= ãw1 ãw2 ãw3 ...ãwn ∵ ã1 = ã, ã2 = ã, ã3 = ã...ãn = ã

ãw1+w2+w3+...+wn = ã

n∑
j=1

wj

= ã1 = ã ∵
n∑
j=1

wj = 1

Similarly we can prove (ii) and (iii) hold. �
Note: That the aggregation results are still NCNs.

4. NCN-decision making algorithm

In this section, we progress an algorithm by expanding NCNs based on score,
accuracy, certainty function of NCNs by the usage of Aw(or G) operator.
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If we have some information about NCNs then on the base of this information
we can develop some ranking method to deal with multiple decision criteria making
problem based on the Aw( or G) operator.

Suppose that A = {A1, A2, ..., An} and C = {C1, C2, ..., Cn} is the set of alter-
natives and criterions or attributes, respectively. Let the weight vector of attributes

be ω = (w1, w2, ..., wn)T such that
n∑
j=1

wj = 1, wj ≥ 0 (j = 1, 2, ..., n)and wj refer-

s to the weight of attribute Cj.An alternative on criterions is evaluated by the
decision maker, and the evaluation values are represented by the form of NCN-

s. Assume that (ãij)m×n =
(〈

Φ̃Tij , Φ̃Iij , Φ̃Fij

〉
,
〈
ΛTij ,ΛIij ,ΛFij

〉)
m×n

is decision

matrix provided by the decision maker; ãij is a NCN for alternative Ai associat-
ed with the criterions Cj. We have the conditions Φ̃Tij , Φ̃Iij , Φ̃Fij

∈ D[0, 1] and
ΛTij ,ΛIij ,ΛFij

∈ [0, 1].
Now, we develop an algorithm as follows:
Algorithm
Step 1. Construct the decision matrix provided by the decision maker as;(ãij)m×n =(〈
Φ̃Tij , Φ̃Iij , Φ̃Fij

〉
,
〈
ΛTij ,ΛIij ,ΛFij

〉)
m×n

Step 2:Compute ãi = Aw(ãi1, ãi2, ..., ãin)(or Gw(ãi1, ãi2, ..., ãin) for each i =
1, ...,m.

Step 3. Calculate the score values of s̃(ã1)(i = 1, ...,m) for the collective overall
NCNs of ãi(i = 1, ...,m.)

Step 4. Rank all the software systems of ãi(i = 1, ...,m.) according to the score
values.

Next, we give some numerical examples as follows:

Example 4.1. Let us study decision-making problem. A passenger wishes to travel
to Karachi. Four kinds of vans (alternatives) Ai(i = 1, 2, 3, 4) are accessible. The
customer takes into account four attributes to evaluate the alternatives; C1=Facility;
C2=Rent Saving; C3=Comfort; C4=Safety and use the neutrosophic cubic values
to evaluate the four probable alternatives.Ai(i = 1, 2, 3, 4) under the above four
attributes. Also, the weight vector of the attributes Cj(j = 1, 2, 3, 4) is w = (1

2
1
4

1
8

1
8
)T

then,

Step1:. Construct the decision matrix provided by the customer as:

C1 C2

A1 (〈[0.2, 0.5], [0.3.0.7], [0.1, 0.2]〉 , 〈0.9, 0.7, 0.2〉) (〈[0.2, 0.4], [0.4, 0.5], [0.2, 0.5]〉 , 〈0.7, 0.4, 0.5〉)
A2 (〈[0.3, 0.9], [0.2, 0.7], [0.3, 0.5]〉 , 〈0.5, 0.7, 0.5〉) (〈[0.3, 0.7], [0.6, 0.8], [0.2, 0.4]〉 , 〈0.7, 0.6, 0.8〉)
A3 (〈[0.3, 0.4], [0.4, 0.8], [0.2, 0.6]〉 , 〈0.1, 0.4, 0.2〉) (〈[0.2, 0.4], [0.2, 0.3], [0.2, 0.5]〉 , 〈0.2, 0.2, 0.2〉)
A4 (〈[0.5, 0.9], [0.1, 0.8], [0.2, 0.6]〉 , 〈0.1, 0.7, 0.2〉) (〈[0.3, 0.5], [0.5, 0.7], [0.1, 0.2]〉 , 〈0.3, 0.5, 0.2〉)
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C3 C4

