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Abstract— The aim of this article is to introduce a matrix 
algorithm for finding minimum spanning tree (MST) in the 
environment of undirected bipolar neutrosophic connected 
graphs (UBNCG). Some weights are assigned to each edge in 
the form of bipolar neutrosophic number (BNN). The new 
algorithm is described by a flow chart and a numerical example 
by considering some hypothetical graph. By a comparison, the 
advantage of proposed matrix algorithm over some existing 
algorithms are also discussed.   
 

Keywords—Neutrosophic sets, bipolar neutrosophic sets, 
spanning tree problem, score function. 

I. INTRODUCTION  

The concept of neutrosophic set (NS) in 1998 was proposed by 
Smarandache [1], from the philosophical point of view, to 
represent uncertain, imprecise, incomplete, inconsistent, and 
indeterminate information that are exist in the real world. The 
concept of the classic set, fuzzy set and intuitionistic fuzzy set 
(IFS) is generalized by the concept of neutrosophic set. Within 
the real standard or non-standard unit interval ]−0, 1+[, the 
neutrosophic sets are categorized into three membership 
functions called truth-membership function (t), an 
indeterminate-membership function (i) and a false-membership 
function (f). For the first, Smarandache [1] introduced the single 
valued neutrosophic set (SVNS) to apply in science and 
engineering applications. Later on, some properties related to 
single valued neutrosophic sets was studied by Wang et 
al.[2].For dealing with real, scientific, and engineering 
applications, the neutrosophic set model is an important tool 
because it can handle not only incomplete information but also 
the inconsistent information and indeterminate information. 
One may refer to regarding the basic theory of NS, SVNS and 
their extensions with applications in several fields. Many 
researches making particularizations on the T, I, F components 

which leads to define particular case of neutrosophic sets such 
as simplified neutrosophic sets [20], interval valued 
neutrosophic sets [22], bipolar neutrosophic sets [23], 
trapezoidal neutrosophic set [24], rough neutrosophic set [25] 
and so on. As a special case of NSs,  Ye[24] introduced the 
concept of single–valued trapezoidal neutrosophic set. In 
addition, a new ranking method to define the concept of cut sets 
for SVTNNs were proposed by Deli and Subas [26]. The 
authors applied it for solving MCDM problem. Mumtaz et al.[ 
28] defined the concept of bipolar neutrosophic soft sets and 
applied it to decision making problem. 
Prim and Kruskal algorithm are the common algorithms for 
searching the minimum spanning tree including in classical 
graph theory. A new theory is developed and called single 
valued neutrosophic graph theory (SVNGT) by applying the 
concept of single valued neutrosophic sets on graph theory.  The 
concept of SVNGT and their extensions finds its applications 
in diverse fields [6-19]. To search the minimum spanning tree 
in neutrosophic environment recently few researchers have 
used neutrosophic methods. Ye [4] developped a method to find 
minimum spanning tree of a graph where nodes (samples) are 
represented in the form of SVNS and distance between two 
nodes which represents the dissimilarity between the 
corresponding samples has been derived. To cluster the data 
represented by double-valued neutrosophic information, 
Kandasamy [3] proposed a double-valued Neutrosophic 
Minimum Spanning Tree (DVN-MST) clustering algorithm.A 
solution approach of the optimum spanning tree problems 
considering the inconsistency, incompleteness and 
indeterminacy of the information, which was proposed by 
Mandal and Basu [5]. The authors consider a network problem 
with multiple criteria, which are represented by weight of each 
edge in neutrosophic set. The approach proposed by the authors 
is based on similarity measure. In another paper, Mullai [20] 
discussed the MST problem on a graph in which a bipolar 



neutrosophic number is associated to each edge as its edge 
length, and illustrated it by a numerical example.  

The main objective of this paper is to present a neutrosophic 
version of Kruskal algorithm for searching the cost minimum 
spanning tree of an undirected graph in which a bipolar 
neutrosophic number is associated to each edge as its edge 
length. 

The rest of the paper is organized as follows. The concepts of 
neutrosophic sets, single valued neutrosophic sets, bipolar 
neutrosophic sets and the score function of bipolar neutrosophic 
number are briefly presented in section 2. A novel approach for 
finding the minimum spanning tree of neutrosophic undirected 
graph is proposed in section 3. A numerical example is 
presented to illustrate the proposed method in Section 4. A 
comparative study with existing methods is proposed in section 
5, Finally, the main conclusion is presented in section 6. 

