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a b s t r a c t

This paper presents an ensemble neural network and interval neutrosophic sets approach to the

problem of binary classification. A bagging technique is applied to an ensemble of pairs of neural

networks created to predict degree of truth membership, indeterminacy membership, and false

membership values in the interval neutrosophic sets. In our approach, the error and vagueness are

quantified in the classification process as well. A number of aggregation techniques are proposed in this

paper. We applied our techniques to the classical benchmark problems including ionosphere, pima-

Indians diabetes, and liver-disorders from the UCI machine learning repository. Our approaches improve

the classification performance as compared to the existing techniques which applied only to the truth

membership values. Furthermore, the proposed ensemble techniques also provide better results than

those obtained from only a single pair of neural networks.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

Neural network is one of the most popular algorithms used for
binary classification. A binary neural network maps the input
feature vector to the network output consisting of two classes.
Hansen and Salamon [19] suggested that an ensemble of accurate
and diverse neural networks gives better results and less error
than a single neural network. Diversity of two classifiers is said to
exist when both classifiers produce different amount of output
errors based on new input data [12]. Diversity can also be
described as ‘‘disagreement’’ of the classifiers [32]. In general,
there are two stages to create an ensemble of neural networks.
First, several diverse neural networks are trained. Second, the
outputs obtained from the ensemble of networks are aggregated.
There are various techniques to produce accurate and diverse
neural networks. For example, two different initial weights used
to initialize two backpropagation neural networks can produce
disagreement between the networks [25]. In [24], an ensemble
architecture was constructed automatically by applying different
number of hidden nodes in order to find the most accurate
ensemble of neural networks. On the other hand, the best
diversity in the ensemble was found by using negative correlation
learning and different training epochs.

Furthermore, diversity in an ensemble of neural networks can
also be handled by manipulation of input data or output data.
ll rights reserved.
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Manipulation of input data can be done in several ways such as
managing the number of input features and handling training data
in different ways and combinations. For instance, Zenobi and
Cunningham [41] applied different feature subsets in order to create
diversity in an ensemble. They also found that a diverse ensemble of
less accurate classifiers outperforms an ensemble of more accurate
classifiers but with less diversity. In order to handle the training
data, several algorithms can be used. For example, bagging and
boosting algorithms can be used to manage training data for
supporting diversity in an ensemble. Bagging is based on bootstrap
resampling which provides diversity by random replacement based
on the original training data [9]. The objective is to derive several
training sets with the replacement while maintaining the same
number of training patterns as the original set. Boosting provides
diversity by manipulating each training set according to the
performance of the previous classifier [36]. In addition, diversity
can be provided by applying artificial training samples. Melville and
Mooney [32] built a different training set for each new classifier by
adding artificially constructed samples to the original training data.
In order to construct sample labels, they assigned the class label
that disagrees with the current ensemble to the constructed sample
label. An example algorithm that manipulates diversity using
output data is error correcting output coding. In this algorithm, a
unique codeword is created for each class label and it is used as a
distributed output representation [13].

Ensemble of neural networks can improve the accuracy of
classification performances. However, imperfection still exists.
Imperfection always exists in real world data and also in the
prediction process. In order to improve the accuracy in the binary
neural network classification, assessment of imperfection in the
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classification is an important task. The degree of imperfection
may be used as an indication of the level of quality in the
classification. Smets [38] categorized imperfection into three
major aspects: imprecision, inconsistency, and uncertainty. He
suggested that imprecision occurs if several worlds are compa-
tible with the available information whereas inconsistency
happens when there is no world agreeable to the information.
Uncertainty occurs when there is a lack of information about the
world for deciding if the statement is true or false. These three
aspects are related to one another. For instance, imprecision in the
data is a major cause of uncertainty [38]. Examples of imprecision
are ambiguity, error, and vagueness. Ambiguity occurs when the
decision deals with doubt. Errors can result from several sources
such as measurement, data entry, or processing [17]. Vagueness
deals with the concept of boundaries which cannot be defined
precisely [15]. Vague objects can be categorized into three types:
vague point, vague line, and vague region [14]. In this study, we
consider the output of the prediction as vague point, which is a
finite set of disjoint sites with known location, but the existence of
the sites may be uncertain.

A variety of methods are used to deal with these causes of
uncertainty. These include stochastic models, probability theory,
supervaluation theory, and fuzzy logic [15,17,18,30]. These meth-
ods deal with different causes of uncertainty to different degrees
of success. Although probability theory is best suited in dealing
with error, stochastic models can also be used [17]. However,
stochastic models are not good at handling vagueness because
phenomena are assumed to be crisp [16]. Fuzzy set theory is
suitable when the uncertainty arises from vagueness [17,16].
Supervaluation is also used to deal with vagueness [30].
Furthermore, neural networks can also be used to deal with
errors. In [37], Generalized Regression Neural Networks (GRNN) is
used to predict errors from known errors obtained from training
neural networks. These predicted errors were then used as
dynamic weights in the determination of results from the
ensemble of neural networks.

