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Abstract
In this research study, we introduce the concept of bipolar single-valued neutrosophic graph struc-
tures. We discuss certain notions of bipolar single-valued neutrosophic graph structures with exam-
ples. We present some methods of construction of bipolar single-valued neutrosophic graph structures.
We also investigate some of their prosperities.
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1 Introduction

Fuzzy graph theory has a number of applications in modeling real time systems where the level of
information inherent in the system varies with different levels of precision. Fuzzy models are becoming
useful because of their aim in reducing the differences between the traditional numerical models used
in engineering and sciences and the symbolic models used in expert systems. In 1973, Kauffmann [13]
illustrated the notion of fuzzy graphs based on Zadeh’s fuzzy relations [24]. Rosenfeld [16] discussed
several basic graph-theoretic concepts, including bridges, cut-nodes, connectedness, trees and cycles.
Bhattacharya [7] gave some remarks on fuzzy graphs. Later, Bhattacharya [7] gave some remarks on
fuzzy graphs. 1994, Mordeson and Chang-Shyh [14] defined some operations on fuzzy graphs. The
complement of fuzzy graph was defined in [14]. Further, this concept was discussed by Sunitha and
Vijayakumar [20]. Akram described bipolar fuzzy graphs in 2011 [1]. Akram and Shahzadi [4] described
the concept of neutrosophic soft graphs with applications. Dinesh and Ramakrishnan [12] introduced
the concept of the fuzzy graph structure and investigated some related properties. Akram and Akmal
[3] proposed the notion of bipolar fuzzy graph structures. On the other hand, Dhavaseelan et al. [10]
defined strong neutrosophic graphs. Broumi et al. [8] portrayed bipolar single-valued neutrosophic
graphs. Akram and Shahzadi [4] introduced the notion of neutrosophic soft graphs with applications.
Akram [2] introduced the notion of single-valued neutrosophic planar graphs. Representation of graphs
using intuitionistic neutrosophic soft sets was discussed in [5]. Single-valued neutrosophic minimum
spanning tree and its clustering method were studied by Ye [22]. In this research study, we introduce
the concept of bipolar single-valued neutrosophic graph structures. We discuss certain notions of bipolar
single-valued neutrosophic graph structures with examples. We present some methods of construction of
bipolar single-valued neutrosophic graph structures. We also investigate some of their prosperities.

2 Bipolar Single-Valued Neutrosophic Graph Structures

Smarandache [19] introduced neutrosophic sets as a generalization of fuzzy sets and intuitionistic fuzzy
sets. A neutrosophic set has three constituents: truth-membership, indeterminacy-membership and



falsity-membership, in which each membership value is a real standard or non-standard subset of the
unit interval 07, 17[. In real-life problems, neutrosophic sets can be applied more appropriately by using
the single-valued neutrosophic sets defined by Smarandache [19] and Wang et al [21].

Definition 2.1. [19] A neutrosophic set N on a non-empty set V is an object of the form
N ={(v,Tn(v), In(v), Fn(v)) : v €V}

where, T, In, Fy : V —]07,1%[ and there is no restriction on the sum of T (v), In(v) and Fy(v) for
allv e V.

Definition 2.2. [21] A single-valued neutrosophic set N on a non-empty set V' is an object of the form
N = {(Ua TN(U)vjN(U)v FN(U)) SRS V}

where, T, In,Fn : V — [0,1] and sum of Tx(v), In(v) and Fx(v) is confined between 0 and 3 for all
veV.

Deli et al. [9] defined bipolar neutrosophic sets a generalization of bipolar fuzzy sets. They also
studied some operations and applications in decision making problems.

Definition 2.3. [9] A bipolar single-valued neutrosophic set on a non-empty set V is an object of the
form

B = {(0, 75 (v), I5 (v), F§ (v), T (v), I8 (v), Y () : v € V}

where, TE IE FE V. — [0,1] and TH, I¥, FY : V — [-1,0]. The positive values TE (v), I5 (v), F (v)
denote the truth, indeterminacy and falsity membership values of an element v € V', whereas negative
values TH (v), I (v), F§ (v) indicates the implicit counter property of truth, indeterminacy and falsity
membership values of an element v € V.

Definition 2.4. A bipolar single-valued neutrosophic graph on a non-empty set V' is a pair G = (B, R),
where B is a bipolar single-valued neutrosophic set on V and R is a bipolar single-valued neutrosophic
relation in V such that

Tg (bd) < T (b) ANTE(d), I (bd)

Ig(b) N (d),  F(bd) < Fg(b) v Fg (d),
TR (bd) > T5 (0) VT (d), 1§ (bd) 5

< Ip( (
>IN (b)) VIN(d), Fy(bd)>FF®b)AFY(d) forallbdecV.

We now define bipolar single-valued neutrosophic graph structure.

Definition 2.5. Gy, = (B,B1,Bs,...,By,) is called bipolar single-valued neutrosophic graph struc-
ture(BSVNGS) of graph structure G = (V, Vi, Va, ..., Vi) if B =< b, TF(b), 17 (b), F¥(b), TN (b), IV (b), FN (b) >
and By, =< (b,d), TE (b,d), IF (b,d), EF (b,d), TN (b,d), I (b,d), F}N (b,d) > are bipolar single-valued neu-
trosophic(BSVN) sets on V' and Vj, respectively, such that

TF(b,d) < min{T*(b),TF(d)}, IF (b,d) < min{IF(b), I (d)}, FF(b,d) < max{FF(b), FF(d)},
TN(b,d) > max{TN (b), TN(d)}, I} (b,d) > max{IN(b), IV (d)}, FN(b,d) > min{FN(b), FN (d)}.

Vb,d € V. Note that 0 < TP(b,d) + IF(b,d) + FF(b,d) < 3, =3 < TN(b,d) + IN(b,d) + FN(b,d) < 0
V(b,d) € V.

