Optics and Laser Technology 122 (2020) 105830

= Optics & Laser

Contents lists available at ScienceDirect
Technology

Optics and Laser Technology

journal homepage: www.elsevier.com/locate/optlastec

Full length article

Automated segmentation of fluid regions in optical coherence tomography
B-scan images of age-related macular degeneration

Check for
updates

=

Zailiang Chen™", Dabao Li*", Hailan Shen™*, Hailan Mo™", Ziyang Zeng™", Hao Wei™"

#School of Computer Science and Engineering, Central South University, Changsha 410083, China
® Hunan Engineering Research Center of Machine Vision and Intelligent Medicine, Changsha 410083, China

HIGHLIGHTS

® The fluid region can be automatically segment by integrating SE blocks with U-Net structure.

® This method can effectively improve the segmentation results compared with U-Net and SegNet.

® We present effective pre-processing to reduce the false positive rate of segmentation results.

® This work can classify OCT B-scan to AMD OCT and normal OCT images based on segmentation results.

ARTICLE INFO ABSTRACT

Keywords: Age-related macular degeneration (AMD) is a common eye disease that causes progressive vision loss in people
SEUNet older than 50 years. Fluid regions in retina are the most characteristic of AMD. Accurately segmenting fluid
AMD regions is crucial for the early diagnosis of AMD, and assessment of treatment efficacy. In this paper, we propose

()lchimage an automatic deep learning method constructed by integrating Squeeze-and-Excitation blocks with U-Net named
:ez;::falgz; SEUNet to segment fluid regions and classify OCT B-scan images to AMD or normal image. The proposed method

comprises three stages: (1) preprocessing stage that includes image noise removal, locating the image on the area
of interest, and image color-reversing; (2) fluid region segmentation stage which is based on U-Net and con-
structed by integrating Squeeze-and-Excitation block to segment fluid region; and (3) image classification stage
that classifies image to AMD or normal image. Experimental results show that the proposed method have an
average IOU coefficient of 0.9035, an average Dice coefficient of 0.9421, an average precision of 0.9446, and an
average recall of 0.9464. Therefore, the proposed method can effectively segment fluid regions in OCT B-scan
images.

1. Introduction

Age-related macular degeneration (AMD) is a common eye disease
that causes progressive degeneration of the central vision in many
countries [1] and is a complex retinal disease that develops from a
combination of risk factors such as environment, lifestyle and genetics
are great. This illness causes vision loss due to abnormal blood vessel
growth through Bruch's membrane (BM) thus leading to fluid leakage
into the retina [1]. Fluid regions in retina are one of the characteristic
of AMD [2]. Their size and location are vital biomarkers for AMD
progression [3].

Optical coherence tomography (OCT) has been widely used to di-
agnose eye diseases, such as glaucoma [4], AMD, diabetic macular
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edema (DME), anemia screening [5], and to visualize retinal structures
such as retinal layer [6], exudates, and retinal fluid regions [7].
Therefore, detection and quantitative assessment of retinal fluid regions
are facilitated by OCT B-scan images. An example of fluid regions in
OCT B-scan image is shown in Fig. 1. Fluid regions are restricted to the
layers between the inner limiting membrane (ILM) and BM. Accurately
segmenting fluid regions is crucial for the early diagnosis of AMD, and
assessment of treatment efficacy [8]. Manually segmenting fluid regions
from each OCT B-scan image by an experienced ophthalmologist is
difficult, labor-intensive, and time-consuming, especially if these re-
gions are small [9]. The segmentation results are non-reproducible and
subjective. Therefore, an accurate semi-automatic or automatic fluid
regions segmentation method is highly sought.
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Fig. 1. Example of OCT B-scan showing fluid regions. (a) An OCT B-scan image.
(b) Manually segmentation of fluid regions in red. (For interpretation of the
references to color in this figure legend, the reader is referred to the web ver-
sion of this article.)