In this paper, we start our experiment by applying two feed-
forward backpropagation neural networks trained with the same
input data and same parameters, but they disagree in the output
target. The number of hidden neurons used in the hidden layer is
one of the major issues to establish a feed-forward neural
network. There are many algorithms used to determine the
number of hidden neurons. For example, a neuron can be
automatically created or removed from the hidden layer according
to some conditions. For example, the threshold value can be
compared to the training error rate [3,20], or a set of rules can be
created based on the error values [6]. The result of the comparison
or the satisfaction of the rules can be used to adjust the number of
neurons. In [31,34], the number of hidden neurons was deter-
mined based on the evolutionary programming. In [23], Igelnik
and Pao estimated the size of hidden layer on basis of bound of
generalization error. In [8], the number of hidden neurons can be
determined based on the analysis of variance of the input data set.
In [7], the sufficient number of hidden neurons was calculated as
dM=De where M denotes the number of training patterns and D

denotes the dimension of the input vectors. On the contrary, in [5],
the number of hidden neurons was computed as 2dM=De.
However, M � 1 hidden neurons were found to be sufficient in
[21,35]. On the other hand, in [22], at least two dimensional
hidden neurons were found to be sufficient for approximating the
posteriori probability in binary classification problem with
arbitrary accuracy. In our experiment, we want to concentrate
on our proposed technique without varying the parameters that
are not involved in our technique. Hence, the number of hidden
neurons are freezed by applying two dimensional hidden neurons
to all our experiments. After the neural network environment is
controlled, a pair of disagreement classifiers are created. The
results obtained from our technique are compared to the results
obtained from a single neural network which deals only with the
truth membership values. After that, we apply this technique to
ensemble neural networks.

An ensemble of pairs of neural networks is created in order to
improve classification performance of a single pair of networks. A
bagging technique is also applied to the ensemble in order to
manage diversity using input data. The number of component
networks is one of the major issues when using a bagging
technique. In [33], Opitz and Maclin argued that errors are much
reduced if the number of component networks in an ensemble is
greater than ten to fifteen. They also found that error reduction
plateaus at twenty-five networks. Chawla et al. [10] suggested
that improvement plateaus in the range of 30–50 classifiers. From
these reports, in order to minimize error, 30 component networks
are used in this paper.

Furthermore, errors and vagueness occurred in the prediction
are also considered in this paper. These two causes of uncertainty
are quantified in order to enhance the classification results. In our
study, only errors occurred in the prediction process are
considered. For vagueness, we consider the output obtained from
the prediction as vague point since the input features are known
but the degree of the existence of the output is uncertain. In order
to represent imperfection information in the binary neural
network classification, interval neutrosophic sets are used in this
paper.

The rest of this paper is organized as follows. Section 2
presents the basic theory of interval neutrosophic sets. Section 3
explains the proposed techniques for the binary neural network
classification with the assessment of error and vagueness.
Section 4 describes the data set and the results of our
experiments. Conclusions and future work are presented in
Section 5.
2. Interval neutrosophic sets

In our previous papers [26–29], we combined neural networks
with interval neutrosophic sets in order to classify prediction of
mineral prospectivity from a set of data into deposit or
barren cells. We found that an interval neutrosophic set can
represent uncertainty information and supports the classification
quite well. In this paper, we aim to integrate interval neutrosophic
sets with neural networks in order to express uncertainty in
the binary classification to the classical benchmark data and
problems.

An interval neutrosophic set is an instance of a neutrosophic
set, which is generalized from the concept of classical set, fuzzy
set, interval valued fuzzy set, intuitionistic fuzzy set, interval
valued intuitionistic fuzzy set, paraconsistent set, dialetheist set,
paradoxist set, and tautological set [40]. The membership of an
element in the interval neutrosophic set is expressed by three
values: truth membership, indeterminacy membership, and false
membership. The three memberships are independent. In some
special cases, they can be dependent. In this study, the
indeterminacy membership depends on both truth and false
memberships. The three memberships can be any real sub-unitary
subsets and can represent imprecise, incomplete, inconsistent,
and uncertain information [40]. In this paper, the memberships
are used to represent only uncertain information. For example, let
S be an interval neutrosophic set, then yð75; f25;35;40g;45Þ
belongs to S means that y is in S to a degree of 75%, y is uncertain
to a degree of 25% or 35% or 40%, and y is not in S to a degree of
45%. This research follows the definition of interval neutrosophic
sets that is defined in [39]. This definition is described below.
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Let Y be a space of points (objects). An interval neutrosophic
set S in Y is defined as

S ¼ fyðTSðyÞ; ISðyÞ; FSðyÞÞj; y 2 S ^ TS : Y�!½0;1�^

IS : Y�!½0;1� ^ FS : Y�!½0;1�g (1)

where TS is the truth membership function, IS is the indetermi-
nacy membership function and FS is the false membership
function.
Falsity NN
Training data

False
memberships

Training errors
Complement of
target outputs

Fig. 2. The proposed training neural networks based on interval neutrosophic sets.
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Fig. 3. The proposed model of error and vagueness estimation.
3. Proposed methodologies for binary classification

3.1. Binary classification using interval neutrosophic sets and a pair

of neural networks

In this experiment, a pair of neural networks is trained to
predict degree of truth membership and false membership values.
The indeterminacy membership represents two causes of un-
certainty, which are error and vagueness. The three memberships
form an interval neutrosophic set, which is used for binary
classification. Fig. 1 shows our proposed model that consists of a
set of input feature vectors, two neural networks, and a process of
indeterminacy estimation. The output of this model is represented
in the form of an interval neutrosophic set in which each cell in
the output consists of three values: truth membership,
indeterminacy membership, and false membership values.