Example 2.6. Consider graph structure(GSR) G5 = (V, V1, V2) such that V' = {by,b2,bs3,b4}, V1 =
{b1b3,b1ba, b3bs}, Vo = {b1by, babs}. By defining bipolar single-valued neutrosophic sets B, By and By on
V., V1 and V3, respectively, we can draw a bipolar SVNGS as depicted in Fig. 2.1.



b1(0.2,0.3,0.4, —0.2, —0.3, —0.4)

B1(0.2,0.2,0.4, —0.2, 0.2, —0.4)
b3(0.3,0.4,0.3,—0.3, —0.4, —0.3)

b2(0.2,0.2,0.3,-0.2, —0.2, —0.3)
Figure 2.1: A bipolar single-valued neutrosophic graph structure

Definition 2.7. Let Gy, = (B, B1, Ba, . .., Bim) be aBSVNGS of GSR G. If Hy,, = (B', B}, B}, ..., B.)
is a BSVNGS of G such that

T'7(b) < TP (k), I'7(b) < I7(b), F'7(b) = FT(b), TN (b) > T (k), I' (b) = I (b), F'¥ (b) < FN(b)
T (b, d) (b,d), I, (b,

<7y d) <
TN (b, d) = T,Y (b, d), LY (b, d) >
VbeV and (b,d) €

I (b, d), FéP(b d) > Fy['(b,d),

Iziv( ,d) BN (b d) < F (b, d),

Vk = 2 ,m.

Then Hy, is named as a bipolar single-valued neutrosophic(BSVN) subgraph structure of BSVNGS Gy,.

Example 2.8. Consider a BSVNGS H,,, = (B', B, By) of GSR G, = (V, V4, V3) as depicted in Fig. 2.2.
Routine calculations indicate that Hp, is BSVN subgraph-structure of BSVNGS Gy, .

61(0.1,0.2,0.5, —0.1, —0.2, —0. 5)

B!(0.1,0.1,0.5, 0.1, —0.1, —0.5)
b3(0.2,0.3,0.4, ~0.2, —0.3, —0.4)

b2(0.1,0.1,0.4, —0.1, —0.1, —0.4)
Figure 2.2: A BSVN subgraph structure

Definition 2.9. A BSVNGS Hy, = (B',B},B),...,B!) is called a BSVN induced subgraph-structure
of BSVNGS Gy, by @ C V if

T (b) = T (b), I'" (b) = 17 (b), F'" (b) = FT(b), T (b) = TN (b), I'™ (b) = I™ (b), F"™(b) = F(b),

TP (b, d) = T (b, d), Izép(b d) = I (b, d), F;ép(b d) = Ff (b, d), TN (b,d) = T} (b, d),
IN(b,d) = IN(b,d), FIN(b,d) = FN(b,d), Vb,d € Q, k=1,2, ..

*



Example 2.10. A BSVNGS depicted in Fig. 2.3 is a BSVN induced subgraph-structure of BSVNGS
represented in Fig. 2.1.
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Figure 2.3: A BSVN induced subgraph-structure

Definition 2.11. A BSVNGS H,,

B', B}, B}, ...,Bl) is called BSVN spanning subgraph-structure
of BSVNGS Gbn = (B, Bl, BQ, ..

= (
., Bm) if B’ = B and

TP (b, d) < Ty (b,d), ;" (b,d) < I (b,d), B (b, d) > (b, d), TéN(b,d) > T, (b, d),
IN(b,d) >IN (b,d), F/N (b,d) < FY(b,d), k =1,2,.

Example 2.12. A BSVNGS represented in Fig. 2.4 is a BSVN spanning subgraph-structure of BSVNGS
represented in Fig. 2.1.

Figure 2.4: A BSVN spanning subgraph-structure



Definition 2.13. Let Gy, = (B,B1,Bs,...,By) be a BSVNGS. Then bd € By is called a BSVN By;-edge
or shortly Bj-edge, if

TF(b,d) > 0 or IF (b,d) >0 or FF(b,d) >0 or T (b,d) < 0 or IN(b,d) <0 or FN(b,d) < 0 or all these
conditions are satisfied. Consequently, support of By is;

supp(By) = {bd € By, : T (b,d) >0} U{bd € By, : IF' (b,d) > 0} U {bd € By : FF(b,d) >0} U
{bd € By : T (b,d) < 0} U{bd € By : IV (b,d) < 0} U {bd € By : FN(b,d) < 0}, k=1,2,...,m.

Definition 2.14. Bj-path in BSVNGS Gy, = (B,B1,Bs,...,B,) is a sequence by, ba, ..., by, of distinct
nodes(vertices) (except b,, = b1) in V, such that by_1by is a BSVN By-edge Vk =2,...,m.

Definition 2.15. A BSVNGS Gy, = (B, By, Ba, ..., By,) is By-strong for any k € {1,2,...,m} if

TP (b, d) = min{TP (b), TP (d)}, I (b,d) = min{I”(b), I* (d)}, FF (b,d) = max{FT(b), FP(d)},
TN (b, d) = max{TN (b), TN (d)}, IN (b, d) = max{IV (b), I (d)}, FN (b,d) = min{FN (b), FN(d)},

YV bd € supp(By). If Gy, is By-strong V k € {1,2,...,m}, then Gy, is called strong BSVNGS.

Example 2.16. Consider BSVNGS G, = (B, By, B2, Bs) as depicted in Fig. 2.5. Then Gy is strong
BSVNGS, since it is By—, Ba— and Bs-strong.
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b1(0.4,0.3,0.5, —0.4, 0.3, —0.5)
Figure 2.5: A Strong BSVNGS

Definition 2.17. A BSVNGS Gy, = (B, By, Ba, ..., By,) is called complete BSVNGS , if
1. Gy is strong BSVNGS.
2. supp(By) #0, forallk =1,2, ..., m.