II. Prliminaries 

Some of the important background knowledge for the 
materials that are presented in this paper is presented in this 
section. These results can be found in [1, 2, 23]. 

 
Definition 2.1 [1] Le  �  be a universal set. The neutrosophic set 
A on the universal set � categorized into three membership 
functions called the true  ��(x), indeterminate ��(x) and  false 
��(x) contained in real standard or non-standard subset of  ]-0, 
1+[  respectively. 
 
     −0 ≤  sup T� (x) + supI� (x)   + supF� (x) ≤  3+(1)     
 
Definition 2.2 [2] Let � be a universal set. The single valued 
neutrosophic sets (SVNs) A on the universal �  is denoted as 
following 
      A = {< �: T�(x),I� (x), F� (x) > � ∈ �}    (2) 
 
The functions T�(x) ∈  [0. 1], I�(x) ∈  [0. 1] and F�(x) ∈  [0. 1] 
are named degree of true, indeterminate and false membership 
of x in A, satisfy the following condition: 
 
               0  ≤ ��  (x) +�� (x) +�� (x)≤ 3              (3) 
 
Definition 2.3 [23]. A bipolar neutrosophic set A in � is defined 
as an object of the form 

A={<x, ( )pT x , ( )pI x , ( )pF x , ( )nT x ,
( )nI x

, ( )nF x >: x   

X}, where 
pT , 

pI ,
pF :	�   [1, 0] and 

nT , 
nI ,

nF : �   

[-1, 0] .The positive membership degree ( )pT x , ( )pI x , 

( )pF x  denotes the true membership, indeterminate 
membership and false membership of an element   � 
corresponding to a bipolar neutrosophic set A and the negative 

membership degree ( )nT x ,
( )nI x

, ( )nF x denotes the true 
membership, indeterminate membership and false membership 
of an element   � to some implicit counter-property 
corresponding to a bipolar neutrosophic set A. 

 
To compare two Bipolar neutrosophic numbesr (abbr.BNNs), 
Deli et al.[23] introduced the concept of score function and in 
case where the score value of two BNNs are same, they can be 
distinguished by using accuracy function and certainty function 
as follow 

Definition 2.4[23]. Let , I ,F , , I ,Fp p p n n nA T T  be a 

bipolar neutrosophic number, then, the score function ( )s A , 

accuracy function ( )a A and certainty function ( )c A of a BNN 

are defined as follows: 

(i) 

1
( ) 1 1 1

6
p p p n n ns A T I F T I F

                


   (4)                            

(ii) 
( ) p p n na A T F T F   

                                            (5) 

(iii) 
( ) p nc A T F 

                                                            (6) 
 

For any two BNNs 1A  and 2A : 

i. If 1 2( ) ( )s A s A  , then 1A is greater than 2A , that is, 

1A is superior to 2A , denoted by 1 2A A   

ii. If 1 2( ) ( )s A s A  and 1 2( ) ( )a A a A  , then 1A is greater 

than 2A , that is, 1A is superior to 2A , denoted by

1 2A A   

iii. If 1 2( ) ( )s A s A  , 1 2( ) ( )a A a A  , and 1 2c( ) ( )A c A 

then 1A is greater than 2A , that is, 1A is superior to

2A , denoted by 1 2A A   

iv. If  1 2( ) ( )s A s A  , 1 2( ) ( )a A a A  , and 1 2c( ) ( )A c A   

then 1A is equal to 2A , that is, 1A is indifferent to 2A , 

denoted by 1 2A A   

III. MINIMUM SPANNIG TREE ALGORITHM OF BN- UNDIRECTED 

GRAPH 

 
In this section, a neutrosophic version of Kruskal algorithm 

is proposed to handle minimum spanning tree in a bipolar  
neutrosophic environment. In the following, we propose a 
bipolar neutrosophic minimum spanning tree algorithm, whose 
steps are defined below: 

Algorithm: 

Input: The weight matrix ij n n
M W


    for the undirected 

weighted neutrosophic graph G . 

Output: Minimum cost Spanning tree T  ofG . 
 

Step 1: Input neutrosophic adjacency matrix A . 

Step 2: Translate the BN-matrix into score matrix ij n n
S


    by 

using score of bipolar neutrosophic number. 



��� 

3 

��� 

��� 

��� 

��� 
��� 

��� 

1 

2 4 
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Step 3: Iterate step 4 and step 5 until all  1n  entries matrix 

of S  are either marked or set to zero or other words all the 
nonzero elements are marked. 
 