Let X be an output of the proposed model. X ¼ fx1; x2;

. . . ; xi; . . . ; xng where xi is a cell at location i, and n is the
total number of cells. An interval neutrosophic set A in X can be
written as

A ¼ fxðTAðxÞ; IAðxÞ; FAðxÞÞj; x 2 X ^ TA : X�!½0;1�^

IA : X�!½0;1� ^ FA : X�!½0;1�g (2)

where TA is the truth membership function, IA is the indetermi-
nacy membership function, and FA is the false membership
function.

The truth neural network (Truth NN) is a neural network that is
trained to predict degree of the truth memberships. The falsity
neural network (Falsity NN) is also a neural network with the
same inputs and architecture as the truth neural network but this
network is trained to predict degree of false memberships using
the complement of target outputs used in the training data of the
truth network. For example, if the target output used to train the
truth neural network is 1, the complement of this target output is
0. Fig. 2 shows the proposed training model used for binary
classification. Training errors obtained from both networks will be
used to estimate uncertainty of type error in the prediction of new
input data.

In the test phase, the test or unknown input data are applied to
the two networks in order to predict degree of truth and false
membership values. For each input pattern, the false membership
Truth NN

Falsity NN

Indeterminacy
estimation

Input feature vectors

Truth
memberships

False
memberships

Indeterminacy
memberships

Output

Fig. 1. The proposed binary classification based on neural networks and interval

neutrosophic sets.
value is supposed to be the complement of the truth membership
value. However, both predicted membership values may not be
100% complement to each other. Vagueness may occur in the
boundary between these two memberships. Furthermore, errors
may occur in the prediction of both truth and false membership
values. This research deals with these two causes of uncertainty,
which are vagueness and error. Fig. 3 shows our proposed model
of error and vagueness estimation. The techniques used to
estimate these uncertainty values are described below.
�
 Vagueness estimation
In this paper, we consider the output as vague point. The input
features are known but the degree of the existence of the
output is uncertain. In each output pattern, the truth and false
membership values are supposed to be complement to each
other. If the truth membership value is 1 and the false
membership value is 0 (or vice-versa) then the vagueness
value is 0. However, both predicted membership values may
not completely complement to each other. Vagueness may
exist in the output. Fig. 4 shows the relationship among the
truth membership, false membership, and vagueness values.
The highest vagueness value occurs when the truth and false
membership values are equal. Consequently, we compute the
vagueness value as the difference between the truth
membership and false membership values. If the difference
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between these two values is high then the vagueness is low. On
the other hand, if the difference is low then the vagueness
value is high.
Let TðxiÞ be a truth membership at cell xi. Let FðxiÞ be a false
membership at cell xi. Let VðxiÞ be a vagueness value at cell xi.
For each cell xi, the vagueness value (VðxiÞ) can be defined as
follows:

VðxiÞ ¼ 1� jTðxiÞ � FðxiÞj. (3)
�
 Error estimation
Errors can occur during training process. In this experiment,
errors obtained from training process are used to estimate
errors in the testing process. Fig. 5 shows our proposed error
estimation technique. In order to estimate errors in the
prediction of truth memberships, the known errors obtained
from the truth neural network are plotted in the feature space
of the input data layers. Hence, we have to deal with
multidimensional space. Two methods are proposed to
quantify the estimated errors. First, multidimensional
interpolation [1] is used to estimate the errors. Second,
scaling technique [11] is used to reduce high dimensional
space into low dimensional space, and then a low dimensional
interpolation method [2] is used to calculate the interpolated
errors. If the multidimensional space is not too high, the first
technique is suitable to apply for the interpolation. In contrast,
if the multidimensional space is very high and the computer
. 4. The relationship among the truth membership, false membership, and

ueness values.

Truth error
estimation

Falsity error
estimation

Unknown dataTraining data

Known errors
 the truth network

Known errors
the falsity network

Estimated errors of the truth
membership prediction

Estimated errors of the false
membership prediction

Fig. 5. The proposed error estimation technique.
used in the experiment has a limited memory, the second
technique is more suitable to apply for the interpolation.
Estimated errors in the prediction of false memberships are
also calculated in the same way as the estimated errors
obtained from the truth neural network. The known errors
obtained from training of the falsity neural network are plotted
in the multidimensional feature space of the training input
patterns. After that, an interpolation technique is used to
estimate errors in the prediction of false memberships for the
unknown input patterns.
After vagueness and error are estimated, the indeterminacy
membership for each cell xi is formed from these two types of
uncertainty. Let IðxiÞ be an indeterminacy membership at cell
xi. For each cell xi, the indeterminacy membership ðIðxiÞÞ can be
defined as follows:

IðxiÞ ¼ fVðxiÞ; EtðxiÞ;Ef ðxiÞg (4)

where VðxiÞ is the vagueness value obtained from Eq. (3), EtðxiÞ

is the estimated error in the prediction of truth membership,
and Ef ðxiÞ is the estimated error in the prediction of false
membership.