3. For all b,d € V, bd is a By — edge for some k.



Example 2.18. Let Gy, = (B, By, B2) be BSVNGS of GSR G = (V, V1, V), such that V' = {by, by, b3, bs},
Vi = {b1ba, b3bs}, Vo = {b1b3, bab3, b1bs, babs}. Through direct calculations, it may be easily shown that
G, 1s strong BSVNGS.
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Figure 2.6: A complete BSVNGS

Moreover, sugp(Bl) # (0, supp(Bs) # 0, and each pair bgb; of nodes in V, is either a Bj-edge or
Bs-edge. Hence Gy, is complete BSVNGS, that is, B; Ba-complete BSVNGS.

Definition 2.19. Let éblv: (Bl, 311, Blg, .. ;Blm) and Gbg = (BQ, Bgl, BQQ, ey Bgm) be two BSVNGSs.
Lexicographic product of Gy and Gy, denoted by

Gp1 @Gy = (By @ By, Byy @ By, Bia @ B, ..., By, @ Bay),
is defined as:

T}BI.Bz)(bd) ( B 'ng)(bd)
(1) § (5o (bd) = (If, o If,)(bd) =
F(3, op,)(bd) = (Fg, o Fi, ) (bd) =

T§, (b) AT, (d)
I, (b) A, (d)
Fi (b) V Ff,(d)

T]égl.Bg)(bd) = (T, °TBQ)(bd) B, (b) VT, (d)
(i) § I{Byep,)(bd) = (I5, o IF,)(bd) = ( ) VI, (d)
F(%1.B2)(bd):(Fgl°FB2)( d) = g( )/\FBQ(CZ)
for all (bd) € V1 x Vs,

T%lk.B%)(bdl)(bdg) = (Tf;lk . Tg%)(bdl)(bdg) = TJI;I O) A Tg% (d1ds)
(iii) I(Blkosz)(bdl)(bdQ) (I5,, ® 1, )(bd1)(bdz) = If;, (b) A I, (dida)
(Bl,c-B%)(bdl)(bdQ) (FIISDM . Fg%)(bdl)(bdg) FJI;I (b) v Fg% (d1ds)



T(]Elk.B%)(bdl)(bdg) = (TJ]B’VM ° ngk)(bdl)(bdg) = Tévl b)) v Tg% (d1ds)
(iv) I(J\Efglk.B%)(bdl)(bdg) = (Iglk ° Ig%)(bdl)(bdg) = Igl b) v Ig% (d1do)
F(]]\g,lk.B%)(bdl)(bdg) = (Fglk ° Fé\gk)(bdl)(bdg) = FJ]BYl (d) A Fg% (d1ds)
forall b€ V1, (didz) € Vay,
Télk.BQk)(bldl)(deQ) = (Tglk ° Tg%)(bldl)(bgdg) = Tglk (b1b2) A Tg% (d1da)
(V) & 1B, ey (01d1)(bad2) = (If;,, @ If, )(bida)(bad2) = I, (bib2) NI, (dida)
B, ooy (01d1)(b2d2) = (FE, @ FE, )(bidr)(bads) = Ff, (b1ba) V F, (dida)
Tﬁ;lk.B%)(bldl)(bgdg) = (TJ]B’VM ° T]é\gk)(bldl)(bgdg) = TI]SVM-, (b1b2) V Tg% (d1da)
(vi) I(Blk.sz)(bldl)(bgdg) = (Iglk ° Ig%)(bldl)(bgdg) = Iglk(blbg) \% Igzk (d1da)
F(]]\g,lk.B%)(bldl)(bgdg) = (FIZSVM-, ° Fé\gk)(bldl)(bgdg) = FI]SVM-, (b1b2) A Fggk(dldg)
for all (blbg) € Vi R (dldg) € Vor.

Example 2.20. Consider Gy = (B1,B11,B12) and Gpa = (B2, Ba1, Bas) are two BSVNGSs of GSRs

Ga = (Vi,Vi1,Vio) and Gso = (Va, Va1, Vas), respectively, as depicted in Fig. 2.7, where Vi; = {b1by},
Vig = {bsba}, Vo1 = {d1da}, Voo = {dads}.
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Figure 2.7: Two BSVNGSs Gp1 and Gpa

§ Lexvicogmphic product of BSVNGSs Gp1 and Gy shown in Fig. 2.7 is defined as
Gbl [ Gbg = {Bl [ BQ, B11 (] B21, B12 [ BQQ} and is depicted in Flg 2.8.
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Figure 2.8: Gp1 ® Gio
Theorem 2.21. Lemcggmphic ;gmduct Gpr0Gra = (51 ° B%, Bi1 0 Bs1,Bi2e Bog, ..., By, @ Bay,) of two
BSVNSGSs of GSRs Gs1 and Gg2 is a BSVNGS of G4 @ Ggo.
Proof. Consider two cases:
Case 1. For b € V1, dids € Vo
T(p, ey ((bd1)(bd2)) = Tf, (b) AT, (dida)

< Th, (b) A[Th,(di) AT, (ds)]

= [T, (b) AT, (d)] A [Th, (b) AT, (d2)]

= T(I;loBQ)(bdl) N T(Iz;l.BQ)(bdz),



T{bpepa) (bd1)(bd2)) = T, (b) V TE,, (did2)
> T, (0) V [Th, (d) V T3, (dz)]
= [T, (b) VT, (d)] V [T, (b) v T, (d2)]
= T(]le.&)(bdl) N T(]le.&)(bdz),

I&;lk.32k)((bd1)(bd2)) =If (b) A Ig% (d1d2)
< I, (b) A [Ig, (d1) A I, (d2)]
= [I5, (b) A5, (d1)] A [T, (b) A T, (da)]
= I{p 05, (0d1) A I o,y (bido),