For the past decades, different approaches have been proposed to
effectively segment fluid regions from OCT B-scan image. These
methods can be divided into three categories. (1) Graph-based methods
[10-12]. Those methods use graph cut to segment fluid regions. Each
OCT image can be represented as a weighted graph, each pixel corre-
sponds to anode, and the neighboring nodes are connected by weighted
edges. Two additional nodes, namely source and sink, are added to
represent fluid region and background, respectively. Each node in the
graph is connected to source and sink with a weighted edge. Finally, the
fluid regions are segmented by minimizing the energy function of the
graph cut. These methods have high computational burden, and are
sensitive to the specific of fluid region and background seed points. (2)
Traditional learning-based methods [13-16]. In these methods, a clas-
sifier is trained based on feature extraction to classify each pixel to fluid
region or background. For each sample point, a set of features, such as
textural, structural, and positional information, is calculated before the
training stage. After feature extraction, dimensionality reduction and
feature selection are used to improve the accuracy of the classifier.
During testing, the same set of features is extracted for each pixel. Each
pixel is then classified to fluid region or background using the trained
classifier. In these methods, a large number of features must be calcu-
lated to improve the accuracy of the segmentation results, thereby in-
creasing the computational burden and memory burden. These methods
cannot achieve high accuracy of segmentation results because they
limited by the feature extraction. (3) Deep learning-based methods
[7,9,17,18]. Fully convolutional network (FCN) [19] has made
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tremendous breakthroughs for biomedical image segmentation. These
methods use FCN structure, such as U-Net [20] and SegNet [21], to
segment fluid regions. FCN can accept input OCT images of any size and
use the convolutional layer to extract feature map. The deconvolution
layer is utilized to upsample the feature map of the last convolutional
layer and restore its size similar to that of the input OCT image to
generate a prediction for each pixel. The spatial information in the
original input OCT image is preserved, and per-pixel classification is
finally performed on the upsampled feature map.

In this work, we propose a method to segment fluid regions in OCT
B-scan image, and classify OCT B-scan to AMD or normal images. The
proposed method is based on FCN, where fluid regions is segmented
through the semantic segmentation of the OCT B-scan image. Our
method is constructed by integrating SE-blocks in SENet [22] with U-
Net, termed as SEUNet, to segment fluid regions on OCT image. This
paper has three main contributions. First, we propose a method that can
automatically segment fluid region by integrating SE-blocks with U-Net
structure. This method can effectively improve the segmentation results
compared with U-Net and SegNet. Second, we present effective pre-
processing through image denoising, retinal layer segmentation, and
extraction of the region of interest (ROI) and image color-reversing to
reduce the false positive rate of segmentation results. Third, this work
can classify OCT B-scan to AMD OCT and normal OCT images based on
segmentation results.

2. Methods

The proposed method is designed to automatically segment fluid
region and classify OCT images which is shown in Fig. 2. The proposed
method comprises three stages: (1) preprocessing stage that includes
image noise removal, tracking of the image on the region of interest and
image color-reversing; (2) fluid region segmentation stage that can
automatically segment fluid region; and (3) image classification stage
that classify images to AMD or normal images.

2.1. Preprocessing

In this study, we perform preprocessing for the OCT image from
three aspects: (1) BM3D denoising, (2) retinal layer segmentation, and
(3) extraction of the ROI and image color-reversing.

According to the special imaging principle of OCT images, which is
based on coherent detection, speckle noise [23] is the main source of
noise in OCT images. Speckle noise is the reason for the random dis-
tribution of the image pixel amplitude, and the resulting granular dis-
tribution structure blurs the fine features of the image, which is not
conducive to medical diagnosis. Hence, BM3D algorithm [24] is used on
each OCT image to remove speckle noise. This algorithm is a block-
matching denoising method using sparse 3D transform-domain colla-
borative filtering. The denoising process suppresses OCT speckle noise
while sharpening the image to improve the presentation of fluid region.