After the three memberships are created in the test phase, the
next step is to classify the predicted outputs into a binary class.
Instead of using only the truth membership for the binary
classification, the following are our proposed binary classification
techniques using the truth membership, false membership, and
indeterminacy membership values.
(1)
 Binary classification using T4F: For each cell xi, if the truth
membership value is greater than the false membership value
ðTðxiÞ4FðxiÞÞ then the cell is classified as a value 1. Otherwise,
the cell is classified as a value 0.
(2)
 Binary classification using equal weighted combination: In
this method, the truth membership and the complement of
the false membership for each cell are combined using a
simple averaging method. The combined output OðxiÞ can be
computed as the following:

OðxiÞ ¼
TðxiÞ þ ð1� FðxiÞÞ

2
(5)

In order to classify the cell into a binary class, we apply the
threshold value to classify the cell type. A range of threshold
values ranging from 0.1 to 0.9 in steps of 0.1 are created and
compared to the output OðxiÞ. If the output is greater than the
threshold value then the cell is classified as a value 1.
Otherwise, the cell is classified as a value 0. The threshold
value that can produce the best accuracy in the classification
will be used in the prediction. In general, the most widely
used threshold value is 0.5.
(3)
 Binary classification using dynamic weighted combination: In
this method, uncertainty of type error is also considered in the
classification. Estimated errors are used for weighting the
combination between the truth and false membership values.
The weight is dynamically determined based on both
estimated errors: EtðxiÞ and Ef ðxiÞ. The weight for the truth
membership is computed as the complement of the error
estimated for the truth membership. The weight for the false
membership is calculated as the complement of the error
estimated for the false membership. These two types of
weight are considered as the certainty in the prediction of the
truth and false membership values, respectively. In this study,
the certainty for predicting the false membership is consid-
ered to be equal to the certainty for predicting the non-false
membership value, which is the complement of the false
membership value. Let WtðxiÞ be the weight for the truth
membership value, Wf ðxiÞ be the weight for the false
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membership value, and Wnon�f ðxiÞ be the weight for the non-
false membership value. In this study, we consider the
weight for the false membership value is equal to the weight
for the non-false membership value ðWf ðxiÞ ¼Wnon�f ðxiÞÞ. The
dynamic combination output OðxiÞ can be calculated as
follows:

OðxiÞ ¼ ðWtðxiÞ � TðxiÞÞ þ ðWf ðxiÞ � ð1� FðxiÞÞÞ (6)

WtðxiÞ ¼
1� EtðxiÞ

ð1� EtðxiÞÞ þ ð1� Ef ðxiÞÞ
(7)

Wf ðxiÞ ¼
1� Ef ðxiÞ

ð1� EtðxiÞÞ þ ð1� Ef ðxiÞÞ
(8)

Instead of using only errors, this technique can be
improved by applying both error and vagueness calculated
for weighting the combination between the truth and false
membership values. Hence, the average between both error
and vagueness is computed and used as uncertainty in the
prediction. Let UtðxiÞ and Uf ðxiÞ be the average uncertainty in
the prediction of the truth and false membership values,
respectively. Let WttðxiÞ and Wff ðxiÞ be the weight for the truth
and false membership values, respectively. Therefore, the
dynamic combination output OðxiÞ can be calculated as
follows:

OðxiÞ ¼ ðWttðxiÞ � TðxiÞÞ þ ðWff ðxiÞ � ð1� FðxiÞÞÞ (9)

WttðxiÞ ¼
1� UtðxiÞ

ð1� UtðxiÞÞ þ ð1� Uf ðxiÞÞ
(10)

Wff ðxiÞ ¼
1� Uf ðxiÞ

ð1� UtðxiÞÞ þ ð1� Uf ðxiÞÞ
(11)

UtðxiÞ ¼
EtðxiÞ þ VðxiÞ

2
(12)

Uf ðxiÞ ¼
Ef ðxiÞ þ VðxiÞ

2
(13)

Similar to the previous method, a range of threshold values
are applied to the output OðxiÞ. If the output is greater than the
threshold value then the cell is classified as a value 1.
Otherwise, it is classified as a value 0.
3.2. Binary classification using interval neutrosophic sets and

bagging neural networks

In this approach, we apply interval neutrosophic sets, en-
semble neural networks, and a bagging technique to the binary
classification. A bagging technique is used to train neural
networks in the ensemble. The bagging algorithm uses bootstrap
resampling to generate multiple training sets. In this study, each
bootstrap sample is created by random selection of input patterns
from the original training data set with replacement. Hence, each
generated training set may contain some repeated samples. Also,
some original input patterns may not be included in the generated
training set at all. However, each generated training set contains
the same number of training patterns as the original data set.
Fig. 6 shows our proposed training model based on interval
neutrosophic sets, ensemble neural networks, and a bagging
technique. Each component in the ensemble consists of a pair of
neural networks which are the truth neural network (Truth NN)
and the falsity neural network (Falsity NN). Both networks apply
the same architecture and use the same generated training set for
training. The truth network is trained to predict degrees of truth
membership. The falsity network is trained to predict degrees of
false membership. This network is trained with the complement
of the target output values presented to the truth neural network.
Similar to our method presented in the previous section, errors
obtained from both networks can be used to estimate errors in the
prediction of unknown data. Therefore, m components in the
ensemble produce m pairs of truth and falsity neural networks.