I(j\lfalk,.sz)((bdl)(bdQ)) = Igl (b) Vv IBQA (d1ds2)
> I3, (b) V [I5, (d1) V I3, (d2)]
= [I5, (b) VI, (d)] V 5, (b) V I3, (d2)]
= I{Byepy) (bd1) V [(Bup, (b)),

FlBy ooy (0d1)(bds)) = FE (b) V Ff, (dids)
< Fi, () V [F,(d1) V Ff, (da)]
= [F§ (b) V Fp,(d1)] V [F§, (b) V Ff, (da)]
= Flprep,) (bd1) V Fl, o, (bd2),

F{B, 0oy ((0d1)(bd2)) = FE (b) A F, (dida)
> Fi, (0) A [P, (di) A Fi, (da)]
= [Fg, (b) A F, ()] A [Fg, (b) A FE (da)]
= F(]XhoBg)(bdl) A F(]le.Bg)(bdﬂa
for bdy,bdy € Vi o V5.
Case 2. For b1by € Vi, dids € Vo,

T(p, oo (b1d1)(b2da)) = Tf,  (bibo) A Th,, (dids)
< [TF, (br) ANTE, (b2) A [T, (dr) A T, (d2))]
= [Tf, (b1) ANTE,(d1)] A [Th, (b2) A Th, (do)]
= T(B,05,)(b1d1) A T{p, o 5, (b2da),

TR 0B (01d1)(bad2)) = TR, (brba) V TF,, (d1ds)
> [T, (b1) V T, (b2] V [T, () V T3, (d2)]
= T8, (b1) V T, (d0)] V [TF, (b2) V T, (d2)]
= T(]le.m)(bldl) \ T(%l.BQ)(bﬂ?)a



I, eBy) (01d1) (bada)) = I, (b1bo) A, (dids)
< 15, (b1) N, (b2] A [T, (d1) A I, (do)]
= [I5, (b1) A IE, (d1)] AT, (b2) A, (da)]
= I{p, e,y (b1d1) N[5, o) (bada),

I(B1rena (b1d1)(bad2)) = IF,, (b1b2) V I, (d1do)
> [I5, (b1) V 15, (b2] V (15, (ch) V I3, (d2))]
= [I5,(b1) V I, (d0)] V [I5, (b2) V IF, (do)]
= I{Brepy)(b1d1) V I{} o,y (bada),

FlB,, oo (01d1)(bad2)) = F, (bibo) V Fiy,, (dids)
< [FE, (b1) V FE, (b2] V [Ff, (d1) V F, (do)]
= [Fg, (b1) V Fg, (d1)] V [Fg, (b2) V Fg, (da)]
= F(Ff)floBg)(bldl) \ F(%l.BQ)(b2d2)v

FlB,, oo (01d1)(bad2)) = FR, (bibo) A FiY,, (dids)
> [Ff, (b1) A FE, (ba] A [FR, (di) A FE(do)]
= [Fg, (b1) A F, (d1)] A [FE, (b2) A F, (da)]
= F(]XfloBg)(bldl) A F(%l.BQ)(b2d2)v
bidi,bade € V4 @ Vo and h € {1,2,...,m}. This completes the proof.
o

Definition 2.22. Let ébl ZV (Bl, Bll; Blg, .. ;Blm) and Gbg = (BQ, Bgl, BQQ, ey Bgm) be two BSVNGSs.
Strong product of Gy and Gpa, denoted by

Gp1 ¥ Gy = (By ¥ By, By X Byy, Bia X B, . .., Biyy X Bayy),
is defined as:
T§31|XB2)(bd) = (Tg, RTE )(bd) = TE (b) AN TH, (d)

() { I{pmp,) (bd) = (g, ®IE,)(bd) = If, (b) A, (d)
Flp,mp,) (bd) = (FE, R Fg,)(bd) = F, (b) V Fg, (d)

T(fglmz)(bd) = (T WTE ) (bd) =T (b) v T (d)
(i) « I(Bmp, (bd) = (IF, ®IF)(bd) = If (b) V If, (d)
F(fg,lg B,y (bd) = (FF RFL)(bd) = FE (b) A FE (d)
for all (bd) € V1 x Vs,

T’;lkgB%)(bdl)(bdg) = (T};lk X Tgﬂ")(bdl)(bdg) = T};l (d) A T]’;%(dldg)
(1) { Ty () (ko) = (I, RIE, ) (bdy) (bdo) = T, (b) A TE, (drd)
F sy (00 (b2) = (Fl, B FE, )(bd) (bdz) = FE, () v FE,, (dids)

10



T, @By (bd1)(bd2) = (T, ﬁTéik)(bdl)(bdz) 5, (b) V Tév%(dldz)
(iv) I(JJVE?M&B%)(M )(bdz) = (If,, BT, )(bd1)(bd2) = IBl( )V IE,, (dids)
(Blka%)(bdl)(bdg) (Fgm X F%k:)(bdl)(bdg) Fgl( ) A Fg%(dldg)
forall b€ V; , (didz) € Vay,

T}}lk&B%)(bld)(de) = (TJI;Uc X Tg%)(b d)(bad) = (d) A Tf;lk(blbg)
(v) & I, ®p, (01d)(bad) = (If,, K I, )(b1d)(bad) = 132 (d) NI, (biba)
Flp 0By (1) (b2d) = (Ff,, REFE ) (b1d)(bed) = F;, (d) V Ff, (bib2)

T i (01 (02) = (T, BT )(01) () = T, (&) V T, ()
(vi) I(B (R (010)(b2d) = (5, WIF, )(bid)(b2d) = IF, (d) V I, (b1b2)
EN gy (01) (bod) = (FY,, ®F, )(b1d)(bod) = FA(d) A Y, (bib2)
for all d € V5 R (blbg) € Vik.