Gray Preprocessing bi Ouipat AMD
image mary map image
: Extraction the region
BM?D Reinal la}{er > of interest and image [—» SEUNet
Denoising Segmentation .
color-reversing
Normal
image

Fig. 2. Block diagram of the proposed method.
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Fig. 3. Sketch map of preprocessing stage. (a) OCT B-scan image. (b) Image after denoising. (c) Retinal layer segmentation. (d) ROI and image color-reversing. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

The denoising result is shown in Fig. 3(b). After the image denoising
process, the retinal region is segmented from denoised OCT image.
Fluid region is restricted to the layers between ILM and BM, the first
and last retinal layers on the retinal region, respectively. And fluid
regions are known to be restricted to the layers between ILM and BM.
Extraction ROI of retinal can improve the segmentation of fluid regions.
Various segmentation algorithms have been proposed for segmenting
retinal layers. The layer segmentation methods are based on our pre-
vious work [25] which is proposed for segment OCT image with AMD.
We modify this graph-based segmentation approach to suitably segment
retinal layers. The retinal layer segmentation results are shown in
Fig. 3(c). After retinal layer segmentation, ROI can be extracted, and
image color-reversing is implemented on the ROL The ROI is shown in
Fig. 3(d).

2.2. Fluid region segmentation

For the fluid region segmentation stage, we propose a method which
is based on U-Net and is constructed by integrating Squeeze-and-
Excitation block (SE-block) with U-Net, to segment fluid regions on
OCT B-scan images. SE-block automatically acquires the degree of im-
portance of each feature map, and then enhances the feature maps that
are useful and suppresses the useless feature maps according to the
degree of importance. SE-block mainly consists of three parts, namely,
squeeze, excitation and scale. The SE-block structure is illustrated in
Fig. 4. The squeeze operation is the global average pooling operation in

Ix1xc

SE-block, as shown in Eq. (1).
1 H W
T Wgzjjxco,n o

where u, is the c-th element of the squeezed feature map, Fy,(") is the
squeeze operation, X, is the c-th feature map of the input, and H and W
are the height and width of the input tensor, respectively.

In the subsequent excitation operation, the weights of feature maps
from input tensor are delineated. This operation is the fully connected
operation in SE-block, and is shown in Eq. (2).

Ve = Fex(uc) = o (W (6 (Wi (uc)))) 2

Ue = P;q (xc) =

where v, is the output vector of the weights of feature maps, F,, (') is the
excitation operation, o(-) is ReLU activation function, 8(}) is Sigmoid
activation function, and W; and W, denote the fully connected opera-
tion.

Finally, the scale operation rescales the input tensor according to
the output vector of the weights of feature maps. as shown in Eq. (3).

¥ = F;cale(vc) =V * Ue (3)

where y, is the output of SE-block and Fi..(") is the excitation opera-
tion.

The proposed SEUNet architecture is illustrated in Fig. 5. In the
original U-Net, we replace each convolution layer by SE-block. The
architecture consists of a contracting path and an expanding path. The
former is used to obtain context information, and the latter is used for
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—
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c

Fig. 4. Squeeze-and-Excitation block.
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Fig. 5. Proposed SEUNet architecture for depth = 5.

precise localization information. The two paths are symmetric with
each other. The proposed method can obtain precise context informa-
tion and localization information by integrating SE-block with U-Net.

The loss function in our SEUNet is the Dice loss shown Egs. (4) and
(5)

(A, B) = —logd(A, B) @
237 SV (q by
d(A, B) = — WZ > ijlf(-;ad i
izt Zj:l (ai))* 2z, Zj:l (biy)? 5)

where A is the predicted output map, a;; € {0, 1} is pixel value at point
(i, j) in A, B is the actual binary output map, b;; € {0, 1} is pixel value at
point (i, j) in B, and H and W are the height and width of the input
image, respectively.