In the test phase, the test data is applied to m pairs of truth and
falsity networks. Each pair of the truth and falsity networks
predict n pairs of the truth and false membership values, where n

is the total number of test data. Fig. 7 shows our proposed binary
classification model based on the integration of interval
neutrosophic sets with bagging neural networks and uncertainty
estimation. Similar to the previous section, vagueness may occur
in the boundary between the truth and false memberships
obtained from each pair of the networks in the ensemble. Errors
also exist in the predictions. In order to estimate vagueness and
error in the prediction, we apply the same technique as the
technique applied in the previous section. Therefore, vagueness is
computed from the difference between the truth and false
membership values. Errors are estimated using the interpolation
techniques. We consider the output from each component as an
interval neutrosophic set.

Let Xj be an output of the j-th component, where
j ¼ 1;2;3; . . . ;m. Let Aj be an interval neutrosophic set in Xj. Aj
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can be defined as

Aj ¼ fxðTAj
ðxÞ; IAj

ðxÞ; FAj
ðxÞÞj; x 2 Xj ^ TAj

: Xj�!½0;1�^

IAj
: Xj�!½0;1� ^ FAj

: Xj�!½0;1�g (14)

IjðxiÞ ¼ fVjðxiÞ; EtjðxiÞ; Ef jðxiÞg (15)

VjðxiÞ ¼ 1� jTAj
ðxiÞ � FAj

ðxiÞj (16)

where TAj
is the truth membership function, IAj

is the indetermi-
nacy membership function, FAj

is the false membership function,
Vj is the vagueness value, Etj

is the estimated error in the
prediction of truth membership, and Ef j

is the estimated error in
the prediction of false membership.

The next step is to combine the outputs from all components in
the ensemble and then classify the cell into a binary class. In this
study, we propose two methods for combining the outputs.
(1)
 Averaging based on truth and false memberships: Four
techniques using averaging are proposed and described below.

(a) Average based on T4F: In this technique, the truth
membership values obtained from all components are
averaged. The false membership values obtained from all
components are also averaged. Let TavgðxiÞ be an average
truth membership value for the cell at location i. Let
FavgðxiÞ be an average false membership value for the cell
at location i. TavgðxiÞ and FavgðxiÞ can be defined as
following:

TavgðxiÞ ¼

Pm
j¼1 TAj

ðxiÞ

m
(17)

FavgðxiÞ ¼

Pm
j¼1 FAj

ðxiÞ

m
(18)

After the average truth membership and the average false
membership are computed, these two values are com-
pared in order to classify the cell into a binary class. If the
average truth membership value is greater than the
average false membership value ðTavgðxiÞ4FavgðxiÞÞ then
the cell is classified as a value 1. Otherwise, the cell is
classified as a value 0.

(b) Average based on equal weighted combination: In this
technique, the average truth membership value and the
complement of the average false membership value are
combined using a simple averaging technique. The
combined output OðxiÞ can be computed as following:

OðxiÞ ¼
TavgðxiÞ þ ð1� FavgðxiÞÞ

2
(19)

In order to classify the cell into a binary class, the
threshold value is applied. A range of threshold values
ranging from 0.1 to 0.9 in steps of 0.1 are created and
compared to the output OðxiÞ. If the output is greater than
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the threshold value then the cell is classified as a value 1.
Otherwise, the cell is classified as a value 0. The threshold
value that can produce the best accuracy in the classifica-
tion can be used in the prediction.

(c) Dynamic weighted average based on T4F: In this
technique, the truth membership and false membership
values are weighted before averaging. The weight can be
created based on members of the indeterminacy member-
ship. In this study, we found that the weight created based
on vagueness provide better results than the weight
created based on only errors or both error and vagueness
values. In our technique, the estimated errors are created
based on the input patterns. In a bagging technique, only
some input patterns are selected for training. Hence, only
some known errors are used in the interpolation in order
to find the interpolated errors. Therefore, the estimated
errors may not give us the best results for weighting.
Consequently, we create the weight based on the vague-
ness value ðVjðxiÞÞ. Let PðxiÞ be an average truth member-
ship value based on weights. Let Q ðxiÞ be an average false
membership value based on weights. WjðxiÞ be the weight
based on vagueness value at the j-th component. P, Q, and
W can be defined as following:

PðxiÞ ¼
Xm

j¼1

ðWjðxiÞ � TAj
ðxiÞÞ (20)

Q ðxiÞ ¼
Xm

j¼1

ðWjðxiÞ � FAj
ðxiÞÞ (21)

WjðxiÞ ¼
1� VAj

ðxiÞPm
j¼1 ð1� VAj

ðxiÞÞ
(22)

After the dynamic weighted average truth membership
value and the dynamic weighted average false member-
ship value are computed for each input pattern, these two
values are compared. If the average truth membership
value is greater than the average false membership value
ðPðxiÞ4Q ðxiÞÞ then the input pattern is classified as a value
1. Otherwise, it is classified as a value 0.