nglkm%)(bldl)(bzdﬂ = (Th, RTE,, )(bid1)(bads) = T, (bib2) ATE, (dida)
(vil) & 15, By (01d1)(bad2) = (If;, RIE, )(bidi)(bads) = If, (bib2) A, (dida)
Flp gy (01d1)(b2d) = (FE, RFE )(bidy)(bade) = Ff, (bib2) V Ffy,, (dida)

T s (0160) b2) = (T8, TR ) (b1 (bads) = TR, (0a02) V T, (drd)
(viii) I(BlkgB%)(bldl)(bgdg) — (1§, RIY )(bidy)(bads) = IY. (bibo) V IY, (dids)
FY iy (b1d1)(badz) = (FY, REY, )(bidy)(bada) = FJY, (baba) A P, (drd)
for all (blbg) € Vi R (dldg) € Vor.

Example 2.23. Strong product of BSVNGSs Gbl and Gpo shown in Fig. 2.7 is defined as Gbl X Gyo =
{B, X By, B X By, Bi2 ¥ By, } and is depicted in Fig. 2.9.
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Bia x B22(0.3,0.2,0.6,—0.3, —0.2, —0.6) %

b3d1(0.2,0.1,0.4,-0.2, —0.1, —0.4)

g
N\
%
\,
%
A
/Q
N
/
V«
o
/
<?\
Bi2 K B22(0.3,0.2,0.5, —0.3,—0.2, —0.5) %9
N
Q‘w
©
o

Figure 2.9: Gy K Go

Theorem 2.24. StTOV’N,g produgt ébl X Gbg = (Bl |Zi BQ, B}l X B21, B12 X BQQ, ey Blm X Bgm) Of two
BSVNGSs of GSRs Gs1 and G is a BSVNGS of Gg1 K Gyo.

Proof. Consider three cases:

Case 1. For b € Vi, didy € Vo,

T(p, @By (bd1) (bd2)) = TE, (b) ANTE,, (dyds)
< Tk (b) A [Th,(di) ATE,(da)]
= [T, (b) ATE, (dv)] AT, (b) ATH, (d2)]
= T{p,m8,)(bd1) A T, mp,)(bd2),

T, B (0d1) (bd2)) = T, (b) V T, (dids)
> TE (b) V[T, (d1) V T, (da)]
= [TF, (b)) v T, (dv)] v [T, (b) V T, (d2)]
= T(hmp,) (bd1) V T, mp,) (bd2),

—~

dida)

d1) A, (do)]

d)] A TG, (0) A I, (do)]
N (5,5, (bda),

I, 88,y ((bd1)(bd2)) = If;, (b) A I,
< I, (b) A I,
= [Ig, (b) N g,
= I{p,5p, (bda

~— o~ —~
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—~

dids)

d1) V I3, (d2)]

)] VI3, (0) V I, (d2)]
V I, m,)(bdz),

105, @8,y ((bd1)(bd2)) = IF, (b) V IR,
> If, (b) V I,
=I5 (b) v I},

- I(J\éﬂng)(bdl

~— o~ —

Flp, 88,0 (bd1)(bd2)) = Ff, (b) V F,, (dida)
< Fi () V [Fi, () V FE, (d2)]
= [F§,(b) V F, (d)] V [FF, (b) V Ff, (d2)]
= Flpmp,) (bd1) V Flp mp,)(bd2),

F(]]\g’lk&B%)((bdl)(bdQ)) = Fp (b) A Fg,, (didy)
> Fi, (b) A [Fp, (di) A FE, (da))
= [F5, () A Fg, ()] A IFE, (b) A FR, (d)]
= F{},mp,)(bd1) A Fg g, (bda),

for bdl,bdg c Vi X Vs,
Case 2. For b € ‘/2, dido € Vi

T(p, @By ((d1b)(d2b)) = TE, (b) ANTE,, (drds)
< Th, (b) A [TF, (di) ATE, (da)]
= [Th,(b) AT, ()] A [T, (b) ATE, (da)]
= T{p, 1, (d16) A Tl 5, (d2b),

T(h, 8o ((d10)(d2b)) = TH, (b) V T, (d1da)
> Th,(b) V [T, (d1) V TF, (d2)]
= [TF,(b) v T, (d)] v [T, (b) V TE, (d2)]
= T(h @, (d1b) V T, mp,) (dab),

—~

dida)

d1) A1, (do)]

)] A [T, (0) A I, (do))]
N {3, 2,)(d2b),

I, @8,y ((d1b)(dab)) =I5, (b) A,
< Ip,(0) AT,
= [I5,(b) AT,
- I(szleg)(dlb

=~ —~

—~

dida)

d1) V I, (do)]

)]V [IE, (b) V I, (d2)]
V I, mp,)(d2b),

I{3, 85, ((d16)(d20)) = I, (b) V I,
> I35, (0) V I,
= U5, (b) VI,

=I5 mp, (dib

o~ —~
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Flp, 8800 ((d16)(d2b)) = F, (b) V F, (dida)
< Fi, () V [Fg, () V FE, (d2)]
= [Fg,(b) V Fi (d)] V [Ff,(b) V Ff, (d2)]
= Flp,mp,) (d1b) V Flp mp,)(dab),

Fp @By, ((d1)(d2b)) = FE, (b) A F, (dida)
> Fp, (b) A[Fg, (di) A FE, (ds)]
= [F5,(b) A Fg, (d)] A [FE,(6) A Fg, (d2)]
= Fb,08,) (d1b) A Fli3 g, (dab),
for d1b,d2b € V1 K V5.
Case 3. For b1by € Vi, dids € Vo,