Step 4: Find the score matrix S  either columns-wise or row-

wise to find the unmarked minimum entries ijS , which is the 

weight of the corresponding edge ije in S . 

Step 5: If the corresponding edge ije  of selected ijS produce a 

cycle with the previous marked entries of the score matrix S  

then set ijS = 0 else mark ijS . 

Step 6: Building the graph T  including only the marked entries 

from the score matrix S  which shall be desired minimum cost 

spanning tree of G . 
 
Step 7: Stop. 
 

An illustrative flow chart of the given algorithm is 
presented in fig. 3. 

IV. NUMERICAL EXAMPLE 

In this section, a numerical example is explained based on the 
above algorithm. Consider a hypothetical graph with edge 
values are given in the table below.  
 
 
 
 
 
 
 
 
 
 
 

 
Fig 2. Undirected bipolar neutrosophic- graphs 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
          
 
 
 
 
 
 
 
    
 
 
 

 
 
 

Fig. 3 (Flow chart describing proposed algorithm) 
 

 

The BN- adjacency matrix A  is given below: 
=

⎣
⎢
⎢
⎢
⎡

0
< 0.3, 0.1, 0.2, −0.8, −0.5, −0.1 >
< 0.4, 0.5, 0.4, −0.2, −0.4, −0.5 >
< 0.6, 0.7, 0.8, −0.6, −0.4, −0.4 >

0

< 0.3, 0.1, 0.2, −0.8, −0.5, −0.1 >
0
0

< 0.4, 0.8, 0.3, −0.2, −0.5, −0.7 >
0

 

 
< 0.4, 0.5, 0.4, −0.2, −0.4, −0.5 >

0
0

< 0.2, 0.3, 0.7, −0.2, −0.4, −0.4 >
< 0.4, 0.6, 0.5, −0.4, −0.4, −0.3 >

< 0.6, 0.7, 0.8, −0.6, −0.4, −0.4 >
< 0.4, 0.8, 0.3, −0.2, −0.5, −0.7 >
< 0.2, 0.3, 0.7, −0.2, −0.4, −0.4 >

0
< 0.5, 0.4, 0.3, −0.4, −0.5, −0.8 >

 

 
0
0

< 0.4, 0.6, 0.5, −0.4, −0.4, −0.3 >
< 0.5, 0.4, 0.3, −0.4, −0.5, −0.8 >

0 ⎦
⎥
⎥
⎥
⎤

 

Hence, using the score function introduced in definition 2.1, 
we get the score matrix 

E Edge length 
��� < 0.3, 0.1, 0.2, −0.8, −0.5, −0.1 > 

��� < 0.4, 0.5, 0.4, −0.2, −0.4, −0.5 > 

��� < 0.6, 0.7, 0.8, −0.6, −0.4, −0.4 > 
��� <0.4, 0.8, 0.3, −0.2, −0.5, −0.7 > 

��� < 0.2, 0.3, 0.7, −0.2, −0.4, −0.4 > 
��� < 0.4, 0.6, 0.5, −0.4, −0.4, −0.3 > 

��� < 0.5, 0.4, 0.3, −0.4, −0.5, −0.8 > 



 

� =

⎣
⎢
⎢
⎢
⎡

0 0.47 0.53 0.38 0
0.47 0 0 0.55 0
0.53 0 0 0.52 0.43
0.38 0.55 0.52 0 0.62

0 0 0.43 0.62 0 ⎦
⎥
⎥
⎥
⎤

 

 
Fig. 4. Score matrix 

 
Clearly from figure 4, it is observed that 0.38 is the least 

value so edge (1, 4) is marked as red as shown in figure 5. This 
process shall be continued until last iteration. 

 

 

 

 
 
 
 
 
 
 

Fig. 5 
Clearly from the figure 6, the next non zero minimum entries 
0.43 is marked and colored corresponding edge (3, 5) is given 
in figure 7. 
 