2.3. Image classification

After segmentation of fluid regions, the OCT B-scan images can be
classified into AMD and normal images. The classification is to illustrate
the superiority of our segmentation results since AMD patients with
small fluid regions are able to segmented and classified. During testing,
the predicted output map can be obtained by the SEUNet. If all pixels of
the predicted output map belong to the background, then the OCT B-
scan image can be classified into normal image. Otherwise, even if only
one pixel is detected as fluid region, this B-scan will be classified as
AMD. As shown in Fig. 6, the predicted output map of Fig. 6(a) has
pixels belonging to fluid regions. Hence, Fig. 6(a) can be classified into
AMD image. On the contrary the pixels of the predicted output map of
Fig. 6(b) belong to the background and thus can be classified into
normal image.

3. Results and discussions
3.1. Datasets

A publicly available dataset by Rashno et al. [10] is used for the
experiments to evaluate the performance of the proposed method. This
dataset consists of 600 OCT B-scans from 24 AMD patients and is ran-
domly split into 450 training images and 150 testing images. All of the
B-scans images are captured by the Heidelberg Spectralis imaging de-
vice, and obtained by averaging 12-19 frames with a resolution of
5.88 um/pixel along the length and 3.87 um/pixel along the width. The
fluid regions are manually segmented by two experienced ophthal-
mologists from the University of Minnesota. Inter-observer Dice coef-
ficient and intersection-over-Union (IOU) coefficient for the fluid region
segmentation results on all OCT images of two experienced ophthal-
mologists are calculated as 0.894 and 0.869, respectively. For result
evaluation, using the average of experienced ophthalmologist’s manual
segmentation results for train and test the proposed network.

The training data only contained 450 OCT images which are not
abundant to train the SEUNet. Therefore, data augmentation is used to
generate sufficient training data. The training data are increased by
random translation, reflection, rotation, flipping and cropping. After
data augmentation, the total number of training data is increased to
13,500 OCT images.

3.2. Evaluation

The following four performance metrics are used to evaluate the
accuracy of fluid region segmentation as follows: IOU coefficient, Dice

coefficient, precision, recall. IOU(A, B) = ‘zcg and
Dice(A, B) = 21408 are used to quantitatively evaluate the similarity

A+ 1Bl

between segmentation results and corresponding ground truth.
. IAnBI IANBI

precision = = and recall = 5 are used to measure the correct

segmentation, where A is the segmentation result, B is the ground truth.
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Fig. 6. Image classification. The first row is B-scan images, and the second row is predicted output maps. (a) OCT B-scan image is belonging to AMD image. (b) OCT

B-scan image is classified into normal image.

Three performance metrics are used to evaluate the accuracy of OCT

image classification as follows: precision = recall

TP
TP + FP’
= _™  and accuracy = —L+IN
- Y = P ENTIN’

TP EN where TP is the number of
correctly classified as positive, TN is the number of correctly classified
as negative, FP is the number of wrongly classified as positive, and FN is

the number of wrongly classified as negative.

3.3. Results

The depth of the proposed SEUNet architecture affects the seg-
mentation results. If the depth is too small or large, then the proposed
SEUNet method cannot learn the complex features from training OCT
images. This phenomenon causes SEUNet overfitting or underfitting,
which reduces the segmentation accuracy. Table 1 shows that the
proposed SEUNet can achieve best segmentation results when the depth
is 5. Hence, the depth of proposed SEUNet architecture is set as 5.