T(p, 8y (01d1) (bad2)) = T, (b1b2) A Th,, (dydy)
< [T, (b1) AT, (b2] AT, (d1) AT, (da)]
= [T, (1) ATh,(d0)] A [T, (b2) A Th, (da)]
= T{p,mp,) (b1d1) A T(p,mp,) (bada),

TG, 8By (01d1) (bada)) = TH, (b1b2) V T, (drdy)
> [Th, (b1) V T, (ba] V [T, (dr) V TF, (da)]
= [TF, (b1) v TE (d0)] V [TF, (b2) V T, (d2)]
= T(b,1p,) (b1d1) V T(h, g, (b2ds),

15, 8By (01d1) (bad2)) = I, (b1by) A I, (dids)
<5, (b1) A I, (bo] AT, (di) A I, (do)]
= (15, (b1) A I, (d0)] A [T, (b2) A T, (d2)]
= I(p,®p,)(01d1) A {3, (bads),

I, @80y (b1d1) (bad)) = IF, (b1bs) V I, (drda)

[ (b)) VI, (ba] VI, (dh) V I, (do)]
= [I5,(b1) V I, (d)] V [T, (b2) V I, (do)]
= 15,8y (b1d1) V I3, mp,) (bads),

Y

g mm) (b1d1) (b2ds)) = FBUC (biba) V Fg,, (dida)
< [Fg, (b1) V F, (b2] V [FE, (dv) V FE, (do)]
= [Ff,(b1) V F, (d)] V [F, (b2) V Ffy, (d2)]
= Flp,mp,) (b1d1) V F{p g, (bads),

14



B 8By (b1d1) (b2d2)) = F, (b1bo) A FR,, (dids)
> [Fg, (01) A Fg (ba] A[FE (di) A FE (do)]
= [Fg, (1) A F5(d1)] A [Fg, (b2) A FE (da))]
= Flpmp,) (b1d1) A F(h mp,) (b2ds),
bidy, bady € V1 K V5.
All cases hold V k € {1,2,...,m}. O

Deﬁnitior} 2.25. Let Gbl = (Bl, Blla Blg, ey Blm) and ébg = (BQ, B21, BQQ, ceey Bgm) be BSVNGSs.
Union of Gy and Gz, denoted by

Gp1 U Gha = (By U By, B1y U By, Bia U Baa, ..., Biyy U Bay,),

is defined as:

}DBNBQ )(0) = (TF, UTE,)(b) = TF, (b) V T, (b)
(i) (BlLJBQ)(b) (Ig, U IBQ)(b) (IBl( )+ IBQ (b))/2
F(BluBz)(b) (FB1 U FB )(b) = (b) A FB (0)

&BluBz )(0) = (TF, UTE,)(b) = TF, (b) AT, (D)
(il) § {(Bup(0) = (I3, UIg,) () = (I N( )"‘IBQ( ))/2
Flb 0By (0) = (FB, UFE,)(b) = FE (b) V Fi, (b)
for all b € V7 U Vs,

T(BlkUsz)(bd) (Tglk U T]j%k)(bd) = Tglk (bd) v T]j%k (bd)
(i) { I o (bd) = (IF, U IE, )(bd) = (1F; (bd) + If, (bd))/2
F(Ij’glkUB%)(bd) = (F};lk U F]’;%)(bd) = F};lk (bd) A F};% (bd)

;VBUCUB o0 (0d) = (TF, UTH, )(bd) = T, (bd) ATE,, (bd)
(iv) I(BuuBm (bd) = (If,, UIg, )(bd) = (IF,, (bd) + Ig,, (bd))/2
F(BlkUB%)(bd) (FY UFY )(bd) = FY (bd) v FL (bd)
for all (bd) € Vi U Vag.

ExamPle 2.26. Union of two BSVNGSs G and Gy shown in Fig. 2.7 is defined as
Gp1 U Gpa = {B1 U Ba, B11 U Bay, Bia U Baa} and is depicted in Fig. 2.10.

d3(0.5,0.15,0.5, —0.5, —0.15, —0.5) d1(0.2,0.05,0.3,—0.2, —0.05, —0.3)

Bia U B22(0.3,0.1,0.5,—0.3, —0.1, —0.5)
Bi1 U B2 (0.5,0.05,0.8, —0.5, —0.05, —0.8)

Bi1 U B21(0.2,0.05,0.4, —0.2, —0.05, —0.4)
Bi2 U B2(0.4,0.1,0.6,—0.4, —0.1, —0.6)

(80— ‘T°0— ‘60— ‘8°0°‘T°0°C’0)%q
(9°0—‘T°0—‘¢'0—‘9'0‘T°0‘¢°0)"q

b1(0.5,0.05,0.6, —0.5, —0.05, —0.6) d2(0.3,0.1,0.4, —0.3, —0.1,—0.4) b3(0.4,0.1,0.4, —0.4, 0.1, —0.4)

Figure 2.10: Gy U G
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Theorem 2.27. Union Gbl @] Gbg = (Bl U Bs, B11 U Bay, B1o U Baa, . . .,

of the GSRs G1 and G is BSVNGS of G1 U Gs.
Proof. Let b1bs € Vi U V. Two cases arise:

Case 1. For by,by € Vi, by definition 2.25, ng (b1)
If, (biba) = 0, Ff (b1) = FE (b2)
TE (b1) = TH (ba) = TE, (b1b2) = 0, If, (b1) =
F]é\gk(ble) = —1, SO

TBlk(blb )
= TBlk (b1b2) V
[T31 (b1) A
= [Th (1) V
= [T, (b)

T(Ff)?m UBay) (b1 bz)

Vv
= T{p,upy)(b
Ty (bibs
—TY (biby
[TB1 (b1)
= [TF, (b1) A
= [T5, (b)

T(]XﬁkUsz)(blbz) )
) A

V

A
=T 50 (b
FlB,,Upa (b1b2) = F, (biba)
= Ff,, (bib2) A
< [F§ (1) v
[FB1 ) A
= [Ff, (b1)