A1 (〈[0.2, 0.7], [0.4, 0.9], [0.5, 0.7]〉 , 〈0.7, 0.7, 0.5〉) (〈[0.1, 0.6], [0.3, 0.4], [0.5, 0.8]〉 , 〈0.5, 0.5, 0.7〉)
A2 (〈[0.3, 0.9], [0.4, 0.6], [0.6, 0.8]〉 , 〈0.9, 0.4, 0.6〉) (〈[0.2, 0.5], [0.4, 0.9], [0.5, 0.8]〉 , 〈0.5, 0.2, 0.7〉)
A3 (〈[0.4, 0.9], [0.1, 0.2], [0.4, 0.5]〉 , 〈0.9, 0.5, 0.5〉) (〈[0.6, 0.7], [0.3, 0.6], [0.3, 0.7]〉 , 〈0.7, 0.5, 0.3〉)
A4 (〈[0.5, 0.6], [0.2, 0.4], [0.3, 0.5]〉 , 〈0.5, 0.4, 0.5〉) (〈[0.3, 0.7], [0.7, 0.8], [0.6, 0.7]〉 , 〈0.4, 0.2, 0.8〉)

Step2: Compute ãi = Aw(ãi1ãi2, ãi3, ãi4) for each i = (1, 2, 3, 4) as:

ã1 = 〈([0.19, 0.524], [0.341, 0.678], [0.247, 0.473]), (0.716, 0.583, 0.329)〉
ã2 = 〈([0.29, 0.841], [0.375, 0.757], [0.355, 0.585]), (0.585, 0.536, 0.60)〉
ã3 = 〈([0.338, 0.56], [0.311, 0.646], [0.24, 0.58]), (0.199, 0.355, 0.235)〉
ã4 = 〈([0.43, 0.79], [0.335, 0.747], [0.259, 0.53]), (0.19, 0.513, 0.26)〉

Step3: Calculate the score values of s̃(ã1) (i = 1, 2, 3, 4) for the collective overall
NCNs of ãi (i = 1, 2, ...,m) as;

s̃(ã1) = 〈([0.346, 0.645]), (0.601)〉
s̃(ã2) = 〈([0.316, 0.703]), (0.483)〉
s̃(ã3) = 〈([0.37, 0.669]), (0.536)〉
s̃(ã4) = 〈([0.38, 0.732]), (0.47)〉

Step4: Rank all the software systems of Ai (i = 1, 2, 3, 4.) according to the score
values as;

A4 � A2 � A3 � A1

and thus A4 is the utmost desired alternative.

Example 4.2. A person wishes to purchase finest Samsung Galaxy J Series mobile
model and wants to check three models by their specification (alternatives) Ji(i =
1, 2, 3) are offered. The client takes into account three attributes to estimate the
alternatives; S1 =Processor; S2 =Camera; S3 =Battery and use the neutrosophic
cubic values to evaluate the four possible alternativesAi(i = 1, 2, 3) under the
above four attributes. Also, the weight vector of the attributes Sj(j = 1, 2, 3) is
w = (1

2
1
3

1
6
)T then,

Step1:. Construct the decision matrix provided by the customers;

S1 S2

J1 (〈[0.2, 0.7], [0.3.0.7], [0.3, 0.8]〉 , 〈0.3, 0.4, 0.1〉) (〈[0.4, 0.7], [0.3.0.7], [0.5, 0.8]〉 , 〈0.2, 0.4, 0.5〉)
J2 (〈[0.2, 0.7], [0.3.0.7], [0.4, 0.6]〉 , 〈0.9, 0.6, 0.2〉) (〈[0.2, 0.3], [0.3.0.6], [0.1, 0.4]〉 , 〈0.6, 0.7, 0.6〉)
J3 (〈[0.2, 0.5], [0.2.0.7], [0.1, 0.2]〉 , 〈0.5, 0.7, 0.2〉) (〈[0.1, 0.6], [0.2.0.6], [0.3, 0.4]〉 , 〈0.4, 0.5, 0.6〉)