Fluid regions segmentation results of the proposed method are
compared with the ground truth, kernel graph cut in neutrosophic
domain (KGCNE) [10], U-Net [20], SegNet [21], SegNet with SE-block.
Those methods all use the same preprocessing and loss function. The
fluid region segmentation results of four cases from the 150 test OCT
images. Our proposed method has been evaluated with respect to IOU
coefficient, Dice coefficient, precision and recall criteria. The IOU
coefficient, Dice coefficient, precision and recall are shown in Table 2,
and the best results are in bold from. As shown in Table 2, our method
achieves an IOU coefficient of 0.9035, a Dice coefficient of 0.9421,
precision of 0.9446 and recall of 0.9494. The segmentation results of
our method show improvements by average of 3.3%, 2.8%, 0.06%, and
1.4% on the IOU coefficient, Dice coefficient, precision and recall, re-
spectively, when compared with those of KGCNE, U-Net, SegNet and
SegNet with SE-block Those results indicated that the proposed

Table 1
Evaluation of the segmentation results for vary depth of ours SEUNet.
Depth = 3 Depth = 4 Depth =5 Depth = 6
10U 0.8471 0.8983 0.9031 0.8985
Dice 0.8962 0.8777 0.9418 0.9384
Parameters 0.26M 1.05M 4.21M 16.81M

Table 2
Evaluation of the segmentation results for test OCT image compare with those
of KGCNE, U-Net, SegNet and SegNet method.

KGCNE [10] U-Net [20] SegNet [21] SegNet Our method
with SE- (depth = 5)
block
10U 0.7828 0.8594 0.8542 0.8742 0.9035
Dice 0.8576 0.9028 0.9037 0.9157 0.9421
precision  0.9249 0.9440 0.9195 0.9290 0.9446
recall 0.8321 0.9012 0.9238 0.9354 0.9494

algorithm can effectively segment fluid regions in OCT B-scan images.

The qualitative are shown in Fig. 7. The first row is the ground
truth, and the second to fifth rows are the segmentation results of
KGCNE, U-Net, SegNet, SegNet with SE-block and our methods. Column
1 shows a simple case, in which the fluid region differs from the normal
tissue. The five segmentation methods expect SegNet show good per-
form-ance. Column 2 is a case where the fluid regions are similar to the
normal tissues. Under-segmentation of the fluid regions is evident in the
results of KGCNE and U-Net. Column 3 is a case wherein the part fluid
regions are small. In this case, KGCNE and U-Net methods cannot
correctly segment the fluid regions. Column 4 is a case in which the
OCT B-scan is a normal OCT image, and U-Net has wrongly segmented
the fluid regions. Therefore, the proposed method performs better than
KGCNE, U-Net, SegNet, and SegNet with SE-block for the segmentation
of fluid regions.

As shown in Table 3, the SEUNet show improvements of 27.3%,
22.8%, 15.1%, and 11.1% in the IOU coefficient, Dice coefficient,
precision and recall, respectively, when compared with SEUNet-WP.
The accuracy of our SEUNet without denoising and our SEUNet without
ROI extraction also have improved. Fig. 8 illustrates the fluid region
segmentation results of our SEUNet compared with our SEUNet without
preprocessing (SEUNet-WP), our SEUNet without denoising and our
SEUNet without ROI extraction. The cases in first row are the ground
truths, the second row are the SEUNet-WP’s results, the third row are
the values of our SEUNet without denoising, the fourth row are the the
values of SEUNet without ROI extraction and the fifth row are the our
SEUNet’s values. For the first cases in column 1, the fluid region seg-
mentation of our SEUNet-WP and our SEUNet without ROI extraction
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Fig. 7. Fluid regions segmentation results from different methods. Column 1 to 4 are different cases. The first to sixth rows are the segmentation results of ground
truth, KGCNE, U-Net, SegNet, SegNet with SE-block and SEUNet methods, respectively.

has failed. The regions segmented by SEUNet-WP and SEUNet without
ROI extraction are found in Choroid under BM. Fluid regions are re-
stricted to the layers between ILM and BM, hence, this result is error.
Our SEUNet with preprocessing can ignore the regions above ILM and
under BM. The results of our SEUNet without ROI extraction are more
badly, because some Choroid regions are similar to fluid regions after
the denoising steps. For the second case in column 2, the SEUNet-WP
and SEUNet without ROI extraction method cannot segment fluid re-
gions. For the third case, under-segmentation of the fluid regions is
evident in the segmentation results of SEUNet-WP and SEUNet without
ROI extraction. While, the segmentation results of our SEUNet without
denoising have some unsegmented points. This unsegmented point is

noise point in fluid regions. The results indicate that the preprocessing
method plays an important role in our segmentation pipeline.