(d) Dynamic weighted average based on equal weighted
combination: In this technique, the dynamic weighted
average truth membership value PðxiÞ and the comple-
ment of the dynamic weighted average false membership
value Q ðxiÞ are combined using a simple averaging
technique. The combined output OðxiÞ can be computed
as following:

OðxiÞ ¼
PðxiÞ þ ð1� Q ðxiÞÞ

2
(23)

After that, the combined output is compared to a range of
threshold values. If the output is greater than the thresh-
old value then the cell is classified as a value 1. Otherwise,
the cell is classified as a value 0. The threshold value that
can produce the best accuracy in the classification can be
used in the prediction.
(2)
 Majority vote based on truth and false memberships: Three
techniques using majority vote are proposed and described
below.

(a) Majority vote based on T4F: In this technique, each pair
of the truth and falsity neural networks produces a
separate classification. For each cell xi in the output of
the j-th component, if the truth membership value is
greater than the false membership value ðTAj

ðxiÞ4FAj
ðxiÞÞ

then the cell is classified as a value 1. Otherwise, the cell is
classified as a value 0. Once each cell in each output is
classified, the majority vote is then applied to the
ensemble outputs for each input pattern. If at least half
of the outputs yield a value 1 then the cell corresponding
to the input pattern is classified as a value 1. Otherwise,
the cell is classified as a value 0.

(b) Majority vote based on equal weighted combination: In
this technique, the truth membership and the comple-
ment of the false membership values for each cell in each
output are combined using a simple averaging method.
Let OjðxiÞ be the combined output for the cell xi at the j-th
component. OjðxiÞ can be computed as following:

OjðxiÞ ¼
TAj
ðxiÞ þ ð1� FAj

ðxiÞÞ

2
(24)

A range of threshold values are then compared to the
result of the combination, OjðxiÞ. In this study, we found
that the threshold value that frequently produces the best
accuracy in the classifications is 0.5. Hence, we decided to
apply the threshold value of 0.5 for the classification for
all components in the ensemble. If OjðxiÞ is greater than
0.5 then the cell xi is classified as a value 1. Otherwise, the
cell is classified as a value 0. After that, the majority vote is
used to make a final classification. If at least half of the
outputs yield a value 1 then the cell xi is classified as a
value 1. Otherwise, the cell is classified as a value 0.

(c) Majority vote based on dynamic weighted combination:
In this technique, each cell xi in the output of the j-th
component is considered. Hence, we cannot use a
vagueness value for weighting each pair of the truth and
false membership values. Therefore, estimated errors:
EtjðxiÞ and Ef jðxiÞ are applied in the classification. These
two estimated errors are used for weighting the combina-
tion between the truth and false membership values for
each cell xi at the j-th component. The weights created for
the truth and false memberships are computed as the
complement of the estimated errors in the prediction of
the truth and false memberships, respectively. These two
types of weight are considered as the certainty in the
prediction. In this study, the certainty for predicting the
false membership is equal to the certainty for predicting
the non-false membership value.
Let WtjðxiÞ be the weight for the truth membership value
at cell xi in the j-th component, Wf jðxiÞ be the weight for
the false membership value at cell xi in the j-th
component. In this technique, both weights for the false
and non-false membership values are equal. The dynamic
combination output OjðxiÞ at cell xi in the j-th component
can be calculated as follows:

OjðxiÞ ¼ ðWtjðxiÞ � TAj
ðxiÞÞ þ ðWf jðxiÞ � ð1� FAj

ðxiÞÞÞ (25)

WtjðxiÞ ¼
1� EtjðxiÞ

ð1� EtjðxiÞÞ þ ð1� Ef jðxiÞÞ
(26)

Wf jðxiÞ ¼
1� Ef jðxiÞ

ð1� EtjðxiÞÞ þ ð1� Ef jðxiÞÞ
(27)

After that, a range of threshold values are compared to the
output and then the majority vote is used to classify the cell.
4. Experiments

4.1. Data set

Three data sets from UCI Repository of machine learning data
sets [4] are employed in this paper. Table 1 shows the
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Table 2
The percentage of average classification accuracy for the test set obtained by

applying our techniques and the existing techniques.

Technique Ionosphere % correct Pima % correct Liver % correct

Single pair of NNs

T40:5 93.54 70.49 62.68

T4F 96.42 74.74 66.52

Equal weight 96.42 74.74 66.52

Dynamic weight

Error 96.32 74.92 66.59

Error and vagueness 96.42 74.95 67.03

Table 1
Data sets used in this study.