= F(BlLJBQ)

(
(b1
' (b1) A
(b

N
F(Blk,UB2k,)

(b1be) = FB“ (b1b2
- FBM (b1bs
> [F, (b1)
= [Ff (1)
= [F (1)

)
)V

A
vV —
V
(b

= F(BlUBQ)

16

= Th,(ba)
= FL (bibs) = 1,

TF
0] A
T,
1)
T
0] v
TB
1)

FBl
1Jv
F32

Bim U Bay,) of two BSVNGSs

= T4, (bib2) = 0, I, (b1) = I, (b2)

Igz(bg) = Ig%(blbg) =0, ng (1) = ng (b2)

V Tg% (blbg)

(b2)] VO

[T, (b2) V0]

(b)) A[TE, (b2) V T, (b2)]
A T(BluBz)(b2)v

B1
2

A ngk(blbg)

(b2)] AO

[T5, (b2) A O]

(b1)] V [T, (b2) A TE, (ba)]
\ T(BluBz)(b2)v

B1
2

/\ FB2k (ble)

(bg)] A1l
[Fh, (b2) A 1]
(b1)] V [Ff, (b2) A Ff, ()]

D)V F{p Uy (b2),

\% FB%(blbg)

Fg, (bz)]

1A [FBl(bZ) —1]
Fg, (00)] A [FE (b2) V FE, (b))
1) A F(BluBg)(bQ)ﬂ



IE (bybo) + 15 (b1b
I(’%lkuBQk)(ble) = Blk( 1 2) . sz( 1 2)

_ Iglk(ble) +0

B 2

_ 1B, (b1) A IE, (b)) +0

- 2

£

ZP&§Q+NA[ +0]

_ (1§, (b1) + If, (b1)] N (1§, (b2) + If;, (b2)]
2 2

= I(%luBg)(bl) A I&1U32)(b2),

IE (b2)
2

N (b bo + Iy b1bo
I(J\Efklkusz)(blbﬂ _ Bw( 1 ) . sz( )
_ I, (bib2) + 0
2
LB (b) v IR ()] + 0
- 2
IY (b
=kﬂ§2+mv[ +0]
IR0+ IR O0) | (R ) + 18, (0)
2 2
= I(Z}gluBz)(bl) v I(j}faluBz)(bﬂ,

17, (b2)
2

for bl,bg e ViuWs.

Case 2. For by, by € Va, by definition 2.25, T (b1) = TF (b2) = T}, (bib2) = 0, If (b1) = If (b2) =
I, (1b2) = 0, Ff (b1) = Ff, (b2) = FE, (b1ba) =1,
Tgl(bl) = Tgl(bg) = Tglk(blbg) =0, Igl (b)) = Igl(bg) = Iglk(blbg) =0, Fgl (b1) = ng(bg =
Fglk (b1b2) = —1, s0

T(5, 0By (b1b2) = Th, (b1bs )\/Tg%(blbz)
= Tf,, (bibs) V

[T32 (b1) A

= [T, (1) v

= [T§,(b1)

V
= T{p,0p, (0

TE
0] A [T, (b2) V 0]
Tk, (b)) A [Th, (b2) V T, (bo)]
1) AT(p,08,)(b2),

B (b2)] VO

T(]]\élkuB%)(ble) TB“
_ TB%
> [TF, (1) V TE, (bz)]
= [T, (b1) AO] V[T (b2) A 0]
= [T, (b1) AT, (b1)] V [TH, (b2) A T, (b)]
= TB,08,) (01) V T(h,Up,) (b2),

biba) A TB% (b1b2)

(
(b1b2) A
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Flpupay (b1ba) = FE (biba) A Ffy, (biba)
:ngk(ble) (1)
< [Fg,(b1) V Fg, (b2)] A (1)
= [Fh, (b)) A (D] V [Fh, (b2) A (1)]
= [Fg, (1) A FE, (b)) V [Ff, (b2) A FE, (b2)]

V
A(1

A\

= Flp,0m,) (01) V Flp, 53y (b2),

F{By o UBae) (0102) = Fg, (b1by) V FE, (bibo)
= Fg,, (bib2) v (=1)
> [F, (b1) A FR, (b2)] V (—1)
= [FE,(b1) V (=D)] A [Fg, (b2) V (—1)]
= [FE,(b1) V Fg, (b)) A [Fg, (b2) V FE (bo)]

= FB,0my) (01) A Fl, sy (B2),

Iplk(blbg)—f—fp (blbg)
I(ifmUsz)(ble): s 2 -

_ Ig% (blbg) +0

B 2

_ B 00 AT, ()] + 0
- 2

_ [1522@1) O] +0]

_ (1§, (b1) + I (b1)] A (1§, (b2) + I (b2)]
2 2
= {508, (01) A {5, Up,)(b2),

1%, (b2)

IY (biby) +IN (b1b
I(]\élk:UBQk)(ble) = Blk( - 2) 9 B%( - 2)
_ Ig% (blbg) +0
N 2
. (15, (b1) VI, (b2)] + 0
- 2
N
= [# +0]V] +0]
_ (15, (b1) + If5, (b1)] y (15, (b2) + I (b2)]
2 2
= I(]%lUBg)(bl) \ I(J\élUBQ)(bQ)’

IF (ba)
2

for bl,bg e ViuWs.
Both cases hold V k € {1,2,...,m}. This completes the proof.
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Theorem 2.28. Let G = (Vi U Vo, Vi1 U Va1, Vig U Vag, ..., Vi U Vo) b@ union of GSRs Gy =
(Vl, Vi, Vig, .. o, Vim) and Ggo = (Vg, Va1, Vgg, ooy Vo). Then every BSVNGS Gy, = (B, B1,Ba,...,Bn)
ofG 18 union of two BSVNGSs Gy and Gya of GSRs Ggl and Ggg, respectively.