In order to verify the effectiveness of the SEUNet, Our SEUNet can
classify OCT B-scan images into normal and AMD images. The predicted
output map can be obtained by the SEUNet. If all pixels of the predicted
output map belong to the background, then the OCT B-scan image is
classified into normal image. Otherwise, even if only one pixel is de-
tected as fluid region, this B-scan will be classified as AMD. The image
classification results for 150 test OCT images are shown in Table 4. The
numbers of OCT B-scan images misclassified by KGCNE, U-Net, SegNet,
and SEUNet-WP are 5, 4, 4, and 7, respectively. In our SEUNet, one
normal image is classified into AMD image, all AMD images are

Table 3
Evaluation of the segmentation results for test OCT image compare with our SEUNet-WP, our SEUNet without denoising and our SEUNet without ROI extraction
method.
Our SEUNet-WP (depth = 5) Our SEUNet without denoising (depth = 5) Our SEUNet without ROI extraction (depth = 5) Our SEUNet (depth = 5)

10U 0.7095 0.8948 0.7127 0.9035

Dice 0.7670 0.9221 0.7761 0.9421

precision 0.8210 0.9260 0.8353 0.9446

recall 0.8543 0.9323 0.8605 0.9494
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Fig. 8. Fluid regions segmentation results of our methods. Column 1 to 3 are different cases. The first to fifth rows are the segmentation results of ground truth, our
SEUNet-WP, our SEUNet without denoising, our SEUNet without ROI extraction and our SEUNet method.

Table 4
The image classification results of the 150 test OCT images.
precision recall accuracy

KGCNE [10] 0.967 0.977 0.967
U-Net [20] 0.977 0.977 0.973
SegNet [21] 0.967 0.988 0.973
SegNet with SE-block 0.977 0.988 0.98
SEUNet-WP (depth = 5) 0.946 0.977 0.953
SEUNet (depth = 5) 0.989 1 0.993

classified correctly. The results of classification indicate that our
SEUNet method can classify OCT B-scan images into normal and AMD
image.

4. Conclusions

In this paper, a method constructed by integrating SE-blocks with U-
Net (termed as SEUNet) is proposed for segmentation of fluid regions in
OCT images. The proposed method comprises three stages: (1) pre-
processing stage that includes image noise removal, tracking of the
image on the region of interest and image color-reversing; (2) fluid
region segmentation stage that can automatically segment fluid region;
and (3) image classification stage that classify images to AMD or normal

images. The segmentation results show that the proposed SEUNet has
an average IOU coefficient of 0.9035, an average Dice coefficient of
0.9421, an average precision of 0.9446, and an average recall of
0.9494. The classification results show that the proposed SEUNet has an
average precision of 0.989, an average recall of 1, and an average ac-
curacy of 0.993. Compared with KGCNE, U-Net, SegNet, SegNet with
SE-block, and SEUNet-WP, our proposed method achieved the state-of-
the-art performance in this public dataset for the segmentation of OCT
images. Moreover, we proved the effectiveness of SE-Block in the seg-
mentation task in this paper, especially for the OCT image segmenta-
tion. Finally, our method provided a powerful pipeline for fluid seg-
mentation, which plays an important role in ophthalmic disease
assisted diagnosis in future. In future work, we will continue to adding
more effective network structure to improve the performance of our
network and we will extend the proposed method to segment of fluid
regions in OCT B-scan images of other kinds of eye diseases, such as
diabetic macular oedema, and central serous retinopathy.
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