Name Feature

type

No. of

classes

No. of

features

Size of

samples

Size of

training set

Size of

testing set

Ionosphere Numeric 2 34 351 200 151

Pima Numeric 2 8 768 576 192

Liver Numeric 2 6 345 276 69
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characteristics of these three data sets including the size of
training and testing data used in our experiments.
Ensemble of pairs of NNs and averaging

T40:5 96.56 77.16 69.93

T4F 97.55 77.81 74.64

Equal weight 97.55 77.81 74.64

Dynamic weight

T4F 97.48 77.96 74.13

Equal weight 97.48 77.96 74.13

Ensemble of pairs of NNs and majority vote

T40:5 96.56 76.02 69.93

T4F 97.52 77.66 73.99

Equal weight 97.52 77.66 73.99

Dynamic weight 97.42 78.89 73.19
4.2. Experimental methodology and results

In this paper, three data sets named ionosphere, pima, and liver
from UCI Repository are used to test our proposed models. Each
data set is split into a training set and a testing set as shown in
Table 1. In the binary classification using a single pair of neural
networks, twenty pairs of feed-forward backpropagation neural
networks are trained with 20 different randomized training sets in
order to provide an average of 20 classification results.

In the binary classification using an ensemble of pairs of neural
networks, 20 ensembles are also created in order to provide an
average of 20 classification results. For each ensemble, 30
generated training sets are created using bootstrap resampling
with replacement and applied to 30 components in the ensemble.
For each component, a pair of feed-forward backpropagation
neural networks is trained in order to predict degree of truth
membership and degree of false membership values.

For each pair of neural networks in both single and ensemble
techniques, the first network is used as the Truth NN whereas the
second network is used as the Falsity NN. The truth network
predicts degrees of truth membership. The falsity network
predicts degrees of false membership. In this paper, we want to
focus on our technique that aims to increase diversity by creating
a pair of opposite networks. Therefore, both networks apply the
same parameter values and are initialized with the same random
weights. The number of input-nodes for each network is equal to
the number of input features for each training set. Both networks
include one hidden layer constituting of 2n neurons where n is the
number of input features. The only difference for each pair of
networks is that the target outputs of the falsity network are equal
to the complement of the target outputs used to train the truth
network. In order to compare all techniques created in this paper,
we apply the same architecture and parameters for all pairs of
neural networks.

In the test phase, after each pair of truth and false member-
ships is predicted, the indeterminacy memberships are then
estimated. For the results obtained from a single pair of networks,
Eq. (3) is used to compute the vagueness value whereas Eq. (16) is
used for the results obtained from the proposed ensemble
technique.

Errors in the prediction of truth and false memberships are
estimated using interpolation techniques. In this paper, the
multidimensional interpolation technique is applied to the liver
data set. For the ionosphere and pima data sets, the scaling
technique is applied in order to reduce high dimensional space
into two dimensional space and then the two dimensional
interpolation technique is used to estimate the interpolated
errors.

After the three memberships are determined, these member-
ship values are used for binary classification. All our proposed
classification techniques explained in the previous section are
then applied to the three membership values. Table 2 shows the
comparison between results obtained from our proposed
techniques and results obtained from the existing techniques.
This table is separated into three parts. The first part shows the
comparison between the average classification accuracy obtained
by applying 20 pairs of truth and falsity neural networks, and the
average classification accuracy obtained by applying 20 single
truth neural networks. For each test set, we found that the results
obtained from our proposed techniques outperform the results
obtained from the existing technique, T40:5. Our proposed
techniques using T4F and using equal weighted combination
are found to provide the same results for each test set used in this
study. Both techniques provide better results when compared to
the existing technique. However, they give us different
advantages. The technique based on T4F gives us discrete
results (1 or 0) whereas our technique using equal weighted
combination gives us continuous results. Hence, both techniques
are suitable for different applications. Our technique using equal
weighted combination can be enhanced by using the dynamic
weighted combination technique. In the dynamic weight
combination technique, the weights can be created based on
errors or based on both error and vagueness values. We found that
the dynamic weight combination technique that applies both
error and vagueness values provide better results than the other
techniques used in the experiment of single pair of neural
networks. These results show that if we know the cause of
uncertainty, we can use it to improve the classification results.
However, all techniques applied to a single pair of networks can be
enhanced by using an ensemble of pairs of networks.

The second and third parts of Table 2 show the comparison
between the average results obtained from 20 ensembles of pairs
of neural networks and the average results obtained from 20
ensembles of the truth neural networks only. The second part
shows the results based on averaging techniques whereas the
third part shows the results based on majority vote techniques.
From both parts, we found that the results obtained from our
proposed averaging and majority vote techniques outperform the
results obtained from both simple averaging and simple majority
vote that apply only to the ensemble of the truth networks. In the
second part, we also found that our proposed averaging technique
based on T4F and averaging technique based on equal weighted
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Table 5
Total number of correct and incorrect outputs predicted from a pair of neural

networks for the test set of pima data (classifier 3).

Vagueness Number of pattern % correct

Value Level Correct Incorrect

0.6732–0.9932 High 31 21 59.62

0.3532–0.6731 Med 47 11 81.03

0.0332–0.3531 Low 76 6 92.68

Total 154 38 80.21
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Fig. 8. Two dimensional visualization of the test set of pima data obtained from a

pair of neural networks (classifier 1). The ‘�’ represents results obtained from TpF.
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combination give us equal results for each test set. Also, the
results obtained from both dynamic weighted average techniques
are equal for each test set. In the third part, we also found that our
proposed majority vote based on T4F and majority vote based on
equal weighted combination provide us the same results for each
test set. Therefore, we can conclude that the technique of T4F and
the technique of weighting can be used interchangeably. Both
techniques are suitable for different applications. Furthermore, we
also found that our proposed averaging techniques give better
classification performance compared to our proposed majority
vote techniques.