� =

⎣
⎢
⎢
⎢
⎡

0 0.47 0.53 0.38 0
0.47 0 0 0.55 0
0.53 0 0 0.52 0.43
0.38 0.55 0.52 0 0.62

0 0 0.43 0.62 0 ⎦
⎥
⎥
⎥
⎤

 

 
Fig. 6 

 
 
 
 
 
 
 
 
 
 

 
 

Fig 7 
 

� =

⎣
⎢
⎢
⎢
⎡

0 0.47 0.53 0.38 0
0.47 0 0 0.55 0
0.53 0 0 0.52 0.43
0.38 0.55 0.52 0 0.62

0 0 0.43 0.62 0 ⎦
⎥
⎥
⎥
⎤

 

Fig.8 
 

Clearly from the figure 8, the next minimum non-zero 
element 0.47 is marked and the colored corresponding edge is 
given in figure 9.  

 

 
 
 
 
 
 

 
 

 
Fig 9 

Clearly from the figure 10. The next minimum non-zero 
element 0.52 is marked, and colored corresponding edge (3, 4) 
is given in figure 11. 
 

� =

⎣
⎢
⎢
⎢
⎡

0 0.47 0.53 0.38 0
0.47 0 0 0.55 0
0.53 0 0 0.52 0.43
0.38 0.55 0.52 0 0.62

0 0 0.43 0.62 0 ⎦
⎥
⎥
⎥
⎤

 

Fig.10 
 
 
 
 

 
 
 
 
 
 
 

Fig.11 
 

Clearly from the figure 12. The next minimum non-zero 
element 0.53 is marked. But while drawing the edges it 
produces the cycle. So we reject and mark it as 0 instead of 0.53 

 

� =

⎣
⎢
⎢
⎢
⎡

0 0.47 0.53 0.38 0
0.47 0 0 0.55 0

0.53	0 0 0 0.52 0.43
0.38 0.55 0.52 0 0.62

0 0 0.43 0.62 0 ⎦
⎥
⎥
⎥
⎤

 

 
 

Fig .12 
 

The next least value is 0.55 but including this edge results 
in the formation of a cycle. So this value is marked as zero as 
shown in the figure 13. 
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� =

⎣
⎢
⎢
⎢
⎡

0 0.47 0.53 0.38 0
0.47 0 0 0.55	0 0

0.53	0 0 0 0.52 0.43
0.38 0.55 0.52 0 0.62

0 0 0.43 0.62 0 ⎦
⎥
⎥
⎥
⎤

 

Fig .13 
 

Clearly from the figure 14. The next minimum non-zero 
element 0.62 is marked. But while drawing the edges it 
produces the cycle. So we reject and mark it as 0 instead of 0.62. 

 

� =

⎣
⎢
⎢
⎢
⎡

0 0.47 0.53 0.38 0
0.47 0 0 0.55	0 0

0.53	0 0 0 0.52 0.43
0.38 0.55 0.52 0 0.62	0

0 0 0.43 0.62 0 ⎦
⎥
⎥
⎥
⎤

 

 
Fig .14 

 
 
After the above steps, the final path of minimum cost of 

spanning tree of G is given in figure 15. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig .15. Final path of minimum cost of spanning tree of G . 
 

Following the steps of proposed algorithm presented in 
section 3. Therefore the crisp minimum cost spanning tree is 1,8 
and the final path of minimum cost of spanning tree is{2,1},{1, 
4},{4, 3},{3, 5}. 

V. COMPARATIVE STUDY  

In this section, the same process is carried out by the 
algorithm of Mullai et al [20]. The results obtained in different 
iterations by this existing algorithm are illustrated below. 

Let �� = {1} and ��
��� = {2, 3, 4, 5} 

Iteration 2: 

Let �� = {1, 4} and ��
��� = {2, 3, 5} 

Iteration 3: 

Let �� = {1, 4, 3} and��
��� = {2, 5} 

Iteration 4: 

Let �� = {1, 4, 5, 3} and ��
��� = {2} 

Based on these iterations of Mullai’s algorithm, we have the 
following MST. 

 

 

 

 

 

 

 

 

Fig .16.MST obtained by Mullai’s Algorithm 
 

This comparison makes the point that that both the 
existing and new algorithm leads to the same results. 

The advantage of new algorithm over existing 
algorithm is that the new algorithm is matrix based and can be 
easily performed in MATLAB while Mullai’s algorithm is 
based on edge comparison and is difficult to be performed. 

VI. CONCLUSION 

This paper considers a minimum spanning tree 
problem under the situation where the weights of edges are 
represented by BNNs. It is discussed how proposed algorithm 
is better in formulation and implementation. This work can be 
extended to the case of directed neutrosophic graphs and other 
types of neutrosophic graphs such as interval valued bipolar 
neutrosophic graphs 
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