S3

J1 (〈[0.2, 0.8], [0.2.0.7], [0.1, 0.6]〉 , 〈0.1, 0.3, 0.5〉)
J2 (〈[0.2, 0.7], [0.4.0.7], [0.1, 0.3]〉 , 〈0.3, 0.5, 0.7〉)
J3 (〈[0.2, 0.5], [0.3.0.4], [0.1, 0.2]〉 , 〈0.2, 0.4, 0.6〉)
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Step2: Compute j̃i = Aw(j̃i2, j̃i2, j̃i3) for each i = (1, 2, 3) as:

j̃1 = 〈([0.27, 0.71], [0.28, 0.70], [0.34, 0.77]), (0.21, 0.38, 0.22)〉
j̃2 = 〈([0.2, 0.60], [0.31, 0.66], [0.26, 0.49]), (0.63, 0.61, 0.35)〉
j̃3 = 〈([0.16, 0.53], [0.21, 0.62], [0.17, 0.27]), (0.40, 0.57, 0.34)〉

Step3: Calculate the score values of s̃(j̃1) (i = 1, 2, 3) for the collective overall
NCN of j̃i (i = 1, 2, ...,m) as;

s̃(j̃1) = 〈([0.26, 0.69]), (0.53)〉
s̃(j̃2) = 〈([0.35, 0.67]), (0.55)〉
s̃(j̃3) = 〈([0.42, 0.71]), (0.49)〉

Step4: Rank all the software systems of Ji (i = 1, 2, 3) according to the score
values as;

J3 � J1 � J2

and thus J3 is the extreme preferred alternative.

From the above examples it is clear that by using this concept we can solve
different problems arise in several areas and can pick finest choice by means of
NCSs in various decision making problems. Here we have membership and non-
membership so we can elect top choice by means of membership function as well as
non-membership function due to which we can select utmost necessary possibility.
Membership quota display us that due to these excellence the succeeding alternative
is greatest requirement and non-membership displays us that due to following errors
the following alternative is fewer desired. Due to this motive our case is more
general for the reason that solitary on the origin of positive features of whatever
we cannot make exact decision except we know the disadvantage of it.

5. Comparison analysis and discussion

As a variability of FSs, IFSs and NSs have been generated to express to inde-
terminate, movable, insufficient and contradictory information that occurs in this
present reality. Enhanced NSs have been recommended for the principle cause for
tending to matters with an arrangement of specific numbers. Be that as it may,
there is sure matter with respect to the recent operations of SNSs, and in addition
their conglomeration supervisors and the parallel methods.

In this method, Şahin [13] described the novel operations of amended NNs and
builds up a parallel technique in light of the correlated investigation of IFNs. On
the principle of these operations and the correlation policy, some efficient NNs
accretion administrators are proposed. Moreover, a procedure for multi-criteria
communal choice making (MCGDM) matters is reconnoitered by applying these
accumulation administrators. At last, a case to exemplify the significance of the
suggested stratagem is given and a link some different approaches are ready.

In [1], Ali et al. put forth some fresh types of NCSs and they suggested a decision
making technique based on resemblance methods of two NCSs by presumptuous
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that if likeness between the ideal design and sample design is greater than or
equivalent to 0.5, then the sample design goes to the family of ideal design in
deliberation.

We generalize the idea provided in [1, 13] by familiarizing the perception of the
different functions i.e (score, certainty and accuracy) functions to relate the NCSs.
Also to aggregate the neutrosophic cubic information we develop the neutrosophic
operators i.e. (weight average and weight geometric) operators. On the basis
of (AWandGw) operators and the functions i.e. (score, certainty and accuracy)
functions, we progress the multiple criteria decision making methodology in NCSs,
in which the estimation standards of substitutions on the features of the form NCNs
to select the utmost desired ones and give an arithmetical case to demonstrate the
usage and success of this established technique.

6. Conclusion

This paper presents NCSs and different functions i.e., its score, certainty and
accuracy functions. Then, the AW and Gw operators were future to aggregate the
neutrosophic cubic data. Moreover, on the basis of AW and Gw operators and the
functions such as (certainty, score and the accuracy). we have established an ap-
proach to the multiple criteria decision making in NCSs, in which the valuation
standards of substitutes on the aspects yield the arrangement NCNs.
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