A further advantage of our model is the ability to represent
uncertainty in the prediction for each input pattern. This ability
can be used to support the confidence in the classification. In our
experiment, we found that uncertainty of type vagueness can be
used to support the confidence in the classification quite well. For
example, if the output pattern contains a high vagueness value
then this pattern should be reconsidered. Tables 3–5 show three
examples of the ranges of vagueness values in the classification of
pima data set. These three examples are picked up from three out
of 20 pairs of neural networks created in the first part of Table 2.
For each table, vagueness values are categorized into three levels:
high, med, and low. The total number of correct and incorrect
outputs predicted from each pair of neural networks are
represented. Table 3 shows the worst accuracy result whereas
the best accuracy result is shown in Table 5. Table 4 shows the
moderate accuracy result. These three tables show that most of
the outputs that have low level of vagueness are correctly
classified. In Table 3, the minimum vagueness value is very high
which is the value of 0.6851. Hence, this classifier gives us the
worst accuracy result, which is 63.54%. In contrast, the minimum
vagueness value obtained from Table 5 is 0.0332 which is very
low, and most of the results are fall into the group of the low level
of vagueness. Therefore, this classifier provides us the best
accuracy classification result, which is 80.21%.

The visualization of uncertainty of type vagueness in the
classification can be used to enhance the decision making. The
Table 3
Total number of correct and incorrect outputs predicted from a pair of neural

networks for the test set of pima data (classifier 1).

Vagueness Number of pattern % correct

Value Level Correct Incorrect

0.7909–0.8438 High 2 4 33.33

0.7380–0.7908 Med 15 12 55.56

0.6851–0.7379 Low 105 54 66.04

Total 122 70 63.54

Table 4
Total number of correct and incorrect outputs predicted from a pair of neural

networks for the test set of pima data (classifier 2).

Vagueness Number of pattern % correct

Value Level Correct Incorrect

0.7611–0.9961 High 29 23 55.77

0.5261–0.7610 Med 44 25 63.77

0.2912–0.5260 Low 66 5 92.96

Total 139 53 72.40
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Fig. 9. Two dimensional visualization of the test set of pima data obtained from a

pair of neural networks (classifier 2). The ‘�’ represents results obtained from T4F

and the ‘�’ represents results obtained from TpF.
relationship among the truth membership, false membership, and
vagueness values from Tables 3–5 can be represented in two and
three dimensional spaces. Figs. 8–10 show the relationship
between the truth membership and false membership values in
two dimensional spaces. For the two dimensional graphical
representation, if a cloud of points is arranged in the diagonal
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Fig. 10. Two dimensional visualization of the test set of pima data obtained from a

pair of neural networks (classifier 3). The ‘�’ represents results obtained from T4F

and the ‘�’ represents results obtained from TpF.
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Fig. 11. Three dimensional visualization of the test set of pima data obtained from

a pair of neural networks (classifier 1).
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Fig. 12. Three dimensional visualization of the test set of pima
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left as shown in Fig. 10 then the vagueness is low. This situation
provides us a high classification accuracy result. On the other
hand, the vagueness is very high if a cloud of points is arranged in
the diagonal right as shown in Fig. 8. Also, this situation gives us
the worse accuracy result.

Figs. 11–13 show the relationship among the truth
membership, false membership, and vagueness values in three
dimensional spaces. These graphical representations are displayed
based on the interpolated surface of vagueness values. They are
corresponding to Figs. 8–10, respectively. The vagueness level
shown in these representations can be used as an indicator in
order to support the decision making. The results shown in Fig. 11
represent higher uncertainty than the results shown in Fig. 12.
Also, the results shown in Fig. 12 represent higher uncertainty
than the results shown in Fig. 13 while the accuracy results
obtained from Fig. 13 provide us the best results.
5. Conclusion and future work

In this paper, two approaches are created for binary classifica-
tion. The first approach applies a single pair of neural networks
whereas the second approach improved on the first one by using
an ensemble of pairs of neural networks for the binary classifica-
tion. Each pair of networks provides the truth and false member-
ship values. These two values are used to compute vagueness in
the prediction. Furthermore, errors occurred in the prediction are
also estimated. Interpolation techniques are used to estimate
those errors. Both approaches apply interval neutrosophic sets in
order to represent imperfection in the prediction. In this paper,
there are several techniques created based on these two
approaches. The results obtained from a single pair of networks
are compared to the results obtained from an ensemble of pairs of
networks. The proposed ensemble technique provides better
classification accuracy than the proposed single pair of networks.
All our proposed techniques also improve the classification
performance compared to the existing techniques using only the
truth networks. Therefore, we can observe that using the
complementary neural networks with the quantification of
vagueness and errors can be a good starting point for further
research on the binary neural network classification. In future, we
will apply our techniques to cellular automata in order to
represent imperfection in the classification.
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data obtained from a pair of neural networks (classifier 2).
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Fig. 13. Three dimensional visualization of the test set of pima data obtained from a pair of neural networks (classifier 3).
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