Proof. Firstly, we define By, B, By, and By, for k € {1,2,...,m} as:
Tk (b) = TH (0). I, (b) = I (b), Fg, (b) = FE (b),
T (b) = TH (5), I, (b) = I§ (), FY. (b) = FY (b), if b € Vi

Tf,(b) = T (b), I, (b) = Ig (b), Fg, (b) = Fg (b),
T, (b) = TE (b), 15, (b) = I5 (b), 5, (b) = F (b), if b € V2.

[N

Tf,, (bibo) = T (biba), I, (biba) = If; (biba), FE,, (biba) = Ff, (biba), TH,, (biba) = T (biba), If, (b1ba) =

IN (biba), FY. (biby) = FE (biba), if biba € Vi

Tf,, (bib) = Tf (biba), If,, (biba) = If; (biba), Ff,, (biba) = Ff, (biba), T, (biba) = T (biba), IF,, (b1b2) =

ng (blbg),Fg% (blbg) = FE];L (blbg), if bibs € Vou.

Then B = By UBy and By, = By, UBay, k € {1,2,...,m}. Now for byby € Vi, t =1,2, k € {1,2,...,m}:
Tf,, (bibs) = Tf, (bibs) < TE(b1) ATE(ba) = Th, (b1) AT, (b2), If,, (bib2) = If, (bib2) < I (b1) A
I5(b2) = I, (b1) AIf (b2), F, (biba) = Ff (bib2) < FE(b1) V FE (b2) = FE, (b1) V Ff (ba),

Tgﬁk (blbg) = Té\;(blbg) > Tg(bl) \Y Tg(bg) = TEJX (bl) \Y Tgt(bg), IB k(ble) = IB (blbg) > I (bl)
I5 (be) = Igﬁ (b1) Vv Igﬁ (ba), thk (b1be) = ng (biba) > FY (b)) A FY (b)) = Fé\i (b1) A FN (b9), i.e

Gbl = (B, B, Bia, ..., Bi) is a BSVNGS of Gy, t = 1,2. Thus Gy, = (B, Bl,Bg,...,B ), a BSVNGS

of Gy = G41 U Gyo, is the union of two BSVNGSs Gp1 and Gha. O

Definition 2.29. Let Gy = (B1, Bii, Big, ..., Bim) and Gyy = (Ba, Bo1, Baa, .. ., Bam) be BSVNGSs
and let V4 N Vo = (. Join of Gp; and Gpa, denoted by

Gp1 + Gy2 = (B1 + Ba, Bi1 + Ba1, Bia + Baa, ..., Bim + Ban),
is defined as:

IgBl—‘rBQ) (b) éBluBg) (b)
(i) IBDl JrBQ (b) (Bl UB2 (b
F(Bl-l—Bg)( (BluBg)(

=
=
o>~ =
~—~

- T}\][gl-i-fb)(b) (31U32)(b)
(11) I(g1+32)(b) (Bl UB2 (b
F(Bl +Bg)(b) - F(Bl UBQ)(

forall b € V3 U V5,

S —
~—

T§31k+32k)(bd) IgBlk UBay) (bd)
(iif) I(Blk+32k)(bd) = I(BlkUB2k)(bd)
F(%lkJrsz)(bd) = F(Iji’lkung)(bd)

TjéglkJer)(bd) (BlkUBQk (bd)
W) § LBy o () = I(B vUBs) (09)
(Blk+BQk)(bd) (BlkUBQk)(bd)

for all (bd) € Vig U Vi,
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Tt () = (T, + T, ) (bd) = T, (b) A T, (d)
(v) I(BIHBM)(bd) (U5, + 15, )(bd) = If;, (b) A5, (d)
FE op(bd) = (FE + FE,)(bd) = FE, (b) v FE,(d)

TJ{;IHB o (bd) = (TN, +TH ) (bd) = T (b) v TR, (d)
(vi) 1B, 4By (bd) = (IBUc + 15, )(bd) = IBl( )V I, (d)
F(%IHB%)(bd) (Fglk + Fg%)(bd) (b) A FN (d)

forallbe Vy , d e Vs.

Examgle 2.30. Join of two BSVNGSs Gy1 and Gye shown in Fig. 2.7 is defined as
Gbl + Gbg = {Bl + BQ, B11 + Bgl7 Blg + BQQ} and is depicted in Flg 2.11.

) <9171
e d2(0.3,0.1,0.4,-0.3, —0.1, —0.4) /%

Bi1 + B21(0.5,0.05,0.8, —0.5, —0.05, —0.8)
Bia + B22(0.4,0.1,0.6, —0.4, —0.1, —0.6)

/ Q-
$) Q
52(0.5,0.1, 0.8, —0.5,—0.1, —0.8) b3(0.4,0.1,0.4, —0.4, 0.1, —0.4)

Figure 2.11: Gy + Gio

Theorem 2.31. Joinvébl + Gy = (B + Bg,ﬁu + Bo1,Bia + Boa, ..., By + Bam) of two BSVNGSs
of the GSRs G'1 and G4 is BSVNGS of G1 + Gs.

3 Conclusions

Bipolar fuzzy graph theory has numerous applications in various fields of science and technology including,
artificial intelligence, operations research and decision making. A bipolar neutrosophic graph constitutes
a generalization of the notion bipolar fuzzy graph. In this research paper, We have introduced the
idea of bipolar single-valued neutrosophic graph structure and discussed many relevant notions. We
also discussed a worthwhile application of bipolar single-valued neutrosophic graph structure in decision-
making. In future, we aim to generalize our notions to (1) BSVN hypergraph structures, (2) BSVN vague

hypergraph structures, (3) BSVN interval-valued hypergraph structures, and(4) BSVN rough hypergraph
structures.
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